
Sinfonia
a new paradigm

for building scalable
distributed systems

(SOSP 2007)

Marcos Aguilera
Arif Merchant
Mehul Shah

Alistair Veitch
Christos Karamanolis

Memory Nodes

App & Tx Coordinator Nodes

On the face of it, we have transaction coordinators alongside the application, and memory nodes to store the data. Is it just another ACID store that forces
2PC on you?

What I found interesting about this paper is that other approaches avoid 2pc at all costs; instead they relax consistency requirements (many use
memcached) or avoid multi-word transactions (bigtable uses single row transactions)

Memory Nodes

App & Tx Coordinator Nodes

Another distributed
transactional store?

On the face of it, we have transaction coordinators alongside the application, and memory nodes to store the data. Is it just another ACID store that forces
2PC on you?

What I found interesting about this paper is that other approaches avoid 2pc at all costs; instead they relax consistency requirements (many use
memcached) or avoid multi-word transactions (bigtable uses single row transactions)

insert

delete

read

update

DB

read

A brief recap about db operation and 2pc.
App begins a transaction, makes r requests (and touches m nodes in the process).
DB often locks the data.

insert

delete

read

update

DB

r data requests to m nodes

read

A brief recap about db operation and 2pc.
App begins a transaction, makes r requests (and touches m nodes in the process).
DB often locks the data.

DB

prepare

prepare

prepare

2 pc starts after data is over. The db nodes log their data and prepare decision, then
the coordinator logs its commit decision.

DB

commit

commit

commit

DB

commit

commit

commit

r + 2m
round trips

DB

commit

commit

commit

r + 2m
round trips

m + 1
disk writes

sinfonia

if_cmp_rw_prepare

if_cmp_rw_prepare

if_cmp_rw_prepare

Sinfonia also exactly two phases, where the data transfer part is combined with prepare. Items are try-locked, then comparison is done, then the read
and write is done. If the lock fails, the request fails.

It can do it because there is exactly one request allowed to read and write data. Clearly, this influences the way one writes application. The important
takeaway is that such an API is useful in the real world. Multi-stage read-writes just have to be written as higher-order transactions (as with multi-word
CAS)

To be fair, one can do this with stored procedures, but current databases donʼt allow you to exec stored procedure and prepare in one network hop.

sinfonia

m data requests to m nodes

if_cmp_rw_prepare

if_cmp_rw_prepare

if_cmp_rw_prepare

Sinfonia also exactly two phases, where the data transfer part is combined with prepare. Items are try-locked, then comparison is done, then the read
and write is done. If the lock fails, the request fails.

It can do it because there is exactly one request allowed to read and write data. Clearly, this influences the way one writes application. The important
takeaway is that such an API is useful in the real world. Multi-stage read-writes just have to be written as higher-order transactions (as with multi-word
CAS)

To be fair, one can do this with stored procedures, but current databases donʼt allow you to exec stored procedure and prepare in one network hop.

sinfonia

commit

commit

commit

no coordinator disk write, plus commit write is lazy.

sinfonia

1.5 m
round trips

commit

commit

commit

no coordinator disk write, plus commit write is lazy.

sinfonia

1.5 m
round trips m disk writes

commit

commit

commit

no coordinator disk write, plus commit write is lazy.

DB Sinfonia
structured
storage linear range

locking
 isolation levels
 duration
 deadlocks

brief,
deterministic
locking interval

blocking non-blocking

db nodes don’t know
about each other

mem nodes know about
others, for each tx

sinfonia: much lower level; app may have to worry about garbage collecting space

sinfonia: no blocking. If lock not acquired, does not prepare.

2pc: coordinator is a bottleneck for recovery because only it knows the participants.

coordinator crash

Management infrastructure periodically polls mem nodes about in-doubt transactions and a recovery coordinator kicks in when a coordinator crashes. It
tells each node, for each in-doubt tx, to abort the tx unless it voted commit. If for a particular tx, all participating nodes say they voted to commit, then the
rec. coordinator drives the tx to commit.

This is correct because this scheme can run concurrently with a coordinator which may have come back (maybe it got stuck in a GC or network hiccup).
It is correct because no-one changes their vote.

To me, it is not clear from the paper how the management infrastructure knows which nodes the crashed coordinator was responsible for (unless there is
a hint in the transaction id). Otherwise, it is reckless to start aborting all transactions currently in progress at all nodes.

coordinator crash

Management infrastructure periodically polls mem nodes about in-doubt transactions and a recovery coordinator kicks in when a coordinator crashes. It
tells each node, for each in-doubt tx, to abort the tx unless it voted commit. If for a particular tx, all participating nodes say they voted to commit, then the
rec. coordinator drives the tx to commit.

This is correct because this scheme can run concurrently with a coordinator which may have come back (maybe it got stuck in a GC or network hiccup).
It is correct because no-one changes their vote.

To me, it is not clear from the paper how the management infrastructure knows which nodes the crashed coordinator was responsible for (unless there is
a hint in the transaction id). Otherwise, it is reckless to start aborting all transactions currently in progress at all nodes.

coordinator crash

recovery
 coordinator

Management infrastructure periodically polls mem nodes about in-doubt transactions and a recovery coordinator kicks in when a coordinator crashes. It
tells each node, for each in-doubt tx, to abort the tx unless it voted commit. If for a particular tx, all participating nodes say they voted to commit, then the
rec. coordinator drives the tx to commit.

This is correct because this scheme can run concurrently with a coordinator which may have come back (maybe it got stuck in a GC or network hiccup).
It is correct because no-one changes their vote.

To me, it is not clear from the paper how the management infrastructure knows which nodes the crashed coordinator was responsible for (unless there is
a hint in the transaction id). Otherwise, it is reckless to start aborting all transactions currently in progress at all nodes.

for every in-doubt tx
 abort unless you remember
 voting commit
 return vote

coordinator crash

recovery
 coordinator

Management infrastructure periodically polls mem nodes about in-doubt transactions and a recovery coordinator kicks in when a coordinator crashes. It
tells each node, for each in-doubt tx, to abort the tx unless it voted commit. If for a particular tx, all participating nodes say they voted to commit, then the
rec. coordinator drives the tx to commit.

This is correct because this scheme can run concurrently with a coordinator which may have come back (maybe it got stuck in a GC or network hiccup).
It is correct because no-one changes their vote.

To me, it is not clear from the paper how the management infrastructure knows which nodes the crashed coordinator was responsible for (unless there is
a hint in the transaction id). Otherwise, it is reckless to start aborting all transactions currently in progress at all nodes.

coordinator crash

commit

commit

commit

if all of them voted to commit, a commit is sent to all, else abort.

memory node crash

No recovery coordinator is used when a mem node crashes.
Nodes know the other nodes that were involved in the various transactions, so they ask each other while recovering.
Iʼm not a big fan of this architecture; Iʼd have preferred a recovery coordinator in all cases; it is less complex and a recovery from a system crash (like a
power failure) doesnʼt swamp the network.

memory node crash

No recovery coordinator is used when a mem node crashes.
Nodes know the other nodes that were involved in the various transactions, so they ask each other while recovering.
Iʼm not a big fan of this architecture; Iʼd have preferred a recovery coordinator in all cases; it is less complex and a recovery from a system crash (like a
power failure) doesnʼt swamp the network.

memory node crash

No recovery coordinator is used when a mem node crashes.
Nodes know the other nodes that were involved in the various transactions, so they ask each other while recovering.
Iʼm not a big fan of this architecture; Iʼd have preferred a recovery coordinator in all cases; it is less complex and a recovery from a system crash (like a
power failure) doesnʼt swamp the network.

enhancements

structured storage

smarter mem nodes

 if cmp_read/write/prepare
else read

temporary blocking instead of BAD_LOCK

Temporary blocking: Iʼd like a separate option that says block on locking for a limited amount of time instead of returning. It does introduce the possibility
of limited-duration deadlocks, but may improve throughput.

Structured storage: different addressing options, not just offset, count.
Ranges are prone to “off-by-one” errors that could result in livelocks and corrupted data. Key/Value storage keeps one keyʼs space logically separate from
another.

App will also have to worry about portability. Fig. 7 in paper writes &newAttributes. This is tied to the current structure of attributes and to the machine that
used it.

smarter: Compare could be any predicate (field2 > field 3). Actions could be increment, arithmetic, insertions etc.

Unnecessary round-trips on contention.

related reading

Google: Chubby, BigTable, TaskMaster
YouTube architecture

Yahoo: , PNuts

Microsoft: Partitioning and Recovery Service

Apache/Yahoo Hadoop Project: Zookeeper

