
IBM Research

© 2012 IBM Corporation

Adding Dynamically-Typed Language Support to
a Statically-Typed Language Compiler:
Performance Evaluation, Analysis, and Tradeoffs

Kazuaki Ishizaki +, Takeshi Ogasawara +, Jose Castanos *,
Priya Nagpurkar *, David Edelsohn *, Toshio Nakatani +

+IBM Research – Tokyo
*IBM T.J. Watson Research Center



2 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation2

Improve performance of a dynamically-typed 
language by reusing an existing JIT compiler
Dynamically-typed languages are becoming popular

►Perl, PHP, JavaScript, Python, Ruby, Lua, …

►Examples of large applications
– Hulu (Ruby), Washington post (Python)

Performance is an issue compared to statically-typed 
languages
►Python, PHP, and Ruby are 2.2~6.5x slower than Java (interpreter

only)
[Computer Language Benchmarks Game 2009]

Developing a JIT compiler for each language from scratch is 
too costly
►There are matured JIT compilers for a statically-typed language

Motivation & Goal



3 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation

Performance overheads in dynamically-typed language

Every variable can be dynamically-typed
►Need type checks

Every statement can potentially throw exceptions due to type 
mismatch and so on
►Need exception checks

Every field and symbol can be added, deleted, and changed 
at runtime
►Need access checks

A type of every object and its class hierarchy can be changed 
at runtime
►Need class hierarchy checks

Problems

a = obj.x + 1.2
if (isinstance(a, Integer)):

…



4 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation4

Our Contributions

Reduce performance overheads in dynamically-typed 
language
►By compiler optimizations

– Exception checks
►By optimized runtime

– Type checks
– Access checks 
– Class hierarchy checks

Evaluate performance improvement by each optimization
►Our JIT compiler improves performance by 1.76x against Python 

language interpreter

Contributions



5 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation5

Outline
Motivation & Goal

Contributions

Overview of our Approach

Our Optimizations

Performance Evaluation

Related Works

Conclusion and Future Work

Outline



6 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation6

Python bytecode

CPython

High level overview of our Python runtime

Python bytecode ->
Intermediate representation

Language VM

JIT compiler

binary

Optimizations and
code generation

profile 
information

Intermediate representation

code 
cache

New component

CPython is defacto
Python VM at 
http://www.python.org/ 

 IBM production-quality
Just-In-Time (JIT) compiler for 
Java as a base

CPython as a language
virtual machine (VM)
Maintain compatibility

with existing libraries
coupled with CPython

► E.g. mod_wsgi for
using apache web server

Same structure as 
Unladen Swallow
CPython with LLVM

compiler infrastructure
[http://code.google.com/p/unladen-swallow] Existing component

Overview of our Approach

Optimizations for
dynamically-typed languages

Profiler Selector

Python 
program



7 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation7

Optimizations evaluated for performance
Optimization

Same

Same

Improvement

Improvement

New

New

New

New

New

Novelty compared 
to Unladen Swallow

Python

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Source of 
overhead

Optimization

Reduce overhead to look up a hash when access a field

Reduce overhead to check a given object is an instance of a class

Reduce overhead to search a dictionary when call hasattr()

Map operand stack to stack-allocated variables

Represent a exception check without splitting a basic block

Specialization for one operation using runtime type information

Speculatively constantish global variables and built-in functions

Represent an operation to maintain reference counting without branch

Map Python’s local variable to stack-allocated variables

See paper for details of each optimization



8 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation8

Statically-typed language v.s. dynamically-typed language
Optimization

S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

Statically-typed language Dynamically-typed language



9 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation9

Comparison of an access to a field
Optimization

a = load offset_for_field#x[obj] a = call get_value_dict(obj, field#x)

One instruction 10~ instructions

field name

z

y

x 3.4

5

[1, 2]

value

0

• Get a value the field x by looking up a 
hash with conflict resolution using many 
memory accesses

• Get a value the field x by accessing 
with constant offset

8

9

hash

S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

Statically-typed language Dynamically-typed language



10 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation10

Access to a field without conflict resolution
Access an value using profiled index without conflict resolution when look 

up hash
►Profile an offset of open-addressed hash table at S1 before compilation

– Profiled index = 9 for the field name x
►Generate code to access an entry at index = 9 in the table

at compilation time

►Access an entry (index = 9) with validation check at runtime

Optimization “Field”

S1: a = obj.x (index = 9)
S2: if (isinstance(a, String)):

….

Open-addressed hash table

field name

z

y

x 3.4

5

[1, 2]

value

0

8

9

One memory access
load [obj->hashtable+9*size(entry)]]

Many memory accesses
call get_value_dict(obj, field#x)

Slower

Faster



11 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation11

The result of dynamically-typed language can vary for 
the same instance check

Optimization

Statically-typed language Dynamically-typed language

Float

S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

3.4

Integer

Always False for a=3.4 False for a=3.4

Float

3.4

Integer

CHECK CHECK

Number Class hierarchy Class hierarchy



12 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation12

The result of dynamically-typed language can vary for 
the same instance check

Optimization

Statically-typed language Dynamically-typed language
S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

Float becomes a subclass of Integer

Float

3.4

Integer Float

3.4

Integer

True for a=3.4 after class 
hierarchy change at runtime

CHECK CHECK

Always False for a=3.4

Number Class hierarchy Class hierarchy

Naïve cache or pre-computation
is effective

Naïve cache and pre-computation 
cannot be applicable



13 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation13

Caching the results of instance checks

Our JIT compiler already had a component for Java for caching 
frequently-checked classes of target objects and the results of the 
checks.
r1 = aclass

cmp r1, freqClass // profiled class for a

jne slow_instance_check

r2 = cachedResult // result by comparing freqClass
with Integer 

We extended this component for Python.
►Add the code for validation of the reusability of cached results

Optimization “instanceof”

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…



14 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation14

Performance evaluation 
Measured performance improvement by each optimization or set of 

optimizations
► at steady state performance
►by disabling each optimization or a set of optimizations

Hardware & OS
► 2.93-GHz Intel Xeon X5670 (disabled turbo boost) with 24-GB memory

►Redhat Linux 5.5
Our runtime for Python 

►CPython 2.6.4 (32bit) with IBM production-quality JIT compiler
Benchmarks

►Unladen Swallow benchmark suite
[http://code.google.com/p/unladen-swallow/wiki/Benchmarks]

Performance Evaluation



15 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation15

Optimizations evaluated for performance
Performance Evaluation

See paper for details of each optimization

Same

Same

Improvement

Improvement

New

New

New

New

New

Novelty compared 
to Unladen Swallow

Python

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Source of 
overhead

Optimization

Reduce overhead to look up a hash when access a field

Reduce overhead to check a given object is an instance of a class

Reduce overhead to search a dictionary when call hasattr()

Map operand stack to stack-allocated variables

Represent a exception check without splitting a basic block

Specialization for one operation using runtime type information

Speculatively constantish global variables and built-in functions

Represent an operation to maintain reference counting without branch

Map Python’s local variable to stack-allocated variables



16 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation16

Our JIT compiler improves by 1.76x against CPython interpreter

nbody is 2.74x faster and django is 2.60x faster
Our JIT w/o all of optimizations for dynamically-typed languages is 1.07x 

faster than CPython interpreter
pystone and rietveld fail due to overflow of compiler working memory

Performance Evaluation

H
ig

he
r i

s 
be

tte
r

0.5

1.0

1.5

2.0

2.5

3.0

flo
at

nb
od

y
nq

ue
en

s

py
sto

ne

ric
ha

rd
s

dja
ng

o

rie
tve

ld
sp

am
ba

ye
s

slo
wsp

itfi
re

ge
om

ea
n

Re
lat

ive
 pe

rfo
rm

an
ce

 ov
er 

CP
yth

on

Our JIT compiler with no optimizations
Our JIT compiler with all optimizations

Smaller programs Larger programs

1.07

1.76

2.74 2.60



17 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation17

Performance improvements by reducing overhead in dynamically-
typed language
 “field” are effective for float and richards
 “isinstance” is effective for django and rietveld

► Django framework uses many instance checks

 “specialization” is effective for float and nbody
 “constantish” is effective for django

► Reduce overhead to call built-in function

Performance Evaluation

2.26 2.13

H
ig

he
r i

s 
be

tte
r

Our new optimizations

0.9

1.0

1.1

1.2

1.3

1.4

flo
at

nb
od

y

nq
ue

en
s

py
sto

ne

ric
ha

rd
s

dja
ng

o

rie
tv

eld
sp

am
ba

ye
s

slo
ws

pit
fir

e

ge
om

ea
n

Re
lat

ive
 pe

rfo
rm

an
ce

 ov
er

 JI
T 

dis
ab

lin
g t

he
 op

tim
iza

tio
n field

isinstance
exceptions
hasattr
specialization
constantish

Our new
optimizations



18 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation18

Related work
Untouch JIT compiler for Java bytecode or common intermediate 

language (CIL)
► Jython[http://jython.org//], IronPython[http://ironpython.net/] (Python)

► Jruby[http://jruby.org/], IronRuby[http://ironruby.net/] (Ruby)

►Rhino[http://www.mozilla.org/rhino/] (Javascript)

Enhance JIT compiler
►Unladen swallow[http://code.google.com/p/unladen-swallow/] (Python with LLVM[Lattner2004])

►Rubinius[http://rubini.us/] (Ruby with LLVM)

Create JIT compiler and runtime from scratch
►V8[http://code.google.com/p/v8/], TraceMonkey[Gas2009], 

SpiderMonkey[http://www.mozilla.org/js/spidermonkey/], … (Javascript)

►PyPy[Boltz2011] (Python)

Related work



19 / 19 Adding Dynamically-Typed Language Support to a Statically-Typed Language Compiler © 2012 IBM Corporation19

Future work
►Apply aggressive compiler optimizations for a dynamically-typed language

– Implementing type specialization within a method
– Implementing unboxing for primitive types : int and float

►Exploit existing compiler optimizations furthermore
– e.g. common subexpression elimination for accessing a field and type flow 

optimization

Reducing performance overhead
in dynamically-typed language 

by enhancing JIT compiler for Java

Summary of Our Accomplishment

Conclusion and future work


