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Improve performance of a dynamically-typed 
language by reusing an existing JIT compiler
Dynamically-typed languages are becoming popular

►Perl, PHP, JavaScript, Python, Ruby, Lua, …

►Examples of large applications
– Hulu (Ruby), Washington post (Python)

Performance is an issue compared to statically-typed 
languages
►Python, PHP, and Ruby are 2.2~6.5x slower than Java (interpreter

only)
[Computer Language Benchmarks Game 2009]

Developing a JIT compiler for each language from scratch is 
too costly
►There are matured JIT compilers for a statically-typed language

Motivation & Goal
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Performance overheads in dynamically-typed language

Every variable can be dynamically-typed
►Need type checks

Every statement can potentially throw exceptions due to type 
mismatch and so on
►Need exception checks

Every field and symbol can be added, deleted, and changed 
at runtime
►Need access checks

A type of every object and its class hierarchy can be changed 
at runtime
►Need class hierarchy checks

Problems

a = obj.x + 1.2
if (isinstance(a, Integer)):

…
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Our Contributions

Reduce performance overheads in dynamically-typed 
language
►By compiler optimizations

– Exception checks
►By optimized runtime

– Type checks
– Access checks 
– Class hierarchy checks

Evaluate performance improvement by each optimization
►Our JIT compiler improves performance by 1.76x against Python 

language interpreter

Contributions
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Outline
Motivation & Goal

Contributions

Overview of our Approach

Our Optimizations

Performance Evaluation

Related Works

Conclusion and Future Work

Outline
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Python bytecode

CPython

High level overview of our Python runtime

Python bytecode ->
Intermediate representation

Language VM

JIT compiler

binary

Optimizations and
code generation

profile 
information

Intermediate representation

code 
cache

New component

CPython is defacto
Python VM at 
http://www.python.org/ 

 IBM production-quality
Just-In-Time (JIT) compiler for 
Java as a base

CPython as a language
virtual machine (VM)
Maintain compatibility

with existing libraries
coupled with CPython

► E.g. mod_wsgi for
using apache web server

Same structure as 
Unladen Swallow
CPython with LLVM

compiler infrastructure
[http://code.google.com/p/unladen-swallow] Existing component

Overview of our Approach

Optimizations for
dynamically-typed languages

Profiler Selector

Python 
program
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Optimizations evaluated for performance
Optimization

Same

Same

Improvement

Improvement

New

New

New

New

New

Novelty compared 
to Unladen Swallow

Python

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Source of 
overhead

Optimization

Reduce overhead to look up a hash when access a field

Reduce overhead to check a given object is an instance of a class

Reduce overhead to search a dictionary when call hasattr()

Map operand stack to stack-allocated variables

Represent a exception check without splitting a basic block

Specialization for one operation using runtime type information

Speculatively constantish global variables and built-in functions

Represent an operation to maintain reference counting without branch

Map Python’s local variable to stack-allocated variables

See paper for details of each optimization
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Statically-typed language v.s. dynamically-typed language
Optimization

S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

Statically-typed language Dynamically-typed language
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Comparison of an access to a field
Optimization

a = load offset_for_field#x[obj] a = call get_value_dict(obj, field#x)

One instruction 10~ instructions

field name

z

y

x 3.4

5

[1, 2]

value

0

• Get a value the field x by looking up a 
hash with conflict resolution using many 
memory accesses

• Get a value the field x by accessing 
with constant offset

8

9

hash

S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

Statically-typed language Dynamically-typed language
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Access to a field without conflict resolution
Access an value using profiled index without conflict resolution when look 

up hash
►Profile an offset of open-addressed hash table at S1 before compilation

– Profiled index = 9 for the field name x
►Generate code to access an entry at index = 9 in the table

at compilation time

►Access an entry (index = 9) with validation check at runtime

Optimization “Field”

S1: a = obj.x (index = 9)
S2: if (isinstance(a, String)):

….

Open-addressed hash table

field name

z

y

x 3.4

5

[1, 2]

value

0

8

9

One memory access
load [obj->hashtable+9*size(entry)]]

Many memory accesses
call get_value_dict(obj, field#x)

Slower

Faster
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The result of dynamically-typed language can vary for 
the same instance check

Optimization

Statically-typed language Dynamically-typed language

Float

S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

3.4

Integer

Always False for a=3.4 False for a=3.4

Float

3.4

Integer

CHECK CHECK

Number Class hierarchy Class hierarchy
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The result of dynamically-typed language can vary for 
the same instance check

Optimization

Statically-typed language Dynamically-typed language
S1: Number a = obj.x
S2: if (isinstance(a, Integer)):

…

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…

Float becomes a subclass of Integer

Float

3.4

Integer Float

3.4

Integer

True for a=3.4 after class 
hierarchy change at runtime

CHECK CHECK

Always False for a=3.4

Number Class hierarchy Class hierarchy

Naïve cache or pre-computation
is effective

Naïve cache and pre-computation 
cannot be applicable
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Caching the results of instance checks

Our JIT compiler already had a component for Java for caching 
frequently-checked classes of target objects and the results of the 
checks.
r1 = aclass

cmp r1, freqClass // profiled class for a

jne slow_instance_check

r2 = cachedResult // result by comparing freqClass
with Integer 

We extended this component for Python.
►Add the code for validation of the reusability of cached results

Optimization “instanceof”

S1: a = obj.x
S2: if (isinstance(a, Integer)):

…
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Performance evaluation 
Measured performance improvement by each optimization or set of 

optimizations
► at steady state performance
►by disabling each optimization or a set of optimizations

Hardware & OS
► 2.93-GHz Intel Xeon X5670 (disabled turbo boost) with 24-GB memory

►Redhat Linux 5.5
Our runtime for Python 

►CPython 2.6.4 (32bit) with IBM production-quality JIT compiler
Benchmarks

►Unladen Swallow benchmark suite
[http://code.google.com/p/unladen-swallow/wiki/Benchmarks]

Performance Evaluation
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Optimizations evaluated for performance
Performance Evaluation

See paper for details of each optimization

Same

Same

Improvement

Improvement

New

New

New

New

New

Novelty compared 
to Unladen Swallow

Python

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Python

Dynamically-typed

Dynamically-typed

Dynamically-typed

Source of 
overhead

Optimization

Reduce overhead to look up a hash when access a field

Reduce overhead to check a given object is an instance of a class

Reduce overhead to search a dictionary when call hasattr()

Map operand stack to stack-allocated variables

Represent a exception check without splitting a basic block

Specialization for one operation using runtime type information

Speculatively constantish global variables and built-in functions

Represent an operation to maintain reference counting without branch

Map Python’s local variable to stack-allocated variables
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Our JIT compiler improves by 1.76x against CPython interpreter

nbody is 2.74x faster and django is 2.60x faster
Our JIT w/o all of optimizations for dynamically-typed languages is 1.07x 

faster than CPython interpreter
pystone and rietveld fail due to overflow of compiler working memory

Performance Evaluation
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Performance improvements by reducing overhead in dynamically-
typed language
 “field” are effective for float and richards
 “isinstance” is effective for django and rietveld

► Django framework uses many instance checks

 “specialization” is effective for float and nbody
 “constantish” is effective for django

► Reduce overhead to call built-in function

Performance Evaluation

2.26 2.13
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Related work
Untouch JIT compiler for Java bytecode or common intermediate 

language (CIL)
► Jython[http://jython.org//], IronPython[http://ironpython.net/] (Python)

► Jruby[http://jruby.org/], IronRuby[http://ironruby.net/] (Ruby)

►Rhino[http://www.mozilla.org/rhino/] (Javascript)

Enhance JIT compiler
►Unladen swallow[http://code.google.com/p/unladen-swallow/] (Python with LLVM[Lattner2004])

►Rubinius[http://rubini.us/] (Ruby with LLVM)

Create JIT compiler and runtime from scratch
►V8[http://code.google.com/p/v8/], TraceMonkey[Gas2009], 

SpiderMonkey[http://www.mozilla.org/js/spidermonkey/], … (Javascript)

►PyPy[Boltz2011] (Python)

Related work
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Future work
►Apply aggressive compiler optimizations for a dynamically-typed language

– Implementing type specialization within a method
– Implementing unboxing for primitive types : int and float

►Exploit existing compiler optimizations furthermore
– e.g. common subexpression elimination for accessing a field and type flow 

optimization

Reducing performance overhead
in dynamically-typed language 

by enhancing JIT compiler for Java

Summary of Our Accomplishment

Conclusion and future work


