
Swift: A Register-based JIT Compiler for Embedded JVMs

Yuan Zhang Min Yang Bo Zhou Zhemin Yang Weihua Zhang Binyu Zang
Parallel Processing Institute, Fudan University

{yuanxzhang, m yang, bo-zhou, yangzhemin, zhangweihua, byzang}@fudan.edu.cn

Abstract
Code quality and compilation speed are two challenges to JIT
compilers, while selective compilation is commonly used to trade-
off these two issues. Meanwhile, with more and more Java ap-
plications running in mobile devices, selective compilation meets
many problems. Since these applications always have flat execution
profile and short live time, a lightweight JIT technique without
losing code quality is extremely needed. However, the overhead
of compiling stack-based Java bytecode to heterogeneous register-
based machine code is significant in embedded devices. This paper
presents a fast and effective JIT technique for mobile devices,
building on a register-based Java bytecode format which is more
similar to the underlying machine architecture.

Through a comprehensive study on the characteristics of Java
applications, we observe that virtual registers used by more than
90% Java methods can be directly fulfilled by 11 physical registers.
Based on this observation, this paper proposes Swift, a novel JIT
compiler on register-based bytecode, which generates native code
for RISC machines. After mapping virtual registers to physical reg-
isters, the code is generated efficiently by looking up a translation
table. And the code quality is guaranteed by the static compiler
which is used to generate register-based bytecode. Besides, we
design two lightweight optimizations and an efficient code unloader
to make Swift more suitable for embedded environment. As the
prevalence of Android, a prototype of Swift is implemented upon
DEX bytecode which is the official distribution format of Android
applications.

Swift is evaluated with three benchmarks (SPECjvm98, Em-
beddedCaffeineMark3 and JemBench2) on two different ARM
SOCs: S3C6410 (armv6) and OMAP3530 (armv7). The results
show that Swift achieves a speedup of 3.13 over the best-performing
interpreter on the selected benchmarks. Compared with the state-
of-the-art JIT compiler in Android, JITC-Droid, Swift achieves a
speedup of 1.42.

Categories and Subject Descriptors D.3 [Software]: Program-
ming Languages; D.3.4 [Programming Languages]: Processors—
compilers, run-time environments, code generation

General Terms Performance, Language, Design

Keywords Register-based Bytecode, Just-In-Time Compiler, Em-
bedded JVM, Android

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

1. Introduction
The widespread of Internet has given people access to information
in an easier way, while the technology of mobile computing helps to
achieve this on a level never experienced before. Mobile devices as
simple as mobile phones and as complex as mobile internet devices
with various network connections and all kinds of sensors (such as
cameras, GPS, near-field communication and accelerometers, etc)
are the current computing wave, competing heavily with desktops
and laptops for market and popularity. As a widely anticipated
open source operating system (OS) for mobile devices, Android
runs on diverse devices, such as phones, tablet PCs, netbooks,
etc. Taken Java’s portability and its large community into account,
Android OS and its applications are implemented in Java language.
Programmers can easily develop powerful and rich applications for
these kinds of devices without concerning their architectures and
configurations.

To be machine-independent, Java is compiled into a portable
instruction format called bytecode [18]. When Java is proposed
by Sun, it mainly targets client applications running in the brows-
er, so it uses a stack-based bytecode which is more compact,
minimizing the consumption of network bandwidth. However, the
mismatch between the stack-based architecture of Java virtual ma-
chine (JVM) and underlying register-based architecture commonly
found in mobile devices introduces much overhead during just-in-
time (JIT) compilation.

To reduce the compilation overhead of JIT, traditional JIT
systems usually equip two compilers at least: a non-optimizing
compiler which compiles all the methods without any optimization-
s or only few lightweight optimizations; an optimizing compiler
which recompiles hot methods and performs heavy optimizations
to boost performance. Due to the compilation overhead, the non-
optimizing compiler usually uses a simple local register allocator or
just mimics the behavior of virtual stack, sacrificing code quality.
Meanwhile, the number of methods compiled by the optimizing
compiler must be limited for its significant compilation overhead.
When computing begins moving to embedded environment which
is constrained by CPU cycles and power supply, a lightweight JIT
technique without losing code quality is extremely needed.

In Android, a new register-based Java bytecode format, DEX
[1], is firstly used to narrow the gap between bytecode format and
machine instruction format. All instructions in DEX bytecode for-
mat are designed to directly operate on virtual registers. Although
register-based bytecode becomes popular since the appearance of
Android, it has been discussed many years ago. In [13], Davis
et al. first propose a virtual register machine architecture for
JVM and compare the standard Java stack-based bytecode with
their proposed register-based bytecode. They find that the register-
based format reduces the total instruction count by 34.88%, while
increasing the bytecode size by 44.81%. Shi et al. [30] extend the
prior work by implementing a register-based JVM and compare the
performance of these two kinds of bytecode. They find that the

63

register-based format reduces the execution time by 26.5% on a
switch-based C interpreter [14, 15, 27]. Although JIT compilation
techniques on stack-based bytecode is well studied, the research
about constructing a register-based JIT is still blank. Actually,
being much closer to Instruction Set Architecture (ISA) of phys-
ical machines, register-based bytecode creates an opportunity to
improve the construction of JIT compiler on RISC processors.
This paper focus on using register-based bytecode to design a
lightweight JIT compiler without losing code quality.

Currently, Google has developed a JIT compiler (JITC-Droid)
[11] in Android. JITC-Droid is very similar to the dynamic native
optimization system proposed by Sullivan et al. [32] which works
in two phases: trace selection and trace compilation. In JITC-
Droid, a Java method is first executed by a very efficient interpreter
which also detects the start points of hot traces by recording the
execution counter at branch targets. When the execution counter
exceeds a threshold, JITC-Droid enters the trace selection phase.
The trace is selected by a special interpreter and composed of ”non-
control-flow” instructions. The trace compilation phase includes
the following steps: CFG construction, SSA conversion, linear-
scan register allocation, low IR construction and code generation.
This process is very common in the traditional JIT compilers
[12, 26, 31] which are proposed upon stack-based bytecode. After
the trace is compiled, JITC-Droid will mark the start point of the
trace so that the interpreter could immediately invoke the compiled
code when the control flow transfers to this trace. Although JITC-
Droid improves the performance a lot for some computational
benchmarks against the best-performing interpreter in Android, it
doesn’t utilize the opportunity created by register-based bytecode.
By exploiting the similarity between register-based bytecode and
underlying register-based architectures commonly found in embed-
ded processors, further performance gains can be expected.

Through a study on the characteristics of Java applications,
we observe that virtual registers used by more than 90% Java
methods can be directly fulfilled by physical registers. Based on
this observation, this paper proposes Swift, a novel JIT compiler
on register-based bytecode, which generates native code for RISC
machines. After mapping virtual registers to physical registers, the
code is generated efficiently by looking up a translation table.
And the code quality is guaranteed by the static compiler which
is used to generate register-based bytecode. Besides, we design
two lightweight optimizations and an efficient code unloader to
make Swift more suitable for embedded environment. As the
prevalence of Android, a prototype of Swift is implemented upon
DEX bytecode which is the official distribution format of Android
applications.

Our proposed solution is better than traditional Just-In-Time
compilers in the following two aspects. First, Swift can generate
effective code online without extra effort, because register alloca-
tion and some optimizations are performed offline when compiling
Java code to register-based bytecode. Second, our solution can
compile all the methods executed without any prediction, because
the translation is very fast. To the best of our knowledge, Swift is
the first JIT compiler utilizing the opportunity created by register-
based bytecode.

As the prevalence of Android, a prototype of Swift is imple-
mented upon the generally accepted DEX bytecode. The major
contributions of this paper are the following:

1. Through a study on the characteristics of Java methods, we
show that register-based bytecode can be exploited to improve
the construction of JIT compiler on RISC processors.

2. Based on the observation in the study, we propose a fast
and effective Just-In-Time compiler called Swift specifically for
register-based bytecode.

3. We implement a workable prototype of Swift for DEX byte-
code in Dalvik Virtual Machine [10].

4. We evaluate Swift with three popular benchmarks on two plat-
forms, including comparison with other two execution engines
in Dalvik Virtual Machine.

The rest of the paper is organized as follows. Section 2 intro-
duces register-based bytecode and illustrates our motivation. Sec-
tion 3 describes our JIT system and its core components. Section
4 details the prototype of Swift for DEX bytecode, including two
lightweight optimizations. In section 5, we evaluate Swift with three
popular benchmarks on two ARM SOCs: S3C6410 (armv6) and
OMAP3530 (armv7). The related work is discussed in Section 6.
Section 7 concludes and makes some discussions.

2. Register-based Bytecode
In this section, we take DEX bytecode as an example to introduce
register-based bytecode and compare it with traditional stack-based
bytecode. Then through a study on Java method characteristics,
we show the opportunity for JIT construction on register-based
bytecode.

2.1 Bytecode Comparison

Designed to be machine independent, bytecode acts as an in-
termediate representation for managed languages. The original
Java bytecode specified by Sun is stack-based. In this stack-based
bytecode format, instructions operate on two sources of operands:
local area and virtual stack. Local area is used to hold local
variables of a Java method, while virtual stack is the place where
computing occurs. Excluding the instructions interacting with VM,
there are two kinds of instructions in this bytecode format: 1) data
movement instruction which transfers data between local area and
virtual stack; 2) computation instruction which fetches operands
from the virtual stack and stores the result back to virtual stack
according to the type of the instruction.

In Android, another kind of bytecode format called DEX
bytecode is used to distribute Java applications. To run DEX
bytecode, Google develops a Java virtual machine called Dalvik
[10]. Different from the stack-based bytecode, DEX is based on
virtual registers. The instructions in DEX can be grouped into two
categories: 1)VM-related instructions which interact with virtual
machine; 2)computation instructions which just compute on the
virtual registers. There are about 232 instructions in DEX, and 43
of them are VM-related instructions. The remaining instructions
are very simple instructions such as arithmetic instructions, logic
instructions, etc.

Figure 1 shows an example of sum function and its correspond-
ing bytecode in stack-based format and DEX format. From Figure
1, we can find that in stack-based bytecode, data are frequently
transferred between local area and virtual stack, which is quite
inefficient. By contrast, every instruction in DEX directly operates
on virtual registers, eliminating unnecessary data movements.

As Android is widely accepted by hardware manufacturers,
software companies and wireless operators, DEX is becoming
more and more popular, especially in embedded devices. To be
compatible with the stack-based bytecode which is the standard
format for Java, Google develops a translation tool called dx.
It translates several .class files into one single .dex file. The
translation process is showed in Figure 2. When allocating the
virtual registers, dx use a graph-coloring algorithm with unlimited
registers and the virtual registers are numbered from zero. To
reduce the size of the .dex file, dx also compresses the .dex file
by sharing a constant pool among all classes it handled.

In DEX, each method has its own virtual register set. The sum
function showed in Figure 1 has 5 virtual registers and 3 of them

64

int sum (int start , int end){
int sum = 0 ;
for (; start < end ; start ++)

sum += start ;
return sum ;

}

(a) sum function

000 : iconst_0 / / push const 0
001 : istore_3 / / pop 0 to v3 (sum)
002 : iload_1 / / push v1 (start)
003 : iload_2 / / push v2 (end)
004 : if_icmpgt 017 / / compare start and end
007 : iload_3 / / push v3 (sum)
008 : iload_1 / / push v1 (start)
009 : iadd / / push (sum + start)
010 : istore_3 / / sum = sum + start
011 : iinc 1 , #1 / / add v1 (start) by 1
014 : goto 002
017 : iload_3 / / push v3 (sum)
018 : ireturn / / return sum

(b) Stack-based Bytecode

000 : const / 4 v0 , #0 / / v0 (sum) = 0
001 : move v1 , v3 / / v1 = v3 (start)
002 : if−ge v1 , v4 , 008 / / test v1 , v4 (end)
004 : add−int / 2 addr v0 , v1 / / v0 = v0 + v1
005 : add−int / lit8 v1 , v1 , #1 / / v1 = v1 + 1
007 : goto 002
008 : return v0 / / return sum

(c) DEX Instructions

Figure 1. Comparison of Stack-based bytecode and DEX
bytecode in sum function.

.java .class .dex

Dalvik Virtual
Machine

class loader

javac dx

Figure 2. Transform several .class files to single .dex file.

are marked as input registers, ranging from v2 to v4. The remaining
2 registers are marked as local register used to store local variables
ranging from v0 to v1. Through Figure 1, we find that the DEX
instructions are very similar to machine instructions. We will show
that this similarity can be exploited to construct a lightweight JIT
compiler in the following.

2.2 Java Method Characteristics

The principle of separation logic is widely accepted today, especial-
ly in object-oriented programming languages, such as Java. In Java,
programs are often divided into many packages, and each package
is constructed by structured classes with inheritance. Each class is
further divided into small methods to handles one specific logic.
This loosely-coupled design makes Java program easy to extend.
As a result, we can find that most Java methods are relatively
simple. So we assume that a small amount of variables are enough

for most Java methods to express their logic. To confirm this
assumption, we design an experiment on Dalvik Virtual Machine.

Experimental Environment. The experiment is performed
on OMAP3530 manufactured by Texas Instrument which has a
600MHz Cortex-A8 (armv7) CPU core with 16KB I-Cache, 16 KB
D-Cache and 256KB L2 cache. We instrument the interpreter in
Dalvik virtual machine to record all the Java methods executed.
Dalvik runs in interpreter mode on 0xlab1 Android 2.1 OS which
is a customization for OMAP3530. To increase the reality of our
experiment, we use six cases (compress, jess, db, javac, mtrt, jack)2

in SPECjvm98 [4] with a problem size of 100 and six Android core
applications (system server, app process, input method, calendar,
setting, email) to collect data. In register-based bytecode, virtual
registers of a Java method are acted as variables of this method.

Observation. The y-axis in Figure 3 is the percentage of
invoked methods which use no more virtual registers than the
number specified by x-axis. We observe that more than 90%
methods called in the experiment use no more than 11 virtual
registers.

Motivation. Most embedded devices equip a RISC proces-
sor for its power efficiency, simple design and low price. And
RISC processors often have many programmer-visible registers,
for example there are 16 programmer-visible registers in ARM
architecture and 32 programmer-visible registers in MIPS archi-
tecture. Excluding some special usage registers, there are still
many registers available. Based on the observation above, we can
conclude that this small amount of virtual register requirement can
be easily satisfied with physical registers without performing any
complex register allocation algorithm.

Besides, the homogeneity between register-based bytecode and
RISC machine code eases the work of code selection. For example,
we can find corresponding RISC instructions for 189 out of 232
DEX instructions. With the adequate amount of physical registers
in RISC processors, we can easily allocate physical registers for
all the virtual registers in most executed methods and machine
code can be generated straightforwardly by replacing register-based
bytecode with corresponding RISC instructions. The quality of the
generated code is guaranteed, because the static compiler have per-
formed a near-optimal register allocation and heavy optimizations
when compiling Java code to register-based bytecode.

3. Register Mapping Translation
In this section, we presents our JIT compilation system for register-
based bytecode. We begin this section with a high-level design
issues that drive our work and then describe the architecture
of Swift. The final part of this section details Swift’s two core
components: Register Mapping Table and Template-based Code
Selector.

3.1 Design Issues

To construct a lightweight JIT compiler with good quality for
embedded JVMs, the design of Swift takes the following aspects
into consideration:

• Minimal Runtime Overhead. JIT compilers always add ad-
ditional burden to the applications. Unlike desktop application
and server application, applications on embedded devices such
as Android have a short lifecycle. As a embedded JIT compiler,
Swift should feature lightweight compilation techniques, such
as efficient register allocator and code selector to control its

1 http://0xlab.org/
2 mpegaudio is not included because dx fails to compile it’s obfuscated
bytecode to DEX.

65

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Pe
rc

en
t o

f
M

et
ho

ds
 C

al
le

d

Number of Virtual Registers

compress
jess
raytrace
db
javac
mtrt
jack
system_server
app_process
input_method
calendar
setting
email

Figure 3. The percentage of invoked methods with varied number of virtual registers.

compilation overhead. Otherwise, the time used to compile
bytecode can’t be amortized.

• Simple Design. There are many architectures widely used
in embedded devices, such as ARM, MIPS, etc. The design
of a JIT compiler for embedded JVMs should be simple
enough to minimize the efforts of porting it to other embedded
architectures.

• Moderate Code Size. Current embedded systems such as
Android encourage cooperation among multiple applications.
Constrained by memory, the amount of applications running at
the same time is also limited. While Swift has to use additional
memory to store generated code, memory impact should also
be taken into account.

• Application portability. Application portability is the most
important issue in the design of managed execution environ-
ment. The design of Swift should not rely on any assumption
about the application distribution format. So we don’t consider
annotation-assisted solutions [23, 24] or hybrid solutions which
combines JIT compilation with Ahead-of-Time compilation
[21, 33].

3.2 Swift Architecture

Like a non-optimizing compiler, Swift translates all methods exe-
cuted except the static class initializers which are executed only
once. To reduce the overhead of interpreting a method, Swift
translates the method before it is executed. In Swift there is no
specialized translator thread(s) and every method is translated by
the thread which first executes it.

To prevent multiple threads from translating the same method
which is very inefficient, a thread must acquire the lock of the
method before translating it. The lock is represented by an integer
and the acquire operation is implemented with atomic instructions.
All the other threads must yield CPU if they attempt to translate a
method whose lock is acquired by another thread.

Figure 4 depicts the architecture of Swift. As it shows, the
translation process can be separated into two phases. The first phase
is the local translation process, in which each thread translates
the invoked method and stores the generated code in a thread-
local code cache. In the second phase, the code in local cache is

committed to a global shared code pool and the commit operation
is protected by a global lock to avoid write contention.

Register allocation and code selection are two main parts
in state-of-the-art JIT compiler [12, 26, 31]. Actually, in Swift
the register allocator is quite straightforward, because physical
registers are fixedly assigned to virtual registers by using a register-
mapping algorithm. For code selection, Swift adopts a template-
based translation technique which is lightweight enough for a
Just-In-Time compiler. The code is generated within a single pass
over the method’s bytecode. Without performing any data-flow or
control-flow analysis at runtime, the translation process is very fast.

Class
Loader

Compile
Stub

Recompile
Stub

Code
Unloader

Dynamic Translator

Global Shared Code Cache

Thread-Local
Code Cache

Register
Mapping

Code
Selector

install

install

ca
ll call

Exception Handling Garbage CollectorThread Manager

Figure 4. The architecture of Swift.

Like other JIT system, Swift must cache all the generated code
for future use. As a result, the memory consumption of code cache
is a critical problem on resource-constrained embedded devices.
To reduce the code area, Swift features a code unloader which
unloads generated code of unnecessary methods. A recompile stub
is installed on the unloaded method to trigger recompilation before
it is executed later. Besides, to support the execution of Java

66

programs, Swift also need to cooperate with other VM modules,
such as garbage collector (GC), etc.

3.3 Register Mapping Translator

As we find through the study on the characteristics of Java methods,
more than 90% Java methods use no more than 11 virtual registers
and these amount of registers can be easily satisfied by underlying
RISC processors. Because dx performs a graph-coloring based
algorithm to allocate virtual registers when translating .class files
into a .dex file, it is unnecessary to perform additional complex
allocation algorithm on DEX in Swift. Thus, a register mapping
table is used per method, to record the static relations between
virtual registers and physical registers.

Although the amount of free physical registers in the underlying
processor is enough for most methods, there exists some large
methods which use more virtual registers due to complex logic,
bad programming habit, etc. Swift need to do special handling
when translating these methods. To differentiate these two kinds
of methods, we designate those methods whose virtual registers can
be completely mapping to physical registers as regular methods and
the remaining methods are designated as irregular methods.

Register Mapping Table. In DEX, virtual registers in a method
are continuously numbered from zero, and the amount can be
acquired in the method meta info from .dex file, so a register table
can be constructed according to the register mapping algorithm be-
fore traversing DEX instructions. The register mapping algorithm
should satisfy following rules and the detailed algorithm used in
our prototype can be found in section 4.1:

1) In a irregular method, not all the virtual registers can be
mapped to physical registers. Those virtual registers that hasn’t
been mapped are allocated in a continuous area in the corre-
sponding stack frame of the function. This part of stack frame
is called spill area.

2) In the scope of a method, the mapping from a virtual register
to a physical register or spill area location is fixed and only
determined by the method itself.

3) In every method, any physical register or spill area location
should only be assigned to at most one virtual register. And
every virtual register should have one corresponding physical
register or spill area location even if it is not used by any DEX
instruction3.

4) In the translation of some DEX instructions such as VM-
related instructions, temporary registers are needed due to their
complex logic. In this situation, some physical registers (even
the ones that have been assigned to some virtual registers)
are selected as temporary registers. They are saved to the
stack before the translation starts and restored after this DEX
instruction is translated.

Template-based Code Selector. After mapping virtual registers
to physical registers, machine code is generated by looking up
a predefined translation template table indexed by DEX opcode.
With this template table, the translator linearly traverses all the
DEX instructions of the method and fills the local code cache. The
translation can be finished in a single pass without complex logic,
hence the translation is very fast.

The template table for irregular methods is different to the table
for regular methods, because in irregular methods those virtual
registers mapped to spill area need special handling when they are

3 The sum function described in section 2.1 has 5 virtual registers, but only
4 registers is used in its DEX instructions. This is because the sum function
is an instance method, v2 register is used to store this reference although it
is not used in any DEX instruction.

used in DEX instructions. To handle such a virtual register, we need
to check whether it is a source register or a destination register.
If it is a source register, a temporary register is allocated to store
its value and used in the generated code of this DEX instruction.
If it is a destination register, we just need to store the result to
the corresponding spill area. Because the mapping from virtual
registers to physical registers or spill area is fixed, the translation
process is still very efficient.

4. Prototype of Swift
Based on the register mapping translator described above, we
implement a prototype of Swift upon the generally accepted DEX
bytecode. As ARM is the most popular architecture used in
Android-powered devices, the implementation is built on ARM.
However, our JIT technique is not restricted to ARM, it can be used
in any other RISC processors, such as MIPS, SPARC. And more
performance gains can be expected on these processors, because
they have more registers than ARM. In this section, we detail this
prototype, including an efficient code unloader and two lightweight
optimizations.

4.1 Translator Implementation

On ARM platform, there are many kinds of instruction set sup-
ported in different ARM variants. ARM instruction set is a 32bits
ISA that supported in all ARM variants. Thumb instruction set is
a 16bits ISA which is more compact. Limited by the instruction
width, Thumb instructions can’t access all the registers and only
part of them can support conditional execution. Thumb2 instruction
set is an enhanced version of Thumb ISA and supported by armv6t2
and armv7. It is a mixed 16bits and 32bits ISA, so it is more
powerful than Thumb ISA and more compact than ARM ISA.

Although Thumb2 ISA has obvious advantages, many chips
applied in the market don’t implement this ISA. To keep compati-
bility with all ARM variants while not harming performance, Swift
chooses to generate ARM instructions. There are 16 programmer-
visible registers designed in all ARM variants. Excluding three
special purpose registers (stack pointer register, link register and
program counter register), there are still 13 free registers(r0-r12)
left for Swift to map virtual registers.

Regular Method. For every regular method, physical registers
are assigned to virtual registers from r0 to r12. As other special
usage registers, link register is not assigned to any virtual register.
However, since link register is only used in branch-with-link
instruction and saved in the method entry, we reuse it as temporary
register.

DEX Instruction :
000 : const / 4 v0 , #0
001 : move v1 , v3
002 : if−ge v1 , v4 , 008
004 : add−int / 2 addr v0 , v1
005 : add−int / lit8 v1 , v1 , #1
007 : goto 002
008 : return v0

Generated ARM Code :
0000 : mov r3 , #0
0004 : mov r4 , r1
0008 : cmp r4 , r2
000b : bge 001b
0010 : add r3 , r3 , r4
0014 : add r4 , r4 , #1
0018 : b 0008
001b : / / omit the complicated return logic here

Figure 5. Generated code of sum function.

Figure 5 shows the generated code slice of the sum function
described in section 2.1. The logic of method entry and exit is

67

omitted from the figure, because they are not related to the trans-
lation algorithm. They are explained separately in the following.
From Figure 5, we can conclude that the generated code is of good
quality.

Irregular Method. For regular methods, Swift only allocates
temporary registers for VM-related instructions. However, irregu-
lar methods even need temporary registers to translate computa-
tional instructions for handling the accesses to virtual registers that
are mapped to spill area. Link register is still used as a temporary
register for irregular method. And we find four temporary registers
are enough for the translation of all the computational instructions
in irregular methods, so three additional registers(r10-r12) are used
as temporary registers. As a result, for every irregular method,
physical registers are assigned to virtual registers from r0 to r9.

DEX Instruction :
add−int / lit8 v15 , v15 , #int 1

Generated ARM Code :
ldr r10 , [sp , #12]
add r10 , r10 , #1
str r10 , [sp , #12]

Figure 6. Special handling of spill area.

Figure 6 shows the handling for accesses to those virtual
registers allocated in spill area. The add-int/lit8 DEX instruction
also appears in the sum function described in section 2.1. The
virtual register v15 is mapped into spill area with an offset of
12 relative to stack pointer. Before the add operation, a load
instruction must be generated to load v15 to a temporary register
and in this case, r10 is selected as the temporary register. After the
add operation finishes, we need to store r10 to the mapped spill
area location of v15, because its value has been changed since last
load.

Register Mapping Algorithm. In DEX, virtual registers can
be separated into two categories: input virtual registers which are
used to store arguments of the method and local virtual registers
which are used to store local variables. For any method, we first
map input virtual registers to physical registers starting from r0,
and then the local virtual registers. For example, in the sum
function described in section 2.1, its input virtual registers v2-v4
are mapped to physical registers r0-r2 linearly, and local virtual
registers v0-v1 are mapped to physical registers r3-r4 linearly.
Those virtual registers that can not be mapped to physical registers
are mapped to fixed spill area locations. This mapping algorithm is
easy for caller to pass arguments because caller can determine the
physical registers assigned to input virtual registers in callee before
invocation.

Register allocator is critical to construct a fast and effective JIT
compiler. In [22] Krall implements a simple register allocator for
CACAO JavaVM. Through stack analysis, a register is allocated
when a stack variable is pushed, and the register is recycled
when the stack variable is poped. Local variables are always
cached in registers. When the register is not enough, spill area is
used. This strategy is simple but not effective, because it doesn’t
eliminate redundant data movements between stack variables and
local variables. In LaTTe compiler[34], stack-based bytecode is
first translated into pseudo RISC code with symbolic registers,
and then register allocated to generate SPARC code. The register
allocator use a linear-scan allocation algorithm with the local
variable lookahead strategy. The authors think this is a good trade-
off between quality and speed. Actually, the trade-off made by
Swift is better than this one, because the register mapping table in
Swift can be constructed with negligible overhead, and the quality
is guaranteed by the static compiler which is used to compile Java
source code to register-based bytecode.

4.2 Calling Convention

To support method invocation, Swift designs a convention between
caller and callee to clarify their responsibilities.

1) Caller, Before Call. In Java, the size of return type is 8 bytes
at most, so r0-r1 are used to pass return value in Swift. Before
the invocation, caller must save caller saved registers and pass
arguments to callee. The caller saved registers include r0-r1 as
well as the physical argument registers in callee. The amount of
input virtual registers in callee can be acquired from the invoke
DEX instruction, so the physical argument registers in callee
can be determined by caller according to the register mapping
algorithm described previously.

2) Callee, Method Entry. In the method entry, callee must save
stack pointer register and link register first and save callee
saved registers. The callee saved registers include the physical
registers assigned to local virtual registers in callee, excluding
r0 and r1. Callee doesn’t save r0-r1 because caller has saved
them already.

3) Callee, Method Exit. Before callee returns, callee must re-
store callee saved registers, save return value to r0-r1, and
restore stack pointer register and link register. Additionally, to
cooperate with GC, callee also checks whether there is a GC
suspend request.

4) Caller, After Call. After callee returns, caller must move r0-r1
to the correct result registers according to the DEX instruction
and restores caller saved registers.

In this calling convention, responsibilities are clearly separated
between caller and callee into 4 phases. There is no live registers
across a method call, and we store floating point value in integer
registers because DEX doesn’t distinguish register types used to
store floating point value and integer value..

During the method invocation, caller also need to resolve callee
first according to different invoke types. In DEX, the callee of
virtual-call or interface-call can only be resolved at invocation
point due to the dynamic binding feature in Java. For these two
type of calls, a runtime routine is called to resolve callee every time
before invocation.

4.3 Code Unloading

Swift translates every method before it is executed, because the
translation is very efficient. Although this translation strategy
has little impact on the execution time, it increases the memory
footprint, since the size of native code is much larger than that
of its bytecode equivalent [36]. For embedded devices, this cost
is significant, especially when memory is severely constrained.

Meanwhile, not all the translated methods are always needed
after translation. As Zhang et al. [36] shows, for most Java work-
loads over 60% of methods are effectively live for less than 5%
of the total time they are in the system. To reduce the size of
code memory, Swift adaptively unloads the translated code. This
is a compromise between the interpreter which doesn’t store any
code and JIT compiler which caches all the translated code. If
an unloaded method is later invoked, Swift will also recompile it
before invocation. Since our translation is very efficient, we could
trade a few CPU cycles for memory space.

In [36, 37], Zhang et al. compares different unloading strategies
including Online eXhaustive profiling(OnX), Online Sample-based
profiling(OnS), Offline exhaustive profiling(Off), and No Profil-
ing(NP). The first three strategies try to improve the efficiency of
code unloading by finding the precise unloading candidates, while
the NP strategy is too aggressive to unload a lot of methods that
would be invoked in the near future. However, the OnX strategy and

68

OnS strategy suffer from increasing runtime overhead too much,
and the Off strategy doesn’t scale to all applications.

In Swift, we don’t use a complex but maybe precise unloading
strategies for the following considerations: 1) our JIT compiler
is designed to be lightweight, a complex code unloader would
make it too complicated; 2) a precise unloading strategy always
needs exhaustive profiling which burdens the application; 3) the
overhead of recompiling a method in Swift is quite low, so a precise
unloading strategy seems not necessary. In Swift, code unloading is
performed at GC point. To reduce the overhead of code unloading,
it is only performed when the total code size exceeds a user-defined
threshold. When GC thread enumerates the stack of every thread,
it marks all the methods on the stack by increasing the counter
of method. Any method which is observed unmarked twice is
unloaded immediately. When a method is unloaded, all the memory
resource related to it is released, and a recompile stub is installed.
The impact of code unloading is evaluated in the next section.

4.4 Lightweight Optimizations

To further improve the performance of Swift, we also design two
optimizations which are lightweight enough for embedded devices.

Optimization for Irregular Method. As described in section
4.1, physical registers are first mapped to input virtual registers
and then the local virtual registers in irregular methods. When the
physical registers are not enough for allocation, spill area is used.
Any access to spill area location needs special handling as Figure
6 depicted. This mapping algorithm may be quite inefficient when
spill area locations are frequently accessed.

To reduce the effect of this problem, we design a lightweight
optimization to improve the previously mentioned register mapping
algorithm for irregular methods. Firstly, a loop detection algorithm
is used to detect all the loops in the method. Secondly, we order all
the basic blocks according to their occurrences in loops. Finally, we
map those virtual registers which are used in basic blocks with high
loop occurrence to physical registers, and the remaining virtual
registers are all mapped to spill area.

Optimization for interface-call. In Java, a class is allowed
to inherit at most one class, so a virtual-call can be resolved
by directly accessing the corresponding entry in object’s vtable.
However, a class is allowed to implement multiple interfaces, so
we need to perform a linear search in all the interfaces the class
implemented to resolve an interface-call. As a result, the overhead
of an interface-call is quite larger than a virtual-call.

We use a class-test mechanism to reduce the overhead of an
interface-call. When an interface-call is resolved, we record the
class type of the object and the resolved callee in a cache near
the call site. When this call is invoked again on the object with
the same class type as the recorded class, then the callee can be
directly fetched from the record. If the class type is mismatched,
the callee info is resolved through the slow path. This optimization
relies on the speculation that the object type of an interface-call site
is always the same in most cases.

5. Evaluation
Previous sections describe our proposed JIT compiler which gen-
erates code by mapping virtual registers to physical register. This
section shows our evaluation on it.

5.1 Experimental Environment

The evaluation is performed on two ARM SOCs: the first one
is OMAP3530 manufactured by Texas Instrument which has a
600MHz Cortex-A8 (armv7) CPU core with 16KB I-Cache, 16
KB D-Cache and 256KB L2 cache; the second one is S3C6410
manufactured by Samsung which has a 800MHz ARM1176JZF-
S (armv6) CPU core with 16KB I-Cache and 16 KB D-Cache (no

L2 cache). The reason for including the armv6 based SOC is
that there are quantities of armv6 based SOCs already applied
in the market, although SOCs based on armv7 are very popular.
This testbed configuration represents the main stream of ARM
architecture.

Our prototype of Swift is developed on 0xlab Android 2.1 OS
which is customized for OMAP3530. To the best of our knowledge,
JITC-Droid is the only JIT compiler working on DEX bytecode, so
Swift is compared with the best-performing interpreter and JITC-
Droid in Android. To test the performance of interpreter and JITC-
Droid, we patch 0xlab Android 2.1 with the source code of Android
2.3.4 fetched from the Android Open Source Project. We use
the same source code to build executables for S3C6410 just by
changing the building configuration.

For evaluation, three standard benchmarks (SPECjvm98 [4],
EmbeddedCaffeineMark3 [2] and JemBench2 [28]) are used. Al-
though the real workload Android applications, such as Angry
Birds are the most appropriate to evaluate Swift, these applications
are hard to measure quantitatively. According to the study in section
2.2, we believe these benchmarks can represent the real workload
on Dalvik because they share the same feature exploited by Swift.

JemBench2 consists of kernel cases (sieve, bubblesort), real-
world applications (kfl, lift, udpip), and parallel cases (matrix multi-
plication, Nqueens, raytrace, AES). EmbeddedCaffeineMark3 is a
subset of the complete CaffeineMark suite, including the following
cases: sieve, loop, logic,string, float, and method. SPECjvm98 is
not aimed to run on embedded systems, but it provides large
workloads for performance evaluation. It is used with a problem
size of 100 and six cases (compress, jess, db, javac, mtrt, jack)4.

5.2 Performance Evaluation

To evaluate the performance of Swift, experiments are performed
on two SOCs with three benchmarks, and Swift is compared with
the best-performing interpreter, JITC-Droid and Swift itself with
the two optimizations described in section 4.4 disabled. We disable
code unloading in Swift to collect performance data. The impact
of code unloading is evaluated separately in the following. All the
results are formatted as a ratio to the best-performing interpreter.

Figure 7 shows the performance results. As we expect, Swift
gains an significant speedup on both SOCs for all the cases
in the three benchmarks. Compared with the best performing
interpreter, Swift gains an average speedup of 1.61, 4.18 and
4.74 on SPECjvm98, EmebeddedCaffeineMark3, and JemBench2
respectively. Swift also gains an average speedup of 1.42 over JITC-
Droid. The impact of our proposed two lightweight optimizations
is obvious. They achieve a further speedup of 1.11 and 1.05 when
compared with the best-performing interpreter and JITC-Droid,
respectively.

Swift acts better with SPECjvm98 on OMAP3530 than on
S3C6410, because all the cases in SPECjvm98 exhibit a large
memory footprint (large than 1GB) and OMAP3530 has a 256KB
L2 cache while S3C6410 has no L2 cache. Compared with JITC-
Droid, Swift has a higher speedup on S3C6410 than that on
OMAP3530. This is because on S3C6410 JITC-Droid generates
Thumb instructions which are less effective than ARM instructions
used by Swift. Although this makes a little unfair for the compari-
son, huge engineer efforts are needed to perform an absolutely fair
experiment. Actually the experiment on OMAP3530 is fair because
on OMAP3530 JITC-Droid generates Thumb2 instructions which
has the same ability as ARM instructions used by Swift and we
can still find a significant speedup of Swift against JITC-Droid on
OMAP3530 from figure 7.

4 mpegaudio is not included because dx fails to compile it’s obfuscated
bytecode to DEX.

69

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sieve
BubbleSort

Kfl
Lift

UdpIp

M
atrix

NQueens

Raytrace

AES
GEO.M

EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

JemBench2.0(ARMv6)

JITC-Droid
Swift/no-opt
Swift

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

compress

jess
db javac

mtrt
jack

GEO.M
EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

SPECjvm98(ARMv6)

JITC-Droid
Swift/no-opt
Swift

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sieve
Loop

Logic
String

Float
M

ethod

GEO.M
EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

EmbeddedCaffeineMark3.0(ARMv6)

JITC-Droid
Swift/no-opt
Swift

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sieve
BubbleSort

Kfl
Lift

UdpIp

M
atrix

NQueens

Raytrace

AES
GEO.M

EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

JemBench2.0(ARMv7)

JITC-Droid
Swift/no-opt
Swift

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

compress

jess
db javac

mtrt
jack

GEO.M
EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

SPECjvm98(ARMv7)

JITC-Droid
Swift/no-opt
Swift

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sieve
Loop

Logic
String

Float
M

ethod

GEO.M
EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

EmbeddedCaffeineMark3.0(ARMv7)

JITC-Droid
Swift/no-opt
Swift

Figure 7. Normalized performance ratio of JITC-Droid and Swift to the best-performing interpreter in Dalvik. The results is showed in 6
diagrams of two SOCs and three benchmarks. A geometric mean ratio is presented last for each configuration.

Case Trans. Time(s) Exec. Time(s) Percent
compress 0.117 91.170 0.128%

jess 0.185 77.924 0.237%
db 0.124 64.753 0.191%

javac 0.274 113.124 0.243%
mtrt 0.178 66.280 0.268%
jack 0.175 87.321 0.201%

ECM3 0.098 23.930 0.409%
JBench2 0.092 27.4 0.334%

Table 1. Translation Time of Swift for SPECjvm98, JemBench2,
and EmebeddedCaffeineMark3 on OMAP3530.

Translation Time. Table 1 and table 2 shows the translation
time of Swift and JITC-Droid on OMAP3530. The situation on
S3C6410 is similar. Because the cases in JemBench2 and E-
mebeddedCaffeineMark3 can’t be measured individually, the w-
hole benchmark’s translation time is presented. Swift is configured
to perform both optimizations described in section 4.4. For all the

Case Trans. Time(s) Exec. Time(s) Percent
compress 0.257 109.167 0.236%

jess 0.850 85.913 0.990%
db 0.270 69.848 0.387%

javac 2.638 132.372 1.993%
mtrt 0.948 151.828 0.624%
jack 1.154 88.73 1.301%

ECM3 0.433 24.168 1.793%
JBench2 2.184 28.874 7.565%

Table 2. Translation Time of JITC-Droid for SPECjvm98,
JemBench2, and EmebeddedCaffeineMark3 on OMAP3530.

cases, Swift costs no more than 0.3 secs to translate all the executed
Java methods. Translation time used by Swift occupies no more
than 0.5% of the total execution time for every case. Compared
to JITC-Droid, the translation time of Swift is less than 20% of
the translation time of JITC-Droid in average. Considering the
translation time of Swift and JITC-Droid both occupy a quite small

70

part of the total execution time, the bigger performance gain of
Swift is attributed to the better code quality. By exploiting the the
similarity between register-based bytecode and RISC ISA, Swift is
lightweight enough for resource-constrained devices.

5.3 Impact of Code Unloading

Table 3 shows the translated code size of Swift on OMAP3530
when code unloader is enabled and disabled. The translated code
size on S3C6410 is similar. The evaluations in this section are all
performed on OMAP3530 if not specially mentioned. The cases
in JemBench2 and EmebeddedCaffeineMark3 can’t be measured
individually, so the whole benchmark’s translated code size is
presented. The two optimizations described in section 4.4 are
not compatible with code unloader, so they are disabled in this
experiment.

Case Unload On(KB) Unload Off(KB) Percent
compress 122.442 313.229 39.1%

jess 154.969 549.314 28.2%
db 104.468 336.174 31.1%

javac 484.338 875.173 55.3%
mtrt 142.13 443.936 32.0%
jack 212.583 577.368 36.8%

ECM3 150.483 251.656 59.8%
JBench2 193.34 233.205 82.9%

Table 3. Translated code size of Swift for SPECjvm98,
JemBench2, and EmebeddedCaffeineMark3 on OMAP3530. The
code unloader is configured to unload code when the code size is
larger than 200KB.

As the translated code size varies during the execution of the
program, the average code size is used to represent the code size
in the stable state. It is calculated by the following formula. In this
formula, code sizei is the size of code cache at the time ti. The
code size information is collected at every GC point.

average code size =

tn∑

ti=t1

code sizei ∗ (ti − ti−1)/tn

We can find that all the cases in SPECjvm98 exhibit a large code
memory footprint due to the complex logic of these workloads, and
our code unloader saves more than 40% code memory for each
case. EmbeddedCaffeineMark3 and JemBench2 don’t consume a
large code area as SPECjvm98 and our code unloader doesn’t save
much space for them. In these two benchmarks, GC is not triggered
frequently, and our code unloader is performed at GC point, so
many translated methods exist too long in the code cache before
being unloaded. This problem can be easily solved by adding a
unloader trigger before committing local compiled code into the
global code cache. As the GC pressure in EmbeddedCaffeineMark3
and JemBench2 is not high, the delay of code unloading doesn’t
have a significant impact on memory.

Impact on Performance. From Figure 8, we can find code
unloading has little impact on performance for most cases and
some cases even gain a further speedup on unloading, such as
udpip in JemBench2 and string in EmbeddedCaffeineMark3. We
can find some cases in SPECjvm98 have obvious performance
degradation when enabling code unloading. This is due to the
frequently recompilation of unloaded methods. For example, our
collected data shows that in javac the translation time grows from
0.27 secs to 5.71 secs, and in jack the translation time grows from
0.15 secs to 1.97 secs. This overhead can be easily eliminated by
caching unloaded method into the file system and loading back
before the method is invoked later. Overall speaking, the impact
of code unloading on performance is minor.

6. Related Work
The related work to this paper are divided into three parts: JIT
construction, bytecode format and mobile code system.

State-of-the-art JITs. JIT is widely used in managed runtimes.
There has been many Java Just-in-Time compilers for the desktop
and server environment, such as Sun Hotspot [26], IBM J9 [31],
Open Runtime Platform [12], etc. It has been studied extensively in
compilation for dynamic scripting languages, such as PyPy [9] for
Python, SPUR [7] and TraceMonkey [16] for JavaScript, and Lu-
aJIT [35] for Lua. HotpathVM [17] and Maxpath [8] are JITs that
target Java. HotpathVM introduces a tree-SSA representation for
fast analysis and efficient enough for resource-constrained devices.
Maxpath is a trace-JIT without an interpreter. It uses a method-
based non-optimizing compiler to select hot trace and compiles the
trace with an optimizing trace compiler. Maxpath achieves better
performance than the original method-JIT. Swift can use the same
technique in Maxpath to improve the performance. Guo et al.[19]
study the soundness of traditional method-based optimizations on
trace compilation (and vice versa), while Hiroshi et al.[20] describe
their work of developing a trace-JIT by retrofitting a method-JIT.
All the JITs described above are all based on stack-based bytecode.

Stack-based versus Register-based. The stack-based archi-
tecture and the register-based architecture are two counterparts
in the design of machine instruction set architecture [25, 29].
As the most popular virtual machine, JVM uses a virtual stack
architecture [18] for evaluating expressions, rather than the register
architectures that are commonly used in real processors. In [13],
Davis et al. first propose the virtual register machine architecture
for JVM and compare the stack-based bytecode with the register-
based bytecode. The result shows that the register-based format
reduces the total instruction count by 34.88%, while increasing
the bytecode size by 44.81%. Shi et al. [30] extend the previous
work by implementing a register-based JVM and compare the
performance of these two kinds of bytecode. They find that the
register-based format reduces the execution time by 26.5% on
a switch-based C interpreter [14, 15, 27]. Although JITC-Droid
in Android works on register-based bytecode, it doesn’t exploit
the similarity between register-based bytecode and the underlying
register-based architecture commonly found in physical machines,
but acts like a traditional stack-based JIT compiler [12, 26, 31]. To
the best of our knowledge, this paper is the first to concern the JIT
construction with the insight of the opportunity created by register-
based bytecode.

Mobile Code System. Mobile code is the program that can be
shipped unchanged and executed on a heterogeneous collection of
processors. Java was originally used as mobile code in browsers
to support rich web applications. To enforce safety, traditional
mobile code system sacrifices performance through abstract ma-
chine interpretation. In [5] Adl-Tabatabai et al. propose OmniVM,
an efficient and universal mobile code system. OmniVM uses
dynamic code generation to improve performance and software
fault isolation to enforce safety. Although the instruction set in
OmniVM is also register-based, it is quite different from register-
based Java bytecode, such as DEX. First of all, OmniVM has
limited (32) registers while the amount of registers in DEX is
unlimited. Second, OmniVM only support several primitive types
while DEX support complete type system of Java source code and
opaque object layout. Third, DEX has many Java semantics, such as
thread synchronization, exception handling, etc. Fourth, DEX has
no separated floating-point registers while OmniVM has 16 special
floating-point registers. From the perspective of intermediate rep-
resentation level, OmniVM instructions set is much like a common
hardware instruction set, and lower than Java bytecode. Observing
the opportunity of register-based Java bytecode, Swift constructs a
lightweight JIT compiler without sacrificing code quality.

71

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sieve
BubbleSort

Kfl
Lift

UdpIp

M
atrix

NQueens

Raytrace

AES
GEO.M

EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

JemBench2.0(ARMv7)

Swift/unload
Swift/no-opt
Swift

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

compress

jess
db javac

mtrt
jack

GEO.M
EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

SPECjvm98(ARMv7)

Swift/unload
Swift/no-opt
Swift

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

Sieve
Loop

Logic
String

Float
M

ethod

GEO.M
EAN

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

 R
at

io

EmbeddedCaffeineMark3.0(ARMv7)

Swift/unload
Swift/no-opt
Swift

Figure 8. Performance impact of code unloading in Swift for JemBench2, SPECjvm98, and EmebeddedCaffeineMark3 on OMAP3530. The
code unloader is configured to unload code when the code size is larger than 200KB.

7. Conclusions and Discussions
Since mobile computing becomes a new trend, JIT techniques for
embedded JVMs attract more attention. However, JIT compilers
suffer significant overhead when compiling stack-based Java byte-
code to heterogeneous register-based machine code. This paper
presents Swift, a fast and effective JIT compiler specifically for
register-based bytecode. Taken the characteristics of Java methods
and the similarity between register-based bytecode and RISC ISA
into account, Swift proposes a new translation technique based on
register mapping. The translation is very fast and code quality is
guaranteed by the static compiler which is used to compile Java
source code to register-based bytecode. The evaluation on two
ARM SOCs shows the overall performance of Swift is competitive,
indicating that Swift is promising.

Besides, our proposed compilation technique can be further
optimized. To support all the ARM variants, current prototype of
Swift generates ARM instructions which is not the best choice on
armv7 architecture. Jazelle RCT [3] is a special processor mode,
making small changes to the Thumb2 extended Thumb instruction
set. These changes make the instruction set particularly suitable for
dynamic code generation system in managed execution environ-
ments. It allows JIT compilers to generate smaller compiled code
without impacting performance. By exploiting the Jazelle RCT
instruction set, Swift can gain a further performance speedup with
code size reduced. In section 6, we have discussed the possibility
of combining Swift with a trace-based JIT. Swift can also be
combined with mature staged/selective compilation technique. In
such multiple-compiler system, Swift acts as a non-optimizing
compiler which compiles all the methods before they are executed
and heavy optimizations can be performed by another JIT compiler
with a hot method detector. Possible optimizations include SIMD
vectorization, method inline, etc. Targeting embedded devices, the
detector should have high detection accuracy because the penalty
of aggressively optimizing a false hot method is unacceptable and
it should not add significant overhead to the application.

Discussion. Previous research [13, 30] has showed that register-
based interpreter has performance advantages over stack-based
interpreter. As a complement of previous research, our work has
demonstrated that register-based bytecode also has advantages to
construct a lightweight JIT with good performance. Besides, the

register-based JIT proposed by our paper is not only applicable
to embedded JVMs, but also can be used as the non-optimizing
compiler in a staged/selective compiler system to reduce the startup
time and boost normal applications with flat execution profile.

The good performance of our proposed translator shows that,
the homogeneity between register-based bytecode and register-
based architecture can be exploited to improve the performance
of Just-In-Time compiler. We think register-based bytecode is a
new responsibility division between online dynamic compiler and
offline static compiler, and it is a good balance between Ahead-
Of-Time compiler [6, 33] and Just-In-Time compiler which can
enjoy good performance without losing portability. So register-
based bytecode may be a better choice to distribute applications
than stack-based bytecode, especially in embedded systems.

Acknowledgments
We would like to thank the anonymous reviewers for their helpful
comments and feedback. This work was funded by Ministry of In-
dustry and Information Technology of China under grant numbered
2009ZX01036-001-003.

References
[1] Dalvik executable format. http://source.android.com/tech/dalvik/dex-

format.html.

[2] Embeddedcaffeinemark3.0. Pendragon Software Corporation.

[3] Jazelle rct technology. ARM Ltd., http://www.arm.com/products/
processors/technologies/jazelle.php.

[4] Specjvm98. Standard Performance Evaluation Corporation.

[5] A.-R. Adl-Tabatabai, G. Langdale, S. Lucco, and R. Wahbe. Efficient
and language-independent mobile programs. In Proceedings of the
ACM SIGPLAN 1996 conference on Programming language design
and implementation, PLDI ’96, pages 127–136, New York, NY, USA,
1996. ACM.

[6] C. Badea, A. Nicolau, and A. V. Veidenbaum. A simplified java
bytecode compilation system for resource-constrained embedded
processors. In Proceedings of the 2007 international conference on
Compilers, architecture, and synthesis for embedded systems, CASES
’07, pages 218–228, New York, NY, USA, 2007. ACM.

72

[7] M. Bebenita, F. Brandner, M. Fahndrich, F. Logozzo, W. Schulte,
N. Tillmann, and H. Venter. Spur: a trace-based jit compiler for
cil. In Proceedings of the ACM international conference on Object
oriented programming systems languages and applications, OOPSLA
’10, pages 708–725, New York, NY, USA, 2010. ACM.

[8] M. Bebenita, M. Chang, G. Wagner, A. Gal, C. Wimmer, and
M. Franz. Trace-based compilation in execution environments without
interpreters. In Proceedings of the 8th International Conference on the
Principles and Practice of Programming in Java, PPPJ ’10, pages 59–
68, New York, NY, USA, 2010. ACM.

[9] C. F. Bolz, A. Cuni, M. Fijalkowski, and A. Rigo. Tracing the meta-
level: Pypy’s tracing jit compiler. In Proceedings of the 4th workshop
on the Implementation, Compilation, Optimization of Object-Oriented
Languages and Programming Systems, ICOOOLPS ’09, pages 18–25,
New York, NY, USA, 2009. ACM.

[10] D. Bornstein. Dalvik vm internals. http://sites.google.com/site/io/
dalvik-vm-internals.

[11] B. Cheng and B. Buzbee. A jit compiler for android’s dalvik
vm. http://www.google.com/events/io/2010/sessions/jit-compiler-
androids-dalvik-vm.html.

[12] M. Cierniak, M. Eng, N. Glew, B. Lewis, and J. Stichnoth. The
open runtime platform: a flexible high-performance managed runtime
environment: Research articles. Concurr. Comput. : Pract. Exper.,
17:617–637, April 2005.

[13] B. Davis, A. Beatty, K. Casey, D. Gregg, and J. Waldron. The case
for virtual register machines. In Proceedings of the 2003 workshop on
Interpreters, virtual machines and emulators, IVME ’03, pages 41–49,
New York, NY, USA, 2003. ACM.

[14] M. A. Ertl and D. Gregg. Optimizing indirect branch prediction
accuracy in virtual machine interpreters. In Proceedings of the ACM
SIGPLAN 2003 conference on Programming language design and
implementation, PLDI ’03, pages 278–288, New York, NY, USA,
2003. ACM.

[15] M. A. Ertl and D. Gregg. The structure and performance of efficient
interpreters. Journal of Instruction-Level Parallelism, 5:2003, 2003.

[16] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R.
Haghighat, B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff,
J. Ruderman, E. W. Smith, R. Reitmaier, M. Bebenita, M. Chang, and
M. Franz. Trace-based just-in-time type specialization for dynamic
languages. In Proceedings of the 2009 ACM SIGPLAN conference on
Programming language design and implementation, PLDI ’09, pages
465–478, New York, NY, USA, 2009. ACM.

[17] A. Gal, C. W. Probst, and M. Franz. Hotpathvm: an effective jit
compiler for resource-constrained devices. In Proceedings of the 2nd
international conference on Virtual execution environments, VEE ’06,
pages 144–153, New York, NY, USA, 2006. ACM.

[18] J. Gosling. Java intermediate bytecodes. In Papers from the 1995 ACM
SIGPLAN workshop on Intermediate representations, IR ’95, pages
111–118, New York, NY, USA, 1995. ACM.

[19] S. Guo and J. Palsberg. The essence of compiling with traces. In
Proceedings of the 38th annual ACM SIGPLAN-SIGACT symposium
on Principles of programming languages, POPL ’11, pages 563–574,
New York, NY, USA, 2011. ACM.

[20] I. Hiroshi, H. Hiroshige, W. Peng, and N. Toshio. A trace-based java
jit compiler retrofitted from a method-based compiler. In Proceedings
of the 8th annual IEEE/ACM international symposium on Code
generation and optimization, CGO ’11, New York, NY, USA, 2011.
ACM.

[21] D.-H. Jung, S.-M. Moon, and H.-S. Oh. Hybrid java compilation and
optimization for digital tv software platform. In Proceedings of the
8th annual IEEE/ACM international symposium on Code generation
and optimization, CGO ’10, pages 73–81, New York, NY, USA, 2010.
ACM.

[22] A. Krall. Efficient javavm just-in-time compilation. In Proceedings
of the 1998 International Conference on Parallel Architectures and
Compilation Techniques, PACT ’98, pages 205–, Washington, DC,
USA, 1998. IEEE Computer Society.

[23] C. Krintz and B. Calder. Using annotations to reduce dynamic
optimization time. SIGPLAN Not., 36:156–167, May 2001.

[24] C. Krintz and B. Calder. Using annotations to reduce dynamic
optimization time. In Proceedings of the ACM SIGPLAN 2001
conference on Programming language design and implementation,
PLDI ’01, pages 156–167, New York, NY, USA, 2001. ACM.

[25] G. J. Myers. The case against stack-oriented instruction sets.
SIGARCH Comput. Archit. News, 6:7–10, August 1977.

[26] M. Paleczny, C. Vick, and C. Click. The java hotspot server compiler.
In In USENIX Java Virtual Machine Research and Technology
Symposium, pages 1–12, 2001.

[27] T. H. Romer, D. Lee, G. M. Voelker, A. Wolman, W. A. Wong, J.-L.
Baer, B. N. Bershad, and H. M. Levy. The structure and performance
of interpreters. In Proceedings of the seventh international conference
on Architectural support for programming languages and operating
systems, ASPLOS-VII, pages 150–159, New York, NY, USA, 1996.
ACM.

[28] M. Schoeberl, T. B. Preusser, and S. Uhrig. The embedded java
benchmark suite jembench. In Proceedings of the 8th International
Workshop on Java Technologies for Real-Time and Embedded
Systems, JTRES ’10, pages 120–127, New York, NY, USA, 2010.
ACM.

[29] P. U. Schulthess and E. P. Mumprecht. Reply to the case against stack-
oriented instruction sets. SIGARCH Comput. Archit. News, 6:24–27,
December 1977.

[30] Y. Shi, D. Gregg, A. Beatty, and M. A. Ertl. Virtual machine
showdown: stack versus registers. In Proceedings of the
1st ACM/USENIX international conference on Virtual execution
environments, VEE ’05, pages 153–163, New York, NY, USA, 2005.
ACM.

[31] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue, M. Kawahito,
K. Ishizaki, H. Komatsu, and T. Nakatani. Overview of the ibm java
just-in-time compiler. IBM Syst. J., 39:175–193, January 2000.

[32] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and
S. Amarasinghe. Dynamic native optimization of interpreters. In
Proceedings of the 2003 workshop on Interpreters, virtual machines
and emulators, IVME ’03, pages 50–57, New York, NY, USA, 2003.
ACM.

[33] C.-S. Wang, G. Perez, Y.-C. Chung, W.-C. Hsu, W.-K. Shih, and
H.-R. Hsu. A method-based ahead-of-time compiler for android
applications. In Proceedings of the 14th international conference on
Compilers, architectures and synthesis for embedded systems, CASES
’11, pages 15–24, New York, NY, USA, 2011. ACM.

[34] B.-S. Yang, S.-M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C. Chung,
S. Kim, K. Ebcioglu, and E. Altman. Latte: A java vm just-in-time
compiler with fast and efficient register allocation. In Proceedings
of the 1999 International Conference on Parallel Architectures and
Compilation Techniques, PACT ’99, pages 128–, Washington, DC,
USA, 1999. IEEE Computer Society.

[35] A. Yermolovich, C. Wimmer, and M. Franz. Optimization of
dynamic languages using hierarchical layering of virtual machines. In
Proceedings of the 5th symposium on Dynamic languages, DLS ’09,
pages 79–88, New York, NY, USA, 2009. ACM.

[36] L. Zhang and C. Krintz. Adaptive code unloading for
resource-constrained jvms. In Proceedings of the 2004 ACM
SIGPLAN/SIGBED conference on Languages, compilers, and tools for
embedded systems, LCTES ’04, pages 155–164, New York, NY, USA,
2004. ACM.

[37] L. Zhang and C. Krintz. Profile-driven code unloading for resource-
constrained jvms. In Proceedings of the 3rd international symposium
on Principles and practice of programming in Java, PPPJ ’04, pages
83–90. Trinity College Dublin, 2004.

73

