
REEact: A Customizable Virtual Execution
Manager for Multicore Platforms

Wei Wang
University of Virginia

wwang@virginia.edu

Tanima Dey
University of Virginia

td8h@virginia.edu

Ryan W. Moore
University of Pittsburgh

rmoore@cs.pitt.edu

Mahmut Aktasoglu
Pennsylvania State University

msa203@cse.psu.edu

Bruce R. Childers
University of Pittsburgh

childers@cs.pitt.edu

Jack W. Davidson
University of Virginia

jwd@virginia.edu

Mary Jane Irwin
Pennsylvania State University

mji@cse.psu.edu

Mahmut Kandemir
Pennsylvania State University

kandemir@cse.psu.edu

Mary Lou Soffa
University of Virginia

soffa@virginia.edu

Abstract

With the shift to many-core chip multiprocessors (CMPs), a critical
issue is how to effectively coordinate and manage the execution of
applications and hardware resources to overcome performance,
power consumption, and reliability challenges stemming from
hardware and application variations inherent in this new computing
environment. Effective resource and application management on
CMPs requires consideration of user/application/hardware-specific
requirements and dynamic adaption of management decisions
based on the actual run-time environment. However, designing an
algorithm to manage resources and applications that can dynami-
cally adapt based on the run-time environment is difficult because
most resource and application management and monitoring facil-
ities are only available at the operating system level. This paper
presents REEact, an infrastructure that provides the capability to
specify user-level management policies with dynamic adaptation.
REEact is a virtual execution environment that provides a frame-
work and core services to quickly enable the design of custom
management policies for dynamically managing resources and ap-
plications. To demonstrate the capabilities and usefulness of REE-
act, this paper describes three case studies—each illustrating the
use of REEact to apply a specific dynamic management policy on a
real CMP. Through these case studies, we demonstrate that REEact
can effectively and efficiently implement policies to dynamically
manage resources and adapt application execution.

Categories and Subject Descriptors D.4.1 [Process Manage-
ment]: Multiprocessing/multiprogramming/multitasking

General Terms Performance, Management, Design

Keywords Chip multiprocessor, Resource management, Run-
time adaptation, Virtual Execution Environment

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

1. Introduction

As the core counts and sophistication of modern chip multiproces-
sors (CMPs) increases, adaptive resource management techniques
are needed to realize the full potential of these microarchitec-
tural advances. There have been a flurry of such techniques pro-
posed by the research community, such as cache contention man-
agement [8, 17, 34], processor temperature management [31, 32],
and process variation management [29, 30]. While these and other
adaptive policies have shown significant promise, Users, such as
system administrators, application developers, and other technical
experts, are in need of a platform to create, customize, and de-
ploy adaptive resource management policies that address a myr-
iad of design goals and requirements. These policies must also be
plug and play as user-specific, application-specific and hardware-
specific goals change.

For example, consider two users. The users are executing the
same application on two identical machines (i.e., the same CMP
architecture). However, the users have two distinct requirements.
UserA has a tight power budget and prefers a management policy
that focuses on minimizing power consumption. UserB desires a
management policy that prioritizes performance over power con-
sumption. These goals are contradictory and require distinct man-
agement policies. Given the wide range of distinct requirements,
it is desirable that management frameworks support flexibility as
user requirements, or application requirements, or even hardware
characteristics, change.

Currently, most resource management policies are implemented
in the operating system (OS) kernel. However, the OS is not well-
suited for implementing and incorporating custom policies for two
reasons:

1. The OS is not designed to take into account application-specific
information when making management decisions. However,
with application-specific information, user-level management
policies can adjust the execution of applications in a way that
is not possible with current OSes. For example, consider an
application that uses work-stealing. Work-stealing allows the
number of worker threads spawned by the application to be dy-
namically adjusted. If details of the work-stealing design are
known, the management policy can dynamically increase the
number of the application’s worker threads when the system

27

is underutilized, and reduce the number of threads for better
fairness when the system is over-utilized (see Section 4.2).

2. The complexity of modifying OS policies or adding new ones
to the OS is high, which can prevent users from designing their
own policies. Even after a custom policy is implemented and
carefully tested, much effort has to be made when the same
policy is ported to another OS or the user-goal is changed.
Furthermore, custom policies may introduce security issues if
they are not carefully designed and tested.

Implementing resource management policies at the user-level is
easier, and it allows utilization of application-specific information.
Previous work has proposed different techniques for user-level
resource management [3, 9, 13, 35]. However, these techniques do
not necessarily provide easy customization by the user, and some
techniques only target a subset of resource management problems
of CMPs. Moreover, some techniques do not provide the means
to utilize online performance monitoring technology available in
modern CMPs. This monitoring capability is widely used by many
policies to monitor the system and dynamically adjust management
decisions [8, 17, 29–32, 34].

In this paper, we advocate using a user-level virtual execution
environment (VEE) to provide a framework for easy integration and
development of custom CMP resource management policies. To de-
sign a user-level VEE framework, there are several challenges to
overcome. The first challenge is to provide the necessary resource
management facilities to allow easy development of customized
resource management policies. These facilities include allocating
hardware resources, adjusting application execution, and collect-
ing run-time information about the resource landscape and appli-
cation status. Furthermore, the VEE-implemented policies should
dynamically adapt based on the actual run-time environment. Addi-
tionally, the VEE should be carefully designed so that management
overhead does not outweigh the benefit of a custom management
policy.

This paper presents a Customizable Virtual Execution Manager
(REEact) which provides the flexibility to implement dynamic cus-
tom resource management policies. Situated between applications
and the OS and hardware, REEact is active at run time, and can use
both application and hardware run-time information to manage and
coordinate the applications running in the system.

REEact provides the capability to specify custom management
policies that need dynamic adaptation. It offers basic services for
resource and application management to permit the incorporation
of different management and coordination policies and mecha-
nisms, including those that are customized to a workload, comput-
ing environment and/or system goals. These services are exposed
through easy-to-use application programming interfaces (API), al-
lowing quick development and testing without the burden or diffi-
culty of modifying global OS policies.

With REEact, custom policies can be easily ported across plat-
forms, so long as a few basic facilities are available on the tar-
get platform, such as thread pinning and access to hardware per-
formance counters. Currently, REEact supports two operating sys-
tems, Linux and Solaris, and two ISAs, x86 and SPARC.Moreover,
although we introduce a new layer into the system, REEact is very
lightweight. Its overhead is typically less than 3% (see Section 3).

To demonstrate REEact’s capabilities and usefulness for run-
time management, we present three case studies. The first case
study examines how REEact can implement a custom thermal man-
agement policy for a malfunctioning machine. The second case
study illustrates REEact in the context of an application-specific
policy that aims to maximize utilization while avoiding unfairly
starving other programs from execution. The last case study de-

scribes using REEact to dynamically control hardware prefetchers
to reduce power consumption without sacrificing performance.

The contributions of this paper include:

1. The REEact framework that provides the capability to easily
write user-specific, application-specific and hardware-specific
management policies with dynamic adaptation. We describe
REEact’s software architecture, which is designed to be easy-
to-use, extensible, configurable and portable. REEact also per-
mits the implementation of policies that consider application
semantics.

2. A thorough evaluation of the overhead and scalability of REE-
act on a 32-core CMP platform. We demonstrate that, by care-
ful design and implementation, a user-level virtual execution
environment, like REEact, can perform aggressive and fine-
grained on-line monitoring, dynamic adaptation and multi-
application/thread coordination with very low overhead (<3%)
and high scalability (64 thread contexts).

3. Presentation of three case studies that demonstrate REEact’s
flexibility for providing custom dynamic resource management.
Evaluation of the three custom policies show the flexibility, ef-
fectiveness and low overhead of REEact. The results also high-
light the benefits of customization. Over conventional systems,
case study 1 improves performance by up to 16%; case study 2
improves the fairness of processor time allocation significantly
without sacrificing overall processor utilization; and case study
3 improves performance by up to 69%, energy consumption by
up to 43%, and energy-delay-product by up to 142%.

This paper is organized as follows. Section 2 presents the high-
level structure and operation of REEact. Section 3 evaluates the
overhead of REEact. Section 4 illustrates the operation and utility
of REEact by presenting three case studies where REEact manages
the use of CMP resources as by specified policies. Section 5 dis-
cusses related work and Section 6 concludes the paper.

2. REEact Framework

This section provides an overview of the REEact software architec-
ture, and it describes the design of the framework and implementa-
tion choices.

2.1 REEact Software Architecture Overview

Figure 1 sketches the flow of using REEact to implement the spec-
ified policies. In REEact, a specified policy requires the imple-
mentation of two procedures using the API provided by REEact:
a global procedure that manages the execution of multiple appli-
cations, and a local procedure that manages the execution of an
application (and its threads).

The modification to an existing application to use REEact is
straightforward—the main program of the application is modified
to include a call to the REEact execution manager. This call essen-
tially places the control of the main thread of execution (as well as
subsequent threads the application may create) under the control of
REEact. No further modification to the application is required.

During execution, REEact is initialized and it invokes the two
procedures of the custom policy, and carries out the specified oper-
ations. By coordinating with the OS and the hardware, these oper-
ations manage applications and hardware resources.

To illustrate REEact’s structure and operation, we first present
a simple example. In this example, REEact manages the execution
of three multi-threaded applications on a 16-core CMP. For ease
of explanation, each core has a single execution context (i.e., si-
multaneous multi-threading or hyper-threading is not supported).
For this example, REEact manages the use of the computation re-
sources (i.e., the cores) and dynamically allocates or deallocates

28

Figure 1. A custom policy requires implementing two procedures using the REEact API, and adding REEact’s initialization calls to the
application.

GEM

LEM
C1 C2

C3 C4

C0

Application 1

(a) REEact management of a single, multi-
threaded application.

GEMLEM
C1 C2

C3 C4

C0

LEM
C6 C7

C8 C9

C5

C10

LEM

C13 C14 C15

C11 C12

Application 1

Application 2

Application 3

(b) REEact management of three, multi-threaded applications.

Figure 2. REEact dynamically allocated/deallocated resources (i.e., cores) using a custom FCFS policy.

them during thread creation and termination following a specified
first-come, first-served (FCFS) policy.

In this example, the three applications, App1, App2, App3,
create five, six, and seven threads, respectively. We assume that
App1 acquires all its resources before App2 begins execution, and
App2 acquires all its resources before App3 begins execution.

Initially, REEact initiates a global execution manager (GEM),
which invokes the global procedure to manage multiple applica-
tions. In this example, all 16 cores are managed by the GEM. Since
GEM’s execution has very low overhead, it is allowed to execute
on any core (even a core that is allocated to an application thread).
When App1 begins execution, it calls the REEact initialization API
routine. This call creates a local execution manager (LEM), which
invokes the local procedure to manage the application. The first ac-
tion of the LEM is to communicate with the GEM and request a
core. From this point on, the LEM executes on any core that has
been allocated to it (at this point it has one core).

As App1 executes, it creates other threads. REEact intercepts
thread creation calls, and notifies the LEM. The LEM commu-
nicates to the GEM requesting another core (recall the policy is
FCFS). At this point, the GEM has available cores and one is allo-
cated to this LEM. As application execution continues, additional
threads are created and cores are allocated in a similar manner.

Figure 2(a) illustrates the structure of REEact at this point. In
the figure, five cores (C0–C4) have been allocated to App1—one
for each thread of the application. The LEM thread, like the GEM
thread, has low overhead and it is permitted to run on any of the
cores allocated to the application (i.e., C0–C4).

When App2 starts, the same process occurs. Here, App2 cre-
ates six threads and is therefore allocated six cores (C5–C10). Then

App3 begins execution and requests cores (there are now five un-
allocated cores remaining). The first five thread creations result in
a core being allocated for each thread. However, the sixth thread
creation results in the GEM informing App3’s LEM that no core is
available. The LEM then must map this thread to a core already al-
located to it. The process is similar for the seventh and final thread.
The final state of execution is illustrated in Figure 2(b). The last two
threads of App3 are mapped to cores C11 and C12, respectively.

Note that during the execution of an application, a thread may
terminate. REEact intercepts thread termination and notifies the
applications’ LEMs. If the termination of a thread frees a core, the
core may be dynamically reallocated to other threads. The LEM
may map an existing thread to the core, or return the core to the
GEM for global reallocation. In this example, if a thread in App1
terminates, the core is returned to the GEM which makes a global
decision to offer it to App3. App3 can then map one of the threads
that is sharing a core to its own core.

REEact supports managing applications with multiple policies.
Currently, individual policies are combined manually. REEact also
permits the co-existence of multiple GEMs, where each GEM con-
trols some applications and resources using different policies.

2.2 REEact Design

2.2.1 REEact Components

REEact provides the framework and services to enable the imple-
mentation of management policies (essentially the global and lo-
cal procedure). These services, such as GEM/LEM communication
and thread mapping, are provided through various REEact compo-
nents.

29

API Component API Methods Notes
sendMessage

Communicator getMessage blocking
timeoutGetMessage non-blocking with timeout
readPMUperThread
readPMUperCore
getCoreTemperature

Monitor (HW Status) getTemperatureThreshold1 threshold temperature of DVFS
getTemperatureThreshold2 threshold temperature of core shutdown
getCoreFrequency
getHWComponentState e.g. whether prefetcher or L2 cache is disabled?

Monitor (Sys. Util.) getCoreUtilization
getSystemLoad

SW Actuator pinAppsToCores
pinThreadsToCores

HW Actuator enableHWComponent e.g. enable or disable hardware prefetchers
adjustFrequency adjust processor/core frequency or duty cycle
getUnallocCores
getAllocCores

App. State Tbl. (GEM) allocOrDeallocCore
getTotalCoreCount get the total number of cores
getCoresofCache get the cores that share a cache
getAllL2Caches get a list of available L2 caches

App. State Tbl. (LEM) getCurrentlyUsingCores get the cores allocated to this LEM
getAppThreads

Table 1. API component and their associated methods currently provided by REEact

Application

State Table

Communicator

(Message Queue)

SW Actuator

Global/Local

Execution

Manager

(GEM/LEM)

HW Actuator

Monitor

System

Utilization Thread

Status

HW

Status

Mapping

Threads

Operating System

Hardware

Query Configure

Core0

Core1

Core2

Core3

Query

Figure 3. Essential components of REEact.

Figure 3 shows the essential components of REEact. Because
proper resource management decisions have to be made based on
the actual states of applications and hardware resources, REEact
has monitors to collect their run-time status. Hardware and soft-
ware actuators are provided to adjust resource allocation and ap-
plication execution. A GEM makes global management decisions
based on the run-time information collected by the LEMs, and the
communication component provides facilities for communication
between GEMs and LEMs. REEact also provides application sta-
tus tables so that GEM/LEM can keep track of resource allocation.
The following paragraphs briefly describe each component.

The Global/Local Execution Managers (GEM/LEMs) have
three major duties. First, they initialize and release REEact compo-
nent objects during application start-up and termination. Second,

they maintain the tree structure introduced in Section 2.1 (Fig-
ure 2(b)). Third, they execute customized policy procedures.

The GEM and LEMs are instantiated during application start-
up. When several applications execute simultaneously, the applica-
tion that starts first becomes the “master” which creates the GEM
and the first LEM. Applications that start later only create LEMs.
The GEM and LEM perform all necessary operations to create
other REEact components. A LEM also identifies the GEM and
creates a two-way communication link between them. And lastly,
the GEM/LEM invokes the specified policy procedures (see Fig-
ure 1).

The Communicator transfers data among the GEM and LEMs
asynchronously. It is designed as a message queue attached to a
GEM/LEM. Each message is composed of three parts: a sender ID,
a message type and the message body. The actual meaning of the
message is policy dependent.

The Monitor provides capabilities to monitor the status of both
the hardware and the applications. It collects information about the
hardware, system utilization, and the status of threads.

Hardware information that can be collected includes the out-
put of performance monitoring units (PMU), core frequency, core
temperature, and whether a particular hardware component (e.g.,
prefetchers, L2 caches, etc.) is enabled.

The system utilization information includes the load (utiliza-
tion) of each core, and the overall load. REEact also monitors the
status of application threads, such as thread creation, termination
and suspension.

The SWActuator configures the execution of applications. The
SW actuators map both applications and threads to cores. How
cores are allocated depends on the policy used.

The HW Actuator configures a hardware (HW) component. A
HW actuator can enable or disable a hardware component of a core
(e.g., prefetchers), or adjust processor frequency by setting special
bits of model specific registers (MSR).

TheApplication Status Table (AST) contains the current states
of hardware resources and applications. Each GEM and LEM has

30

its own AST, which contains the information about the resources
and threads that it controls. ASTs can be extended to include
policy-required information.

2.2.2 REEact API

REEact components are represented as objects and their services
are exposed through methods that operate on these objects. The
core of REEact is the GEM and LEM classes and associated meth-
ods.

Table 1 lists the methods currently provided. For communi-
cation among the multiple applications, we provide methods to
send and receive messages as part of the communicator compo-
nent. There are two methods for receiving messages—a blocking
method and method with timeout. Currently, the methods for mon-
itors and actuators are designed to provide access to typical re-
source controls [18–20, 28, 32–34]. We provide the methods for
the monitor component to collect the profiling information either
per-core or per-application-thread basis. There are additional meth-
ods to obtain current temperature, temperature threshold, frequency
and other hardware status of the individual physical cores. We also
provide methods to gather information about core utilization. The
methods for the software actuator component enable the control of
the application using software, including on which core an applica-
tion’s threads run. The methods for a hardware actuator enable the
control of the state of a particular hardware device, for example,
to enable or disable the hardware prefetchers. The methods for the
application state table enable the gathering of information about all
the applications running in the system for the GEM and one appli-
cation for LEMs. Additional services and features will be added as
REEact expands to support more operating systems and architec-
tures.

2.3 REEact Implementation

The next paragraphs describe the actual implementation of REEact
components on Linux-x86 and Solaris-SPARC.

Global/Local ExecutionManager (GEM/LEM): A GEM/LEM
is implemented as a helper thread, which is created during REEact
initialization at the beginning of application execution (recall that
to use REEact, a REEact initialization call is added to the applica-
tion’s main program).

Communicator: The communicator is implemented using
shared memory and semaphores. The message queue of a GEM
or LEM is essentially a portion of memory that is shared by all
GEM/LEMs. Therefore, posting a message or reading a message is
an access to this shared memory. Each queue is associated with a
semaphore, which notifies the GEM/LEM on arrival of a message.

Monitor: On Linux-x86, the monitor uses Perfmon2 to read
PMU data [14]. On Solaris-SPARC, the monitor uses “Libcpc” to
read PMU data.

On x86 architectures, the core frequency, temperature and other
hardware component states are acquired by reading MSRs. REEact
reads the MSRs through a special driver that we designed and
implemented. On SPARC, these hardware states are acquired from
the OS.

System utilization information (e.g., processor utilization) is
acquired from the OS. For example on Linux, this information
can be read through the “stat” file (per-core) or “loadavg” file (all-
cores) under “/proc”. On Solaris-SPARC, this information can be
acquired from library “Libkstat”.

To intercept thread status changes (e.g., thread creation, ter-
mination, suspension), we link application thread functions (e.g.,
pthread create, pthread join) to REEact’s thread functions. Once a
thread status change is detected, the monitor notifies the GEM and
LEM by sending messages to them.

SW Actuator: For thread mapping, the SW actuator uses the
core-affinity system call. Core/processor affinity is readily available
in today’s commodity operating systems, including Linux, Solaris
and Windows. Once a thread is mapped to a set of cores, the
OS does not move the thread to use any other cores. Less rigid
mechanisms could also be used; for example, a mechanism could
be provided to convey scheduling and allocation hints about thread
co-location to the operating system. These mechanisms could be
targeted by a user policy in REEact to guide OS management
decisions.

HW Actuator: The HW actuators enable/disable hardware
components, and adjust core frequency by setting special bits of
MSRs. We implement a driver that allows reading and writing
MSRs at the user-level.

Application Status Table (AST): In the default implementa-
tion, the ASTs are lists that store resource allocation information.
Policies can define their own lists (or other data structures) to store
any data they need.

3. REEact Overhead Evaluation

This section evaluates the overhead of the REEact framework im-
plementation. REEact incurs overhead when reading hardware per-
formance counters, by monitoring and managing thread creation,
and through communication between the LEMs and GEM.

To determine the run-time overhead of REEact, we chose sev-
eral multithreaded applications from PARSEC [6], and we mea-
sured REEact’s overhead as we scaled the total number of threads
and applications. The experiments were run on a CMP machine
that has four Intel Xeon X7550 processors each of which has
eight cores. As the processors are hyper-threaded, each core has
two thread contexts and consequently the machine supports 64
thread contexts. Each physical core has a private 32KB L1-cache, a
256KB L2-cache and one 16MB L3-cache shared by eight physical
cores. This machine is running Linux 2.6.32.

We conducted a series of experiments with workloads con-
sisting of different numbers of randomly chosen PARSEC bench-
marks. The benchmarks used in the experiments are: blackscholes
(BS), bodytrack (BT), canneal (CN), dedup (DD), facesim (FA),
ferret (FE), fluidanimate (FL), streamcluster (SC) and swaptions
(SW). To measure the overhead of reading performance counters,
we varied the period of reading counters from 10 milliseconds to
32 seconds for a fixed number of applications and threads per appli-
cation. As we increased the period, REEact’s overhead decreased
because of less frequent access to the performance counters.

To measure REEact’s overhead, we varied the number of appli-
cations from 1 to 16 and threads per application from 1 to 8, for a
fixed counter-reading period. We set the counter-reading period to
10 milliseconds. We experimentally checked PARSEC and SPEC,
and discovered that no benchmark has a phase shorter than 10ms
(similar results are also reported by previous research [10]). There-
fore, 10ms is small enough in practice to capture phase changes
in the application threads. If an application does have phases less
than 10ms, then phase changes may go undetected, and there could
be some penalty. However, as the phases are short (< 10ms), any
penalty should not be high/significant. We ran experiments with
four one-application, four two-application, three four-application,
one eight-application and one sixteen-application workload with
different number of threads under REEact control. The benchmarks
used in the workloads are described in Table 2. For each workload,
the overhead was measured by calculating the average percentage
difference in each application’s execution time normalized with re-
spect to the native execution (i.e., no REEact).

Table 3 shows the overhead results. We did not measure the
overhead for 16 applications with 8 threads per application as the
total number of threads exceeds the number of thread contexts for

31

Workload size Benchmark Initials used in each workload
|WL|=1 {BS}, {BT}, {CN}, {FA}
|WL|=2 {BS, BT}, {BS, CN}, {BS, FA}, {BS, SW}
|WL|=4 {BS, BT, CN, FA}, {BS, CN, FA, SW}, {BS, BT, CN, FA}
|WL|=8 {BS, BT, CN, FA, FE, FL, SC, SW}
|WL|=16 {BS, BT, CN, FA, FE, FL, SC, SW, BS, BT, CN, FA, FE, FL, SC, SW}

Table 2. The benchmarks used in each workload for measuring REEact overhead. |WL| denotes the number of applications in a workload,
e.g., |WL| = 2means two applications in a workload. For each workload size, each set in the next column represents one workload composed
by |WL| number of PARSEC benchmarks (indicated by the acronym).

Number of threads
1 2 4 8

|WL|=1 0.77 1.36 1.46 2.74
|WL|=2 0.79 1.82 1.45 0.63
|WL|=4 0.6 0.84 0.94 2.49
|WL|=8 1.43 1.07 1.18 1.37
|WL|=16 1.27 1.47 1.32 —

Table 3. Total overhead (in percentage) as the number of applica-
tions and threads per application is varied, for counter-reading pe-
riod=10 milliseconds. |WL| denotes the number of applications in
a workload, e.g., |WL| = 2 means two applications in a workload.

the experimental machine. From the table, we observe that for a
particular workload size, as the number of threads increases (read-
ing across a column), the overhead slightly increases. The increase
is due to the increased number of messages. For a fixed number of
threads, as we increase the number of applications, the overhead
varies slightly. This slight variation is caused by the differences
in the workloads. For all 19 experiments, the average overhead of
the REEact framework is at most 3%, which is acceptably small.
Note that, the overall overhead of REEact given in Table 3 includes
the overhead of sending messages across processors. The low over-
all overhead (less than 3%) implies that the use of cross-processor
messaging has low overhead and is not a bottleneck for the ma-
chines we examined.

4. Case Studies

This section describes three case study policies that are imple-
mented in REEact to demonstrate its flexibility and usefulness.
These policies tackle diverse problems: thermal management,
fairness among parallel applications, and performance/energy-
consumption management.

4.1 Case Study 1: Fighting the Broken Screw

In the first case study, we demonstrate how to use REEact to
implement a policy that reacts to thermal emergencies. We have
a CMP computer that frequently experiences overheating. This
computer has an Intel Q6600 quad-core processor. The processor
has four cores. Each core has 32KB L1 I-cache and 32 KB L1 D-
cache. Every two cores of this processor shares one 4MB L2 cache.
The machine is running Linux 2.6.25.

In this machine, one of the four screws that fasten the heat
sink and fan to the chip is broken, causing some cores (especially
core0) to easily reach a very high temperature. Most CMP proces-
sors have hardware mechanisms to prevent overheating. For this
processor, it uses dynamic voltage/frequency scaling (DVFS) and
voluntary core shutdown. By reading the on-die digital thermal sen-
sors (DTS), this processor monitors its cores’ temperatures. If any
core’s temperature exceeds a factory predefined threshold T1, the
core’s frequency and/or voltage are reduced. If a core’s tempera-
ture keeps climbing and reaches the critical temperature T2, the
core is shutdown temporarily. Although these mechanisms prevent

��

��

��

��

��

���

���

���

���

���

�
	

�

�

��
�

�
�
�

�
�
�
�
	
�

�
�
�
	
�
�

�
�
�

�
���

	
�
�
�
�

�

�
�
�
�
�

�
�
�
��
�
�
�
�

�	
�
��	

�
�

�
�
�
�

�
�
�
�

�
	
�
�!!

�
�
�
�	
"

�
�
�

�
#

�
�
��
�
��"

$
�
�
	

�
%	
�
�

&
	
�
�
'
�
(
�

���
)
�
�
�
��
�

$
�
�
�

��
�
��

��
�

�
�
�
	
��
�

�
�
��

�
�
$
��
"

*
	

�
�

�

�
�
�
	
�!
�
�

�
�
	
�
	
�
��
+,

-

.//���
0*(!��1

Figure 4. Performance (execution time) improvement of SPEC
with REEact broken-screw policy and manually tuned optimal ex-
ecution, compared to the Linux default scheduler.

catastrophic overheating, they have negative impact on system per-
formance. If we can detect cores that are vulnerable to overheating,
and schedule the threads to use these cores less frequently, then
we can achieve better performance as well as prevent unnecessary
overheating of the cores.

REEact’s monitoring methods support reading core tempera-
tures (using MSR “IA32 THERM STATUS”), as well as dynam-
ically detecting threshold temperatures T1 and T2. To solve the
broken-screw thermal problem, we developed a custom policy us-
ing REEact. In this policy, the GEM and LEMs work together to
detect overheating and migrate application threads appropriately.
Policy 1.a and 1.b give the pseudocode for the global (GEM) and
local (LEM) procedures respectively. When an application first re-
quests a core for its newly created thread (through its LEM), the
GEM randomly allocates a free core to it. During execution, the
LEM periodically (every 10 seconds) checks if any of its cores are
overheating. Depending on the level of overheating, the LEM re-
quests different cores:

1. If the overheating core’s temperature is between T1 and T2,
the LEM asks the GEM for a core with temperature below T1

(Policy 1.b line 16). If the GEM finds such a core (Policy 1.a
lines 11-19), it responds with the new core (Policy 1.a lines 35-
37), to which LEM maps its threads (Policy 1.b line 21).

2. If the overheating core’s temperature is equal to or higher than
T2, the LEM marks this core as a hot core, and asks the GEM
for the coolest non-marked core (Policy 1.b line 13-14). Once
the GEM responses with a new core (Policy 1.a lines 21-31), the
LEM re-maps its threads to it (Policy 1.b line 21). If the GEM
fails to find a core, the LEM and its threads stay on the hot core.

We evaluated this policy using the SPEC2006 benchmarks. Fig-
ure 4 shows the performance (execution time) improvement of
SPEC benchmarks controlled by REEact with the overheating pre-

32

vention policy, as well as manually tuned optimal execution, com-
pared to the Linux default scheduler, which does not consider core
temperature and can freely use any core. The optimal execution
time is determined by trying all possible thread-to-core mappings,
and choosing the one with the minimum execution time.

The maximum speedup of REEact over the Linux default sched-
uler is 16%, and the average speedup is 9.5%. The results show the
benefit of using REEact framework by implementing this adaptive
policy customized for this specific machine. The results also show
that REEact and this policy has very low overhead, with at most 3%
slowdown compared to optimal results. This slowdown is partially
caused by the reactive nature of the policy: it only migrates threads
when overheating actually occurs. The policy can be further refined
to be proactive instead of being reactive [32].

Policy 1.a Fighting the broken screw: GEMpolicy procedure (bold-
faced functions are REEact methods)

1: /* input parameters: ref to all LEM objs, ref to GEM obj, ref to monitor and ref to
GEM’s app state table */

2: INPUT: List lemList, Gem gem, Monitor m, AppStatTbl ast
3: List freeCores← ast.getUnallocCores();
4: Int T1← m.getTempThreshold1();
5: Int T2← m.getTempThreshold2();
6: LOOP
7: Message msg← gem.getMessage();
8: Lem lem← msg.sender;
9: Core oldCore← msg.value;
10: Core newCore← oldCore;
11: IF msg.type = TemperatureAboveT1 THEN
12: /* search for a core that has a temperature below T1*/
13: FOR ALL c IN freeCores DO
14: Int t← m.getCoreTemperature(c);
15: IF t < T1 THEN
16: newCore← c;
17: BREAK;
18: END IF
19: END FOR
20: ELSE IF msg.type = TemperatureAboveT2 THEN
21: Int lowestT← T2;
22: /* List of cores that “lem” has used and had thermal issue (core temperature

above T2) */
23: List hotCores← lem.ast.getCoresAboveT2();
24: /* search for an unallocated core that has lowest temperature and no thermal

issue for “lem” yet */
25: FOR ALL c IN freeCores DO
26: t← m.getCoreTemperature(c);
27: IF hotCores.doNotHave(c) AND (t < lowestT) THEN
28: newCore← c;
29: lowestT← t;
30: END IF
31: END FOR
32: END IF
33: /* ask LEM “lem” to run on newCore */
34: IF newCore 6= oldCore THEN
35: lem.sendMessage(runOnCore, newCore);
36: freeCores.add(oldCore);
37: freeCores.remove(newCore);
38: END IF
39: END LOOP

4.2 Case Study 2: Maximizing Utilization without Penalty

We next demonstrate a REEact policy that maximizes the utiliza-
tion of a multicore system without unnecessarily starving other ap-
plications from execution.

Consider a shared, heavily utilized multicore server, where
diverse CPU-intensive workloads arrive without notice. The run
times may be unknown and multi-threaded workloads likely can
run with a user-specified number of threads.

Recognizing that new workloads are likely to arrive, a user
may restrict the number of threads a multi-threaded program uses,
leaving CPU resources for future workloads. However, it may be
difficult or impossible to know when future workloads will arrive

Policy 1.b Fighting the broken screw: LEMpolicy procedure (bold-
faced functions are REEact methods)

1: /* input parameters: ref to this LEM obj, ref to GEM obj, ref to monitor and ref to
this LEM’s app state table */

2: INPUT: Lem lem, Gem gem, Monitor m, AppStatTbl ast
3: Int T1← m.getTempThreshold1();
4: Int T2← m.getTempThreshold2();
5: /* extend ast with a new list for the cores on which this LEM has thermal issue

(core temperature above T2) */
6: List ast.CoresAboveT2← new List();
7: LOOP
8: /* single-threaded app has only one thread and one core*/
9: Core curCore← ast.getCurrentlyUsingCores();
10: Thread appThread← ast.getAppThreads();
11: Int coreT← m.getCoreTemperature(curCore);
12: IF coreT≥ T2 THEN
13: ast.CoresAboveT2.add(curCore);
14: gem.sendMessage(TemperatureAboveT2, curCore);
15: ELSE IF coreT≥ T1 THEN
16: gem.sendMessage(TemperatureAboveT1, curCore);
17: END IF
18: /* Get message with timeout “timeout” (non-blocking)*/
19: Message msg← LEM.timeoutGetMessage(timeout);
20: IF (msg 6= NULL) AND (msg.type = runOnCore) THEN
21: lem.pinThreadstoCores(appThread, msg.value);
22: sleep(timeout);
23: END IF
24: END LOOP

or what their properties will be. Consequently, at times the system
may be underutilized.

Alternatively, the user may assume that no new workloads will
arrive. The initial workload can then use as many threads as there
are CPUs (assuming CPU bound threads). Future workloads, if any,
may be starved for CPU time if they generate fewer number of
threads than the first application. A better policy is to dynamically
adapt each program in response to system utilization.

A multi-threaded program on an otherwise idle system should
use all available cores. If workloads arrive, current workloads
should reduce their CPU usage (e.g., by shutting down worker
threads). If workloads exit, existing workloads should expand to
use the newly freed CPU resources. In this way, the system is
consistently at 100% utilization, yet no program is unnecessarily
starved of CPU time.

We developed a policy, called AutoMax, to dynamically expand
and shrink running programs in REEact. Policy 2.a shows the
global policy procedure as implemented in the GEM. Policy 2.b
shows the local policy procedure as implemented in the LEM.

The GEM determines a minimum and maximum amount of
utilization that the system should try to achieve (lines 4-5). It then
monitors overall load, as given by the OS (line 7). The load is a
measure of how many cores the system would need to properly run
the current workload.

Each application is launched under the GEM’s control with a
LEM as described in Section 2. AutoMax obtains and permutes the
list of current LEMs for the current workload (line 8). The LEM
list is permuted to avoid favoring one application over another. A
permuted list on average will balance the number of shrink and
expand requests sent across applications and is also simple and fast
to implement.

If the utilization is below a minimum threshold (line 10), a
LEM is randomly selected to expand (line 11). Similarly, if the
utilization is above the maximum threshold (line 12), a LEM is
chosen randomly to shrink. The LEM may elect not to expand or
shrink, in which case the next LEM in the list, if any, is given a
chance to expand or shrink (lines 19-26).

The GEM then pauses for a few seconds (line 27). This pause (5
seconds) allows applications to shrink or expand before rebalancing
is again considered. How a LEM responds to a request to expand or

33

shrink is application specific (Policy 2.b). Applications may require
a minimum number of threads or have a maximum number of
threads to run (i.e., due to a limited amount of parallelism). It is
up to the LEM to reject expand or shrink messages as appropriate.

We conducted experiments to compare the performance of ap-
plications using static thread allocation versus the AutoMax policy.
Wemodified blackscholes from PARSEC to support AutoMax. The
modification required having worker threads perform work-stealing
from a global queue of uncompleted work units. An expand request
creates a new worker thread. Once a thread has received a work
unit, it must complete the work unit before obtaining more work, or
shutting down due to a shrink request. The modification of blacksc-
holes was easy since it has a global thread number counter that ex-
plicitly tells the benchmark how to distribute their work. As devel-
opers embrace libraries that abstract away explicit thread creation
and work allocation (e.g., OpenMP, Intel Thread Building Blocks),
AutoMax will become more easily applicable.

Policy 2.a AutoMax: GEM Policy Procedure (boldfaced functions
are REEact methods)

1: /* input parameters: ref to LEM objs, ref to GEM obj, ref to monitor, ref to app
state table */

2: INPUT: List lemList, Gem gem, Monitor m, AppStatTbl ast
3:
4: Double minUtilization← ast.getTotalCoreCount() - ǫ1
5: Double maxUtilization← ast.getTotalCoreCount() + ǫ2

6: LOOP
7: Double curUtilization← m.getSystemLoad()
8: List permutedLL← permute(lemList)
9: /* Depending on system load, ask apps to expand or shrink their threads */
10: IF curUtilization < minUtilization THEN
11: MSGTYPE msgType = expand
12: ELSE IF curUtilization > maxUtilization THEN
13: MSGTYPE msgType = shrink
14: ELSE
15: permutedLL.removeAll() /* No app must change */
16: END IF
17: /* loop until an app has expanded or shrunk, or until no app can be changed */
18: Bool didExpandOrShrink← FALSE
19: REPEAT
20: Lem lem← permutedLL.getFirst&Remove()
21: lem.sendMessage(msgType, NULL)
22: Message msg← gem.getMessage()
23: IF msg.type = changeResponse AND

msg.sender = lem THEN
24: didExpandOrShrink← msg.value
25: END IF
26: UNTIL didExpandOrShrink OR permutedLL.isEmpty()
27: sleep(time);
28: END LOOP

Policy 2.b AutoMax: LEM Policy Procedure (boldfaced functions
are REEact methods)

1: /* input parameters: ref to this LEM obj, ref to GEM obj, ref to monitor and ref to
this LEM’s app state table */

2: INPUT: Lem lem, Gem gem, Monitor m, AppStatTbl ast
3:
4: LOOP
5: Message msg← lem.getMessage();
6: IF msg.type = expand OR msg.type = shrink THEN
7: /* the application decides its response */
8: Bool canChange← canExpandOrShrink(msg.type);
9: IF canChange THEN
10: /* the application decides how to expand or shrink */
11: expandOrShrink(msg.type);
12: END IF
13: gem.sendMessage(changeResponse, canChange)
14: END IF
15: END LOOP

The experiments were conducted on a 4-core CMP machine.
This machine has one Intel Xeon E5335 processor. The processor

has four cores. Each core has 64KB L1 I-cache and 64KB L1 D-
cache, and every two cores share one 4MB L2 cache. The machine
uses Linux 2.6.29.

To evaluate our policy, we ran blackscholes on this machine
and injected synthetic single-threaded programs. Each synthetic
program instance performs a fixed amount of CPU-intensive work,
taking 50s on an idle system. After the synthetic programs finish,
we waited 30s before starting the next period. In total, 3 waves of
injections occured. The waves represent users periodically running
one or more short running tasks. Figures 5(a), 5(b), and 5(c) show
these results. We give the arithmetic average execution time of the
synthetic programs.

As blackscholes is statically assigned more threads, its execu-
tion time decreases, eventually starving the synthetic programs for
CPU time. In contrast, AutoMax avoids harming the performance
of the synthetic programs.

With one single-threaded synthetic program active in a wave
(Figure 5(a)), AutoMax blackscholes has an execution time closest
to that of blackscholes when statically allocated 4 threads. When
no synthetic programs are running, blackscholes can create new
threads and use all cores on the system. The synthetic programs
have an execution time closest to that of when blackscholes is
statically allocated 3 threads (leaving a core for their use). Thus,
AutoMax is able to maximize the performance of the synthetic
programs without penalizing the execution time of blackscholes.

With two synthetic program active in a wave (Figure 5(b)), Au-
toMax blackscholes has a run time closest to that of blackscholes
when statically allocated 3 threads. The synthetic programs have
an execution time closest to that of when blackscholes is statically
allocated 3 threads. An ideal policy would have the synthetic pro-
grams’ execution time be as if blackscholes was statically allocated
2 threads, leaving 2 cores available for each synthetic program.

With three synthetic program instances active in a wave (Fig-
ure 5(c)), AutoMax blackscholes has a run time closest to that of
blackscholes when statically allocated 3 threads. The synthetic pro-
grams have an execution time closest to that of when blackscholes
is statically allocated 2 threads. A policy which does not impact
the performance of the synthetic benchmarks would cause the syn-
thetic programs to have the same execution time as if run alongside
an instance of blackscholes that is statically allocated 1 core.

Based on the results shown in Figures 5(a), 5(b), and 5(c),
the AutoMax version of blackscholes is adapting itself to other
workloads on the system (i.e., the synthetic programs).

4.3 Case Study 3: Reducing Energy Usage without
Performance Penalty

In the third case study, we present a REEact policy for reducing
system energy consumption. This policy is based on the following
observations: hardware prefetchers may have no or negative per-
formance impact if many cache lines prefetched are not used by
the application [26]. However, fetching these useless cache lines re-
quires extra energy. Therefore, we can disable the prefetchers when
they do not improve performance to save energy. With REEact, we
can dynamically examine how the applications use prefetchers, and
control the prefetchers accordingly.

Policy 3.a and 3.b give the pseudo-code for the global (GEM)
and local (LEM) procedures. When a new thread is created or un-
blocked (from synchronization wait), REEact’s thread status mon-
itor sends a new message to the GEM (Policy 3.a line 6). Upon
receiving this message, the GEM starts to test two configurations:
one with prefetchers enabled and one with prefetchers disabled.
The GEM also notifies the LEMs to collect the number of instruc-
tions retired for these two configurations (Policy 3.a lines 7-27).
Each configuration is executed for 0.5 seconds and each LEM re-
ports the number of instructions retired to GEM (Policy 3.b lines

34

0

100

200

300

400

500

A
u
to

M
a
x

s
ta

ti
c
 1

s
ta

ti
c
 2

s
ta

ti
c
 3

s
ta

ti
c
 4

s
ta

ti
c
 5

s
ta

ti
c
 6

s
ta

ti
c
 7

s
ta

ti
c
 8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

1 Single-Threaded Program Per Wave

blackscholes
single-threaded program

(a) One program per wave

0

100

200

300

400

500

A
u
to

M
a
x

s
ta

ti
c
 1

s
ta

ti
c
 2

s
ta

ti
c
 3

s
ta

ti
c
 4

s
ta

ti
c
 5

s
ta

ti
c
 6

s
ta

ti
c
 7

s
ta

ti
c
 8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

2 Single-Threaded Program Per Wave

blackscholes
single-threaded program

(b) Two programs per wave

0

100

200

300

400

500

A
u
to

M
a
x

s
ta

ti
c
 1

s
ta

ti
c
 2

s
ta

ti
c
 3

s
ta

ti
c
 4

s
ta

ti
c
 5

s
ta

ti
c
 6

s
ta

ti
c
 7

s
ta

ti
c
 8

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

3 Single-Threaded Program Per Wave

blackscholes
single-threaded program

(c) Three programs per wave

Figure 5. AutoMax compared to static policies. The number after “static” means the number of statically created blackscholes threads (not
controlled by REEact).

Policy 3.a REEact Power management: GEM policy procedure
(boldfaced functions are REEact methods)

1: /* input parameters: ref to all LEM objs, ref to GEM obj, ref to monitor, ref to
GEM’s app state table, ref to HW actuators */

2: INPUT: List lemList, Gem gem, Monitor m, AppStatTbl ast, HWActuator hwAct
3: Int coreCnt← m.getTotalCoreCount();
4: LOOP
5: Message msg← gem.getMessage();
6: IF msg.type = ThreadActivated THEN
7: /* start sampling configuration with prefetchers on*/
8: /* enable prefetchers on all cores */
9: hwAct.enableHWComponent(c, prefetcher, on);
10: FOR ALL lem IN lemList DO
11: lem.sendMessage(readInsnRetired, NULL);
12: END FOR
13: Int insnPfOn← 0;
14: FOR ALL lem IN lemList DO
15: Message msg← gem.getMessage();
16: insnPfOn← insnPfOn + msg.value;
17: END FOR
18: /* start sampling configuration with prefetchers off*/
19: hwAct.enableHWComponent(c, prefetcher, off);
20: FOR ALL lem IN lemList DO
21: lem.sendMessage(readInsnRetired, NULL);
22: END FOR
23: Int insnPfOff← 0;
24: FOR ALL lem IN lemList DO
25: Message msg← gem.getMessage();
26: insnPfOff← insnPfOff + msg.value;
27: END FOR
28: /* Comparing two configuration */
29: BOOL switch← off;
30: IF insnPfOn > insnPfOff× 1.02 THEN
31: switch← on;
32: END IF
33: hwAct.enableHWComponent(c, prefetcher, switch);
34: END IF
35: END LOOP

8-13). The GEM compares the results, and disables the prefetchers
if the configuration with enabled prefetchers does not retire more
instructions (Policy 3.a lines 28-33). To avoid measurement errors
from PMUs, the configuration with enabled prefetchers is consid-
ered superior only if it has at least 2% more instructions retired.

We evaluated this policy on a computer with an Intel quad-core
processor Q9550. Each core has 32KB L1 I-cache and 32KB L1
D-cache. There are two 6MB L2 caches each shared by two cores.
For each L1 cache, there are two prefetchers (DCU and IP) that
prefetch data into it. For each L2 cache, there are also two prefetch-
ers (hardware prefetcher and adjacent cache line prefetcher) that

prefetch data into it. The DCU prefetcher and the adjacent cache
line prefetcher prefetch the next cache line of the missed cache line
into the cache. The IP prefetcher and the hardware prefetcher look
for a stride in the memory access pattern and prefetch the next ex-
pected data [2]. We tested eleven PARSEC benchmarks individu-
ally. Each benchmark was configured to run with four threads us-
ing native input sets. We ran each benchmark for three iterations
and computed the average energy consumption and execution time
of PARSEC’s “region of interest” (parallel region). We collected
the energy consumption of the processor using the methodology
from Esmaeilzadeh et al. [15].

Figure 6 shows the results of seven benchmarks running under
REEact, as well as two other static configurations where prefetch-
ers are always enabled or disabled. Four benchmarks, bodytrack,
raytrace, vips and blackscholes, are omitted because configuring
prefetchers does not impact their performance or energy consump-
tion. The results show that REEact always provides the best per-
formance and lowest energy consumption. Compared to always
enabling prefetchers, REEact improves execution time by up to
8%. It improves energy consumption by 12% and the energy-
delay-product (EDP) by up to 19%. Compared to always disabling
prefetchers, REEact improves execution time by up to 69%, energy
consumption by 43% and EDP by up to 142%. The results show
that REEact has little (at most 1%) overhead over the best static
prefetcher configuration.

Policy 3.b REEact power management: LEM policy procedure
(boldfaced functions are REEact methods)

1: /* input parameters: ref to this LEM obj, ref to GEM obj, ref to monitor and ref to
this LEM’s app state table */

2: INPUT: Lem lem, Gem gem, Monitor m, AppStatTbl ast
3: List appThreads← ast.getAppThreads();
4: LOOP
5: Message msg← lem.getMessage();
6: Double time = 0.5; /* sample for 0.5 seconds */
7: IF msg.type = readInsnRetired THEN
8: /* read InsnRetired for all the threads of this LEM */
9: List insnCnts← insnCnt +

m.readPMUperThread(appThreads, InsnRetired, time);
10: gem.sendMessage(InsnRetiredValue, insnCnts.sum());
11: END IF
12: END LOOP

5. Related Work

There has been much work in designing and implementing vir-
tual execution environments (VEEs) for various purposes. Nesbit

35

�����

�����

�����

�����

�����

�����

�����

�����

��	���

��	���

�
�

��
��
�

�
�
��
�

�
�

�
�

��
��
�

�
�
��
�

�
�

�
�

��
��
�

�
�
��
�

�
�

�
�

��
��
�

�
�
��
�

�
�

�
�

��
��
�

�
�
��
�

�
�

�
�
��

�
��
�
�
�
�

�
�

��
��
�
��

�

�
�
��
�
��
�
�
�

�
�

������ ���� !�������"� #$�%"���# &����"
���&�"
'��(� ���&�"
'��() *

�
"

�����
�����

��	���
��	���
��	���
��	���
��	���
������
������
������
������

�
�

��
��
�

�
�
��
�

�
�

�
�

��
��
�

�
�
��
�

�
�

#"����
�!#"�� &�
�#��

Figure 6. Execution time, energy consumption and EDP for PARSEC benchmarks running under REEact and two static configurations
where prefetchers are always enabled or disabled (normalized to the configuration where prefetchers are always enabled; the lower bar is
better).

et al. proposes virtual private machine (VPM) as an abstraction for
managing spatial and temporal resources in multicore systems [22].
These VPMs consist of several software policies for managing re-
sources which translate system-level requirements into different
hardware mechanisms. In other work, the Xen hypervisor is ex-
tended to create a framework for supporting application-specific
resource management in many core systems [23]. Cuvillo describes
a Thread Virtual Machine (TVM) in the form of a thread library to
allow applications to achieve full resource utilization [9]. AKULA
is a tool-set for experimenting and testing scheduling algorithms
that mitigate shared cache contention among single-threaded appli-
cations [35]. Noll et al. describes a virtual machine to allow pro-
grammers to use higher level programming constructs and mimic
the behavior of a homogeneous shared memory multiprocessor,
hiding the heterogeneity in the underlying Cell processors [24].
Similar to these researchers, we advocate the use of VEEs to dy-
namically manage applications and hardware resources on CMPs.
However, these VEEs are usually specialized for a particular pur-
pose (mostly for shared resource management) or an architecture,
while our REEact is designed to provide a generic framework and a
wide variety of services that can be used for a range of diverse pur-
poses. Multikernel shares the same application and architecture-
specific management spirit with us, but it focuses on improving
the OS kernel design [5]. Log-based architecture (LBA) is similar
to REEact in that LBA also constantly monitors on-line applica-
tions [7]. The difference is that LBA focuses more on application
security and correctness. REEact shares the spirit of user-level ap-
plication management with scheduler activation [3] and shares the
spirit of application-specific resources management with exoker-
nel [13]. However, for CMP resource/application management, ex-
tensive user-level/kernel-level thread interactions and application-
specific resource abstractions are not always necessary.

There has been prior work on virtualization and hypervisors.
Xen is a hypervisor that allows the existance of large number of
guest OSes on the same machine with low overhead and safe re-
source isolation [4]. This work describes a virtualization architec-
ture consisting of a microhypervisor and environment that provides
operating system functionality including virtual-machine monitors
(VMM) in user-level [27]. This user-level VMM allows execution
of unmodified guest OSes in the virtual machine. On the other hand,
REEact provides a VEE that supports the design and implementa-
tion of customizable user-level resource management policies for
the execution of applications.

There also has been prior work addressing the problems de-
scribed in the three case studies. Kadin et al. describes centralized
and distributed dynamic thermal management for CMPs [18]. A

low overhead thermal manager using core swapping has been pro-
posed to address thermal emergencies [20]. A proactive dynamic
temperature management technique is described by Yeo et al. [32].
Most of these software techniques can be easily implemented with
REEact. Prior work has also been done in having multi-threaded
programs automatically adapt their behavior. Libraries like Intel’s
Threading Building Blocks [25] abstract away the work of threads,
and use techniques such as work stealing and/or a task sched-
uler to ensure that all threads (and cores) in a system are active.
Our AutoMax policy differs from [25] in that applications have
their own policy (in the LEM) and are able to choose how to re-
spond, instead of being limited to the Intel task scheduler’s avail-
able policy/policies. Works such as [21] are orthogonal to our ap-
proach, and might allow for the automatic creation of LEM poli-
cies. Java’s thread pool preallocates a pool of worker threads [1].
An application can then use these pre-created threads to process
its tasks. It can also return the threads to the pool if there are no
more tasks to do. Thread pool helps minimizes the overhead due
to thread creations and terminations. Thread pool can be included
in REEact to help design management policies like case study 2.
Several recent studies address the over-aggressiveness of current
prefetchers. Zhang et al. proposed throttling processor’s duty cycle
and prefetchers to improve resource sharing fairness, which can
be implemented with REEact [33]. A similar hardware solution
was proposed by Ebrahimi et al. [12]. New hardware prefetcher
designs are also proposed to reduce the negative performance im-
pact [11, 16, 26].

6. Summary

Various user requirements, application behaviors, and hardware
configurations, have greatly complicated the management of CMP
hardware resources and applications. Management policies ad-
dressing such variations depends on user/application/hardware-
specific requirements and require dynamic adaptation. This paper
tackles these management problems by enabling the design and im-
plementation of custom resource management policies with REE-
act, a user-level VEE framework. This framework provides several
services for dynamic management and coordination of hardware
resources and applications. REEact allows easy development of
custom policies to meet different user requirements. It also facili-
tates the development of policies that consider application-specific
information and hardware characteristics. We describe the design
and implementation of REEact, and use it with three case studies,
each focusing on distinct issues on CMPs—thermal management,
resource efficiency and fairness, and power management. These

36

case studies highlight the benefits brought by REEact, such as
flexibility, effectiveness, ease-of-use, and separation of concerns.
Through these case studies, we also demonstrate that a carefully
designed user-level VEE, like REEact, can effectively manage re-
sources and applications with little run-time overhead.

Acknowledgments

This research is supported by National Science Foundation grants
CCF-0811689, CNS-1012070, CCF-0811295, CCF-0811352, CCF-
1147388, CNS-1017882, CCF-0963839 and CCF-0811687. We
appreciate the insightful comments and constructive suggestions
from the anonymous reviewers. We would also like to thank Jason
Mars and Lingjia Tang for their valuable input.

References

[1] Java(TM) 2 Platform Standard Edition 5.0 API Specification.
http://java.sun.com/j2se/1.5.0/docs/api/.

[2] Intel 64 and IA-32 architecture software developer’s manual, 2011.
[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M. Levy.

Scheduler activations: effective kernel support for the user-level man-
agement of parallelism. In Proc. of the Thirteenth ACM Symposium

on Operating Systems Principles, pages 95–109, 1991.
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtu-
alization. In Proc. of the Nineteenth ACM Symposium on Operating

Systems Principles, pages 164–177, 2003.
[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs, S. Peter,

T. Roscoe, A. Schüpbach, and A. Singhania. The multikernel: a
new OS architecture for scalable multicore systems. In Proc. of the

22nd ACM Symposium on Operating Systems Principles, pages 29–
44, 2009.

[6] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The PARSEC benchmark
suite: characterization and architectural implications. In Proc. of the

17th Int’l Conf. on Parallel Architectures and Compilation Techniques,
pages 72–81, 2008.

[7] S. Chen, B. Falsafi, P. B. Gibbons, M. Kozuch, T. C. Mowry,
R. Teodorescu, A. Ailamaki, L. Fix, G. R. Ganger, B. Lin, and S. W.
Schlosser. Log-based architectures for general-purpose monitoring of
deployed code. In 1st Workshop on Architectural and System Support

for Improving Software Dependability, pages 63–65, 2006.
[8] S. Chen, P. B. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki,

G. E. Blelloch, B. Falsafi, L. Fix, N. Hardavellas, T. C. Mowry, and
C. Wilkerson. Scheduling threads for constructive cache sharing on
CMPs. In Proc. of the Nineteenth Annual ACM Symposium on Parallel

Algorithms and Architectures, pages 105–115, 2007.
[9] J. del Cuvillo. Breaking away from the OS Shadow: A Program Execu-

tion Model Aware Thread Virtual Machine for Multicore Architectures.
PhD thesis, University of Delaware, Newark, DE, USA, 2008.

[10] E. Duesterwald, C. Cascaval, and S. Dwarkadas. Characterizing and
Predicting Program Behavior and its Variability. In Proc. of the

12th Int’l Conf. on Parallel Architectures and Compilation Techniques,
pages 220–231, 2003.

[11] E. Ebrahimi, O. Mutlu, C. J. Lee, and Y. N. Patt. Coordinated control
of multiple prefetchers in multi-core systems. In Proc. of the 42nd

Annual IEEE/ACM Int’l Symposium on Microarchitecture, pages 316–
326, 2009.

[12] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via source
throttling: a configurable and high-performance fairness substrate for
multi-core memory systems. In Proc. of the Fifteenth Edition of
ASPLOS on Architectural Support for Programming Languages and

Operating Systems, pages 335–346, 2010.
[13] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel: an oper-

ating system architecture for application-level resource management.
In Proc. of the Fifteenth ACM Symposium on Operating Systems Prin-

ciples, pages 251–266, 1995.
[14] S. Eranian. Perfmon2: A flexible performance monitoring interface

for Linux. In Ottawa Linux Symposium, pages 269–288, 2006.
[15] H. Esmaeilzadeh, T. Cao, Y. Xi, S. M. Blackburn, and K. S. McKinley.

Looking back on the language and hardware revolutions: measured
power, performance, and scaling. In Proc. of the Sixteenth Int’l Conf.

on Architectural Support for Programming Languages and Operating

Systems, pages 319–332, 2011.
[16] I. Hur and C. Lin. Memory Prefetching Using Adaptive Stream

Detection. In Proc. of the 39th Annual IEEE/ACM Int’l Symposium
on Microarchitecture, pages 397–408, 2006.

[17] L. Jin and S. Cho. SOS: A Software-Oriented Distributed Shared
Cache Management Approach for Chip Multiprocessors. In Proc. of
the 2009 18th Int’l Conf. on Parallel Architectures and Compilation

Techniques, pages 361–371, 2009.
[18] M. Kadin, S. Reda, and A. Uht. Central vs. distributed dynamic

thermal management for multi-core processors: which one is better?
In Proc. of the 19th ACM Great Lakes Symposium on VLSI, pages
137–140, 2009.

[19] S. Kim, D. Chandra, and Y. Solihin. Fair Cache Sharing and Partition-
ing in a Chip Multiprocessor Architecture. In Proc. of the 13th Int’l

Conf. on Parallel Architectures and Compilation Techniques, pages
111–122, 2004.

[20] E. Kursun, G. Reinman, S. Sair, A. Shayesteh, and T. Sherwood. Low-
Overhead Core Swapping for Thermal Management. In Workshop on

Power-Aware Computer Systems, 2004.
[21] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor: dynam-

ically weaving threads together for efficient, adaptive parallel appli-
cations. In Proc. of the 37th Annual Int’l Symposium on Computer

Architecture, pages 270–279, 2010.
[22] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private machines: A

resource abstraction. Technical report, In University of Wisconsin -
Madison, ECE TR, 2007.

[23] D. Nikolopoulos, G. Back, J. Tripathi, and M. Curtis-Maury. VT-
ASOS: Holistic system software customization for many cores. In
IEEE Int’l Symposium on Parallel and Distributed Processing, pages
1–5, 2008.

[24] A. Noll, A. Gal, and M. Franz. CellVM: A Homogeneous Virtual
Machine Runtime System for a Heterogeneous Single-Chip Multipro-
cessor. In Workshop on Cell Systems and Applications, 2008.

[25] C. Pheatt. Intel R©threading building blocks. J. Comput. Small Coll.,
23(4):298–298, 2008. ISSN 1937-4771.

[26] S. Srinath, O. Mutlu, H. Kim, and Y. N. Patt. Feedback Directed
Prefetching: Improving the Performance and Bandwidth-Efficiency of
Hardware Prefetchers. In Proc. of the IEEE 13th Int’l Symposium on
High Performance Computer Architecture, pages 63–74, 2007.

[27] U. Steinberg and B. Kauer. Towards a scalable multiprocessor user-
level environment. In Workshop on Isolation and Integration for

Dependable Systems, 2010.
[28] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm. RapidMRC:

Approximating L2 miss rate curves on commodity systems for online
optimizations. In Proc. of the 14th Int’l Conf. on Architectural Support
for Programming Languages and Operating Systems, pages 121–132,
2009.

[29] R. Teodorescu and J. Torrellas. Variation-aware application scheduling
and power management for chip multiprocessors. In Proc. of the 35th
Annual Int’l Symposium on Computer Architecture, pages 363–374,
2008.

[30] J. Winter and D. Albonesi. Scheduling algorithms for unpredictably
heterogeneous CMP architectures. In IEEE Int’l Conf. on Dependable
Systems and Networks With FTCS and DCC, pages 42 –51, 2008.

[31] J. Yang, X. Zhou,M. Chrobak, Y. Zhang, and L. Jin. Dynamic Thermal
Management through Task Scheduling. In IEEE Int’l Symposium on
Performance Analysis of Systems and Software, pages 191–201, 2008.

[32] I. Yeo, C. C. Liu, and E. J. Kim. Predictive dynamic thermal man-
agement for multicore systems. In Proc. of the 45th Annual Design

Automation Conference, pages 734–739, 2008.
[33] X. Zhang, S. Dwarkadas, and K. Shen. Hardware execution throttling

for multi-core resource management. In Proc. of the 2009 Conf. on

USENIX Annual Technical Conference, pages 23–23, 2009.
[34] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared re-

source contention in multicore processors via scheduling. In Proc.

of the Fifteenth Edition of ASPLOS on Architectural Support for Pro-

gramming Languages and Operating Systems, pages 129–142, 2010.
[35] S. Zhuravlev, S. Blagodurov, and A. Fedorova. AKULA: a toolset for

experimenting and developing thread placement algorithms on multi-
core systems. In Proc. of the 19th Int’l Conf. on Parallel Architectures
and Compilation Techniques, pages 249–260, 2010.

37

