
Replacement Attacks Against VM-protected Applications

Sudeep Ghosh Jason Hiser Jack W. Davidson
{sudeep, hiser, jwd}@virginia.edu

Department of Computer Science, University of Virginia, Charlottesville, VA-22903, USA.

Abstract
Process-level virtualization is increasingly being used to enhance
the security of software applications from reverse engineering and
unauthorized modification (called software protection). Process-
level virtual machines (PVMs) can safeguard the application
code at run time and hamper the adversary’s ability to launch
dynamic attacks on the application. This dynamic protection,
combined with its flexibility, ease in handling legacy systems and
low performance overhead, has made process-level virtualization a
popular approach for providing software protection. While there
has been much research on using process-level virtualization to
provide such protection, there has been less research on attacks
against PVM-protected software. In this paper, we describe an
attack on applications protected using process-level virtualization,
called a replacement attack. In a replacement attack, the adversary
replaces the protecting PVM with an attack VM thereby rendering
the application vulnerable to analysis and modification. We present
a general description of the replacement attack methodology and
two attack implementations against a protected application using
freely available tools. The generality and simplicity of replacement
attacks demonstrates that there is a strong need to develop tech-
niques that meld applications more tightly to the protecting PVM
to prevent such attacks.

Categories and Subject Descriptors D.3.4 [Programming lan-
guages]: Processors – Run-time Environments; D.4.6 [Operating
Systems]: Security and Protection

General Terms Security

Keywords Software protection, Process-level virtualization, Dy-
namic binary translation, Code obfuscation, Reverse engineering,
Software tamper resistance.

1. Introduction
Process-level virtualization is a versatile and powerful technique
that addresses a wide range of system challenges. It has been in-
creasingly used to deliver solutions in the area of software pro-
tection (i.e., mechanisms that protect software applications from
reverse-engineering attacks and tamper) [1, 20]. A number of com-
mercial products have been designed to provide software protection

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
VEE’12, March 3–4, 2012, London, England, UK.
Copyright c© 2012 ACM 978-1-4503-1175-5/12/03. . . $10.00

via process-level virtualization such as VMProtect [51], Code Vir-
tualizer [37], Themida [36]. A number of computer gaming soft-
ware applications employ the StarForce virtualization system for
copy protection and anti-reverse engineering [48]. Recently, mali-
cious agents have used this protection technique to design state-
of-the-art malware that can evade current detection systems [41].
There are several reasons why PVMs are popular amongst security
researchers for enhancing software protection.

• Process-level virtualization provides a platform for enhanced
run-time security. Attackers are increasingly using dynamic
techniques to attack software (e.g., running applications under a
debugger or a simulator) [5]. PVMs allow run-time monitoring
and checking of the code being executed, making them an
excellent tool for devising dynamic protection schemes [38].
PVMs can also mutate the application code as it is running (e.g.,
changing code and data locations, replacing instructions with
semantically equivalent instructions, etc.), hampering iterative
attacks [20].

• It is advantageous to have the protection techniques closely in-
tegrated with the application, yet keep the implementations sep-
arate. This modular approach enables easier testing and debug-
ging of the system, and it allows legacy systems to be retrofitted
with new protections without the need for modification and re-
compilation. PVMs can be used to provide such a flexible capa-
bility.

• Static protection schemes can be strengthened when the ap-
plication is run under a PVM. For example, encryption is a
useful technique that hampers static analysis of programs. Be-
cause the encrypted code cannot be run directly on commodity
processors, the software decryption of the application code be-
comes a point of vulnerability. For example, schemes which de-
crypt the application in bulk are susceptible to dynamic analysis
techniques [5], whereas decryption at a lower granularity (e.g.,
functions) can suffer from high overhead [9, 29]. In contrast,
executing encrypted applications under the control of a PVM
has been shown to have a better performance-security trade-
off [27]. The PVM incurs low information leakage, with the ad-
dition of a small performance overhead [20]. Another example
is the improvement of the robustness of integrity checks that
are located in the application. When run under a PVM, these
integrity checks never execute from their original location, in-
stead, they can be invoked from randomized locations in mem-
ory [20]. This randomization makes it harder for the attacker to
locate and disable the checks.

Considering their increasing use in program protection, it is impor-
tant to assess the security of process-level virtualization as a whole.
The existence of any weaknesses in the PVM or its interaction with
the application can seriously undermine any protection mechanism
that relies on process-level virtualization.

203

This work presents a generic attack methodology, called a re-
placement attack, that targets applications protected using process-
level virtualization. The basic premise behind this attack strategy
is that the PVM is not anchored sufficiently to the execution en-
vironment, and can be replaced by the attacker at run time. Using
a replacement attack, the attacker can effectively remove any dy-
namic protection technique actuated by process-level virtualization
and proceed to analyze the application at run time. Some of the
contributions of this work are listed below.

• This paper describes replacement attacks, a novel attack
methodology targeted towards virtualized applications (i.e., ap-
plications that run under the mediation of a process-level virtual
machine), that seeks to render the protective PVM ineffective.
A replacement attack can be used against any application that
is run under the mediation of a process-level virtual machine.
The goal of a replacement attack is the circumvention of the
dynamic protections driven by PVMs, thereby making dynamic
analysis easier.

• Our analysis shows that existing protection schemes, such
as software checksumming guards (proposed by Chang et
al. [10]), fail to adequately protect virtualized applications from
this class of attack.

• We present a comprehensive two-part case study describing the
replacement attack methodology. The first part of this study de-
scribes the creation of a protected, virtualized application, and
then how an attacker can easily replace the protective PVM. We
describe two prototypes of the replacement attack using easily
available, free-to-use tools. The first involves replacing the pro-
tective PVM with an attack PVM (i.e., a PVM without any pro-
tections). The second prototype involves running the applica-
tion on a modified simulator which circumvents the protective
PVM and simulates the application directly. These examples
demonstrate the feasibility and effectiveness of replacement at-
tacks on non-trivial applications.

• We then discuss the implications of the replacement attack in
the second part of our case study. It involves examining dy-
namic attacks on unprotected applications, PVM-protected ap-
plications, and applications subjected to the replacement attack.
Our results show that the replacement attack renders the appli-
cation completely vulnerable to run-time analysis and subse-
quent tamper.

• This research demonstrates that process-level virtualization cur-
rently fails to provide adequate protection to applications. Tech-
niques that tightly bind PVMs with the protected applications
are needed to thoroughly realize the protective capabilities of
PVMs.

The remainder of the paper is organized as follows. Section 2
provides background on process-level virtualization. The protec-
tion model for a virtualized application is described in Section 3.
Section 4 describes the attacker’s capabilities and goals. Section 5
gives a high-level overview of the dynamic replacement attack.
Section 6 uses a case study to describe the details of the protec-
tion mechanisms and how a dynamic attack circumvents them to
leave an application vulnerable. Section 7 discusses the impact of
this methodology with respect to reverse engineering. Section 8
explores some of the requirements to mount a successful attack.
Section 9 describes some of the past work in the field of software
tamper resistance, and finally, Section 10 presents the conclusions.

2. Process-level Virtualization
A software application is a sequence of instructions that execute
on a particular computing system. Virtualization is a software layer

Hardware

Operating System

Process-level

VM

App1

App2

Guest

Application

Host System

Figure 1. High-level overview of process-level virtualization. The
guest application runs under the mediation of the process-level VM,
giving an outward appearance of a process that is native to the
underlying platform.

that encapsulates the application and its associated platform from
the native computing system, allowing the application to execute
on different platforms. Virtualization has been used to overcome
the barriers imposed by new hardware [17, 39], or to improve se-
curity [7, 19, 30]. Formally, virtualization involves the construction
of an isomorphism that maps a virtual system (called the guest)
onto the native system (called the host). It is the responsibility of
the virtual machine to run the application compiled for the guest
(called the guest application) on the host system. Some of the nec-
essary tasks include converting the guest application’s instructions
to run on the host, and mediating communication between the ap-
plication and the host platform. Virtualization can be done at the
system level (i.e., operating system), or at the process level (a sin-
gle application).

Figure 1 illustrates a typical process-level virtual machine envi-
ronment, where the guest application runs under the control of the
PVM, giving it the outward appearance of a native host process.
This work focuses exclusively on process-level virtualization and
its weaknesses with respect to software protection.

During program startup, the PVM assumes control and starts de-
coding the application’s instructions in program order. The decoded
instructions are then used to invoke appropriate handling routines,
which interpret the instructions on the host. As such, the PVM can
regularly monitor the application code being executed on the host
system, and serve as a platform for applying protection schemes
dynamically.

3. Software Protection Model
This section describes the importance of software protection tech-
niques and illustrates the general protection model in the context of
a virtualized application.

Software applications often perform critical tasks in a wide vari-
ety of fields, such as banking, transportation and medical systems.
Any unauthorized modification to such critical software systems
can lead to extensive disruption of services and potential losses
in terms of life and property. Therefore, it is important to protect
software applications from malicious modification. We define the
entity whose goal is to preserve the integrity of the software ap-
plication as the defender. To achieve his goals, the defender uses
different protection schemes to protect the critical functionality of
the software. Numerous such techniques have been proposed to
safeguard software, which can broadly be divided into static tech-

204

INITIALIZATION

ROUTINE

INITIALIZATION

ROUTINE

LINK-TIME

TOOL

APPLICATION

(P)

PVM

(V)

SOFTWARE CREATION

TIME
RUN TIME

PROTECTED

APPLICATION

(PV)

PROTECTED

APPLICATION

(PV)

APPLICATION

(P)

PVM

STATIC

PROTECTIONS

PVM

APPLICATION

DYNAMIC

PROTECTIONS

Figure 2. A high-level overview of the protected software creation process. A link-time tool is used to assemble the application code,
libraries and the PVM code and apply various protection mechanisms, to create a protected binary. At run time, the application runs under
the control of the protective PVM.

niques (which protect the on-disk binary from analysis), and dy-
namic techniques (which protect the software while it is running).

Static protections protect the on-disk binary from analysis and
modification. A number of powerful static protection techniques
have been proposed in recent years [13, 14, 32, 52]. For example,
opaque predicates are a common technique that aid in program
obfuscation [14]. An opaque predicate is a construct with true/false
outcome. The opaqueness of these predicates is attributed to the
fact that, it is hard to reverse engineer their values from the on-
disk binary using static techniques. These constructs are utilized in
obfuscating control-flow information. Code encryption is another
useful technique against static analysis [9]. Figure 2 illustrates the
creation of the virtualized application which is protected by such
techniques. At software creation time, the defender packages the
protective VM with the guest application P , along with its software
libraries using a link-time rewriting tool. The tool then applies
various protection schemes to the virtualized application PV . Once
the protection techniques are applied, the rewriting tool outputs the
protected binary, as shown in Figure 2.

Static techniques alone fail to provide adequate protection. As
we describe in Section 4, attackers are increasingly using run-time
techniques to analyze applications. To protect against such attacks,
a few solutions have been proposed which involve changing pro-
gram code as it runs, to create a shifting attack target (e.g., dy-
namic instruction rewriting [28], and edit scripts [35]). Another
solution involves packaging a process-level VM with the appli-
cation, that protects the run time from analysis and generic at-
tack [1, 20, 51], as shown in the right side of Figure 2. The ap-
plication is modified such that, at program start up, the PVM is
initialized and control is transfered to it. Subsequently, the appli-
cation runs under the control of the PVM, rather than directly on
the native platform. The code for invoking the PVM is stored in
the initialization routine of the virtualized application. There are
different techniques to create these initialization routines (e.g., in
Executable and Linking Format (ELF) files, these routines can be
placed in the .init section [54]. The MacOS binary format, Mach-

O, contains the DATA, mod init func section for placing class
constructors [2]).

A PVM’s ability to monitor the guest application’s code makes
it a suitable platform for dynamic protection. As the PVM is virtu-
alizing the guest application, it can check to make sure the code has
not been modified, and introduce schemes to obfuscate the code.
The PVM can be used to apply protection schemes on a per-run
basis, creating a different attack surface every time the application
is run [20]. Such a scheme makes it difficult to launch automated at-
tacks on the application. PVMs have been shown to increase the ef-
fectiveness of existing protection techniques as well. For example,
code encryption schemes are often vulnerable due to coarse lev-
els of decryption at run time [5]. PVMs facilitate just-in-time, on-
demand code decryption [20]. Only those instructions of P which
are scheduled to be executed, get decrypted. After execution, the
instructions can be re-encrypted. Therefore, P is never fully de-
crypted at any point during execution.

4. Attack Model
Once the software application is deployed, it may be subjected to
various attacks. The attacker is defined as the entity that seeks to
affect a software’s functionality or misappropriate critical informa-
tion from it. To achieve their goal, the attacker has to initially an-
alyze the software and obtain a level of understanding of its oper-
ation. Using this derived knowledge, the attacker can then proceed
to disable the protection scheme.

The attacker’s goals have been aided by recent advances in re-
verse engineering technology, which have led to the availability
of powerful tools for analyzing software. There are two types of
analysis tools: static analysis tools that collect information about
a program by studying its binary but without executing it (e.g.,
disassemblers and decompilers), and dynamic analysis tools that
collect information from program runs (e.g., debuggers, simula-
tors, dynamic analysis frameworks, and emulators [18, 34, 55]).
In particular, the development and availability of dynamic tools has
strengthened the attacker’s capabilities because many static protec-

205

Term Notation Definition
Guest Application P The software application
Protective PVM V A process-level virtual machine that has been configured to apply various

protection techniques at run time.
Virtualized application PV Software application consisting of the P packaged together with a protective

PVM.
Entry function EP The function in the VM code which initiates the process of application virtual-

ization. To mount a successful attack, the attacker has to locate this function.
Attack PVM M A process-level VM that can aid the attacker in analyzing P .
Code Introspection Framework CIF An introspection framework capable of monitoring and instrumenting the code

being executed.

Table 1. Glossary of the terminology used in this paper.

tion techniques are susceptible to run-time analysis [5]. Using these
tools, the attacker attempts to obtain information necessary to carry
out the intended attack. The attack described in the next section
enables use of such tools on PVM-protected applications.

The terminology used in this paper is summarized in Table 1.

5. Replacement Attack
This section describes an attack methodology that targets software
applications protected by process-level virtualization. The goal of
this attack methodology involves replacing the protective PVM,
rendering PV vulnerable to analysis. The attacker can then use
some of the tools described in Section 4 to obtain relevant infor-
mation.

This methodology targets the surface of the application that
is most vulnerable to attack (i.e., when protections are at their
weakest). More specifically, this attack methodology targets the
application just after start up (when static protections are not as
effective), but before the PVM assumes control and begins applying
protections to the application. If successful, the attack disengages
the protective PVM and disables the run-time protections.

To craft a successful replacement attack against PVM-protected
applications, certain requirements need to be met:

• The attacker must be able to locate the entry function (EP) of
the protective PVM in PV . The entry function is defined as
the function of the PVM which initiates software virtualization.
The entry function often takes the starting address location of
P ’s code as an argument.

• The attacker must be aware of the guest application’s instruc-
tion set architecture. The code of the guest application P , is
typically obscured using a secret ISA or encryption. To analyze
and run P after the protective PVM has been disabled, the at-
tacker needs to be cognizant of the ISA, which involves either
analyzing and understanding the secret ISA, or extracting the
key from the binary.

Section 8 discusses these requirements in more detail, includ-
ing heuristics that the attacker can employ to obtain the required
information.

The attack occurs in two stages. In the first stage, the attack
PVM has to be extended to decode the protected application, which
involves understanding the guest ISA. If the ISA is encrypted, the
decryption keys and algorithms must also be obtained and used to
further extend the attack PVM by including the decrytion algorithm
and keys. Details on deciphering the guest application’s ISA are
given in Section 8.2.

Figure 3 illustrates the second stage of the attack on PV . In Fig-
ure 3(a), the attacker invokes PV , under a code introspection frame-
work (CIF), observing instructions as they execute. Well known ex-
amples of CIFs include Pin [33] and QEMU [3]. The attacker mod-

ifies the CIF to locate the call to the entry function of the protective
PVM.

The initialization routine then proceeds to prepare the PVM’s
internal structures. As the entry function of the protective PVM is
invoked, the CIF intercepts this call and extracts the start address,
depicted in Figure 3(b). Details on identifying the PVM’s entry
function are given in Section 8.1

The CIF then proceeds to load and initialize the attack PVM,
shown in Figure 3(c). The CIF then invokes this attack PVM with
P ’s start address which has been extracted from the initial call.

Thus, P now runs under the mediation of the attack PVM
(shown in Figure 3(d)). The protective PVM is circumvented and
fails to provide dynamic protection to P . The attack PVM can be
used to perform tasks that helps the attacker understand P (e.g.,
dump information, identify function locations, trace instructions,
etc.).

In Section 6, we describe two proof-of-concept implementa-
tions that use the approach just described. The first prototype makes
use of a widely used CIF, Pin, to replace the protective PVM with
an attack PVM and execute the guest application. The second uses
a modified architectural simulator, which performs code introspec-
tion as well as virtualization.

6. Case Study
This section provides a comprehensive case study of the replace-
ment attack methodology. It describes, Strata, the protective virtual
machine, and the creation of the protected application, PV . The
target application was chosen from the integer benchmarks of the
SPEC CPU2000 suite. The benchmarks were selected as examples
of typical applications and they are commonly used to measure run-
time performance. These benchmarks range from a few thousands
lines of code to hundreds of thousands of lines, and perform var-
ious tasks. Thus, these benchmarks present a wide range of code
size and functionality to validate our ideas. For the purposes of
this discussion, we focus on the 256.bzip2 benchmark as the target
guest application, P . 256.bzip2 is a modified version of the bzip
compression program, designed to evaluate CPU performance. All
our tests were carried out on the Intel x86 32-bit platform running
Linux OS. All the components were initially compiled using gcc.

6.1 Dynamic binary translation
Section 2 gave a high-level overview of process-level virtual-
ization. Although process-level virtualization systems are com-
plex in nature, they are all variations of the decode-dispatch ap-
proach [46]. Decode-dispatch systems consists of a main loop that
iterates through three phases for every guest application instruc-
tion: decode, dispatch and execute. The decode phase fetches the
opcode for the instruction. The dispatch phase uses this informa-
tion to invoke appropriate handling routines. The execute phase
then fetches the operands and proceeds to invoke the corresponding

206

init_routines:

����

����

Entry_function(start_address)

Entry_function:

��

��.

��.

Protective_scheme:

��

PROTECTIVE

PVM

CODE

INTROSPECTION

FRAMEWORK

EXECUTION

CONTEXT

APPLICATION
START

ADDRESS

(a) The virtualized application, PV , is run under an introspection
framework.

init_routines:

����

����

Entry_function(start_address)

APPLICATION

Entry_function:

��

��.

��.

Protective_scheme:

��

PROTECTIVE

PVM

CODE

INTROSPECTION

FRAMEWORK

EXECUTION

CONTEXT
FUNCTION

CALL

START

ADDRESS

FUNCTION CALL

INTERCEPTION

(b) The CIF intercepts the call to the entry function of the protective
PVM.

init_routines:

����

����

Entry_function(start_address)

Entry_function:

��

��.

��.

Protective_scheme:

��

CODE

INTROSPECTION

FRAMEWORK

Entry_function_mal:

��

��.

��.

Dynamic_analysis:

��

��

EXECUTION

CONTEXT

ATTACK

PVM

LOAD

APPLICATION

START

ADDRESS

PROTECTIVE

PVM

(c) The CIF proceeds to load an attack PVM.

CODE

INTROSPECTION

FRAMEWORK

Entry_function_mal:

��

��.

��.

Dynamic_analysis:

��

��

EXECUTION

CONTEXT

ATTACK

PVM

VIRTUALIZE

init_routines:

����

����

Entry_function(start_address)

Entry_function:

��

��.

��.

Protective_scheme:

��

��

APPLICATION

START

ADDRESS

PROTECTIVE

PVM

(d) Control is then transferred to the entry function of the attack PVM,
which proceeds to run P without any dynamic protections.

Figure 3. Steps illustrating the attack methodology on virtualized applications.

handling routine implemented on the host. Performance overhead
can become an issue with decode-dispatch systems in their basic
form. One of the requirements of using virtualization as a plat-
form for security is low run-time overhead. This case study focuses
on process-level virtualization based on dynamic binary transla-
tion [45], which involves performing just-in-time, on-demand con-
version of guest application code blocks into executable instruc-
tions for the host machine and caching them for subsequent use.
A number of efficient, low-overhead dynamic binary translation
tools have been created, including DynamoRIO [7], HDTrans [47],
Pin [33], PTLSim [55], and Strata [43].

The protective PVM in our case study is implemented using the
Strata binary translator [42, 43]. Figure 4 illustrates the mechanism
of Strata and the dynamic protection techniques. At program start
up, Strata gains control of execution, saves the current execution
context (i.e., current PC, register values, conditional codes, etc.),
and starts fetching, decoding and translating instructions from the
P ’s start address. This process continues until an end-of-translation
condition is satisfied. The translator restores context and proceeds
to transfer control to the newly translated block. After the block
completes execution, control transfers back to the translator, and it
begins translation at the next address.

The translated code blocks, instead of being disposed of after
execution, are cached in memory (called the code cache) [7]. Strata
initially searches the cache before attempting translation. If the
block is found, control will be directed to the cached block. This
process of caching significantly reduces the cost of translation.
Numerous other techniques have also been proposed for reducing
performance overhead of binary translators [24, 25].

Strata is configured to enhance run-time security. For example,
during translation, it introduces dead code of random size in the
virtualized code blocks. Thus, the layout of the code cache will be
different for each program run. This technique makes it harder to
launch automated attacks, since the actual location of the translated
code varies from run-to-run.

The code cache is also reinforced to hamper analysis [20]. One
such reinforcement technique is periodic cache flushing, in which
the translated code is deleted from the cache at regular intervals.
All the code cache snapshots must be collated to reconstruct the
whole application. Strata can use code metamorphosis [6] so that
the same application blocks are translated into different forms after
each flush. Flushing also ensures that translated code reappears
at different locations during execution. Such dynamism makes it
harder to locate and remove protections.

207

insn1

CONTEXT

SWITCH

QUIT

?

NO

YES

FETCH

DECODE

TRANSLATE

NEXT PC

insn2

jump translator

insn4

insn5

jump translator

insn1

insn2

jump L1

Jump cond L2

insn6

L1:

insn4

insn5

STATIC

PROTECTION

APPLY

DYNAMIC

PROTECTION

L2:
STATIC

PROTECTION

DYNAMIC

PROTECTION

BINARY TRANSLATOR

ORIGINAL

APPLICATION

WITH STATIC

PROTECTIONS

(PV)

PROTECTED

CODE CACHE

Figure 4. Strata Virtual Machine modified to apply dynamic protections.

6.2 Protected software creation
The protected virtualized application was created using a link-time
binary rewriting tool, Diablo [16]. Diablo reads in all the object
files and libraries constituting the application and creates an in-
ternal representation. It provides an API to modify and augment
this representation. The modified representation can then be written
out as an executable file. We modified Diablo to apply several pro-
tection techniques to the application. For example, checksumming
guards1 are placed in code regions for both 256.bzip2 and Strata.
At run time, the guards present in 256.bzip2 safeguard Strata and
vice versa, creating a cyclical level of verification. Diablo was also
adapted to interleave the code of the PVM and the guest applica-
tion, making static analysis harder. Figure 5(a) shows the layout of
the virtualized application’s binary after normal compilation and
linking. A knowledgeable adversary could possibly analyze and
identify the individual code regions and extract useful information.
Therefore, during linking, Diablo shuffles code blocks of 256.bzip2
with Strata’s code blocks using random permutation, resulting in a
layout depicted in Figure 5(b). Dissecting the permuted code us-
ing static mechanisms is equivalent to the problem of separating
code from data, which is unsolvable in the general case [26]. The
application code blocks were encrypted using AES.

6.3 Attack implementations
This section describes two implementations of the attack methodol-
ogy that renders the application, P , vulnerable to analysis and sub-
sequent attack based on information obtained from that analysis.
The first proof-of-concept uses a dynamic instrumentation frame-
work (Pin) to replace Strata with an attack PVM (built using HD-
Trans that we extended to perform AES decryption). The second
implementation uses an architectural simulator, PTLsim [55], as
both the code introspection framework and the attack PVM. While
we use these particular tools to demonstrate the methodology, any
similar tools would suffice.

1 A checksumming guard is a small sequence of instructions that verifies
at run time that the checksum over a range of the application’s instructions
matches the checksum calculated during software creation [10]

6.3.1 Attack using a dynamic binary translator
This prototype uses Intel’s run-time binary instrumentation frame-
work, Pin [33], to replace Strata with another binary translator, HD-
Trans [47]. Pin offers a rich API to dynamically inspect and modify
the instrumented application’s original instructions. The instrumen-
tation functionality is implemented in a module called a Pintool. At
run time, the Pin framework takes as input the Pintool and the target
software, and performs the necessary instrumentation.

Because the protected application is encrypted, we must first
locate the decryption routine in the protective PVM and extend the
attack VM to use the same algorithm. The cryptographic primitives
are located in the PVM which is not as strongly protected as the
application, enabling easier analysis. Techniques have been pro-
posed which can automatically infer these cryptographic primitives
from binary code [8, 21, 31]. These schemes involve profiling the
virtualized application and analyzing the trace to locate the cryp-
tographic primitives. We successfully used Gröbert’s technique to
identify the underlying algorithm (AES) and extracted the key [21].
HDTrans was subsequently modified to use AES decryption on the
application code blocks prior to translation. Section 8.2 describes
techniques that can be used to obtain cryptographic information in
greater detail.

The Pintool, which implements the attack, operates as follows:
It starts by loading and starting execution of the protected applica-
tion. As execution proceeds, the Pintool watches for the entry point
function of the protective PVM. In the case of Strata, the call to
entry point function is preceded by the following code sequence:

pop %eax
sub 0x1c, %esp
pusha
pushf
push %eax ; contains application start address
push <address> ; return address
jmp <address> ; jump to entry point function

When the entry point function is invoked, the Pintool extracts the
application’s start address from its argument list. It then dynami-
cally loads the extended HDTrans, proceeds to initialize HDTrans,

208

Memory Addresses

Guest
PVM

(a) Layout of the code regions of the virtualized application, as produced by
standard compilation process. The PVM and P ’s code regions are clearly
distinct.

Memory Addresses

0 200 400 600 800 1000 1200 1400

Guest
PVM

(b) Layout of the code regions after the instruction blocks have been shuf-
fled.

Figure 5. Layout of the text section of the virtualized 256.bzip2
application. The code blocks from the VM and the application have
been randomly interleaved, making static separation harder.

and transfers the application start address to HDTrans. Thus, HD-
Trans takes control of the protected application and Strata never
executes. The application can now be analyzed in any number of
ways. We modified HDTrans to dump all the executed instructions
to disk.

The attack essentially disables checksumming guards from ver-
ifying code integrity. Guards located in Strata are never invoked,
whereas guards present in P continue to verify the integrity of
P and Strata which remain unchanged. At this point, P ’s code is
available for analysis.

6.3.2 Attack using an architectural simulator
The second prototype for the attack uses the PTLSim architectural
simulator [55]. In this implementation, PTLSim acts as the instru-
mentation framework as well as the attack PVM. PTLsim models a
modern superscalar Intel x86 compatible processor core along with
the complete cache hierarchy, memory subsystem and supporting
hardware devices. It models all the major components of a modern
out-of-order processor, including the various pipeline stages, func-
tional units and register set. PTLsim supports the full x86-64 in-
struction set along with all the extensions (SSE, SSSE, etc.). More
details of the simulator can be found in the user’s manual.

The Intel x86 ISA is a two-operand CISC ISA, however PTL-
Sim does not simulate these instructions directly. Instead, each
x86 instruction is first translated into a series of RISC-like micro-
operations (uops). To further improve efficiency, PTLSim main-

tains a local cache containing the program ordered translated uop
sequence for the previously decoded basic blocks in the program.

The attack proceeds as follows: The cryptographic primitives
are obtained as in Section 6.3.1, and PTLSim is extended to de-
crypt instructions after fetching them from memory. At load time,
PTLSim initializes its internal data structures and reads in PV ’s
binary file. The fetch stage of PTLSim accesses instructions from
the memory address pointed to by its program counter, called the
Virtual Program Counter (VPC). We modified the fetch stage to
check for the instruction sequence (illustrated previously in Sec-
tion 6.3.1) denoting Strata’s entry function. Once the fetch stage
recognizes the entry function, the simulator retrieves its arguments,
which contain the start address of the application code. The simu-
lator then discards its current instruction, waits for the pipeline to
empty, and then proceeds to fetch instructions from the retrieved
application start address. The simulator decrypts the instruction us-
ing the extracted key before decoding it into its constituent uops.
In this way, Strata never executes and PTLSim is able to fetch and
simulate P ’s instructions directly.

As with the previous prototype, checksumming guards fail to
provide adequate protection. The guards only check the original
code, which is never executed. We can analyze P in PTLSim’s local
cache and modify it, if desired.

7. Implications of the Attack
This section discusses how the VM-replacement methodology fa-
cilitates analysis and reverse engineering of PVM-protected ap-
plications. The first step of any attack involves obtaining a basic
understanding of the application. Useful information in program
understanding and analysis is the control flow graph (CFG). The
CFG obtained from the on-disk binary contains the superset of all
possible paths through the program. Obtaining the CFG from the
binary in the presence of static protections can be computation-
ally very expensive [49]. As such, attackers have increasingly fo-
cused on run-time techniques to obtain the CFG. Although CFGs
obtained dynamically can be incomplete, they still provide the at-
tacker with useful information about the application. PVMs pro-
vide protection by making dynamic CFG construction and analysis
highly resource- and time-intensive tasks. Therefore, to success-
fully reverse engineer the application, the protective PVM must be
replaced using the methodology discussed in this work.

To demonstrate this point, we studied dynamic reverse engineer-
ing schemes that have been shown to be successful in attacking
software [34, 50], and compared their effectiveness in the presence
of a protective PVM. Typically, these techniques involve instru-
menting the protected application to obtain the instruction trace.
The trace is analyzed to identify individual basic blocks. Conse-
quently, control flow analysis is performed to obtain the dynamic
CFG of the application. The attacker then performs profiling of var-
ious structures, such as basic blocks and procedure calls, to isolate
relevant portions of the code. For example, Madou et al. used basic
block execution frequency and in-degree of functions to identify
a watermarking function [34]. Similarly, Udupa et al. used edge
profiling to identify and remove unnecessary edges from the static
CFG [50].

To show that the protective PVM must be replaced, we explored
the applicability of such profiling techniques on three different run-
time scenarios:

• The application executing without any protections (No protec-
tion).

• The application executing in the presence of a protective PVM
(Protected).

209

-10

0

10

20

30

40

50

60

1.
00

E-
01

1.
00

E+
00

1.
00

E+
01

1.
00

E+
02

1.
00

E+
03

1.
00

E+
04

1.
00

E+
05

1.
00

E+
06

1.
00

E+
07

1.
00

E+
08

No protection

Attack

Protected

Pe
rc

en
ta

ge
 B

as
ic

 B
lo

ck
s

Execution
Frequency

Figure 6. Execution frequencies for the application blocks under the 3 run-time scenarios (No protection, Protected, and Attack). The
periodic flushing and retranslation of the application’s code blocks by the protective VM drastically changes the execution frequency
characteristics. Under the control of the VM, blocks no longer execute at very high frequencies (107), instead substantially more blocks
execute at intermediate rates (103 and 105), forcing the attacker to expand their search space. Replacing the protective VM restores the
original execution characteristics.

• The protected application that has been subjected to a PVM-
replacement attack, i.e., the application is running under the
control of a compromised PVM (Attack).

To facilitate collection of application code blocks that have been
virtualized, the application was run under an instrumentation
framework in all three scenarios. In the following discussion, we re-
fer to such blocks as dynamic blocks. The dynamic blocks are iden-
tified based on their starting virtual address. The protective PVM
was also modified to generate the mapping between on-disk ap-
plication code blocks and translated blocks. This modification was
performed only for the purposes of this study and would not typ-
ically be available to the attacker. The goal of this study was to
demonstrate that the replacement methodology exposes the origi-
nal run-time characteristics of the application that have been obfus-
cated by the PVM, facilitating program analysis and understanding.

We began by comparing instruction trace generation and block
analysis across the three scenarios. On comparison, we observed
that packaging a protective PVM with the application makes anal-
ysis of the dynamic trace and CFG generation much harder. First,
the periodic flushing and retranslation of application code increased
the number of individual basic blocks manifold. In the case study
involving 256.bzip2, the number of dynamic code blocks increased
from around 3.7K for the unprotected run, to more than 160K when
the application was subjected to PVM protection. Similarly, the
number of distinct CFG edges rose from 6.4K to 290K. Although
a large number of these dynamic blocks originate from the same
application blocks, the PVM can employ techniques such as code
polymorphism, instruction rescheduling and dead-code insertion to
make code blocks appear diverse [6]. Thus, the attacker would have
to perform control and data flow analysis on a much larger instruc-
tion trace. Employing the replacement attack enables the attacker
to obtain the original instructions from the application and reduces
the search space significantly.

The periodic flushing and randomization of the VM’s code
cache alter a number of dynamic characteristics of the application,
such as block execution frequency, and in and out degrees of the
CFG nodes. Figure 6 shows the execution frequency of the dynamic
blocks in the three scenarios. When the application was run with no
protections, we observed that there were a few code blocks which
execute very frequently (of the order 107). An attacker would
initially focus on reverse engineering these blocks, as they are on
the hot paths of the application. Madou et al. used this heuristic
to locate the watermarking function [34]. Running the application
under the control of a protective PVM obfuscates such blocks due
to periodically flushing and retranslation to different locations. The
execution frequency for the protected application show that there
are no longer blocks which execute as frequently (i.e., no blocks
with an execution frequency over 107). Instead, there are now
more code blocks executing at a lower frequency (e.g., between
102 and 105). For example, 15% of the blocks execute at least
104 times when running under the control of a protective PVM,
as compared to just 4% in the unprotected run. Thus, there are no
obvious candidate blocks where the attacker could initiate analysis.
The attacker will have to increase the search space to find the hot
paths for the application.

The PVM also provides misleading information to the attacker.
In the three scenarios mentioned above, we ranked all the code
blocks based on their execution frequency. Rank 1 was assigned
to the most frequently executing block. Table 2 shows the top-ten
most frequently executing blocks when the application is run with-
out any protections. Traditionally, an attacker would focus on an-
alyzing these blocks first. Column 2 displays the ranking of these
blocks when the application is run under the control of the PVM.
For example, the most frequently executing application block in
the unprotected run, appears at the 121st position when the appli-
cation is run under the protective PVM. Thus, the PVM is able
to reorder the blocks based on execution frequency. We observed

210

Application Rank Rank Rank

Address (No Protec-
tion) (Protected) (Attack)

0x8048830 1 121 1
0x804ac3c 2 45 2
0x804ae1b 3 13 3
0x80507d4 4 9 4
0x80507d9 5 173 5
0x80507c0 6 18 6
0x80507fa 7 29 7
0x805082c 8 351 8
0x8050810 9 139 9
0x804a750 10 779 10

Table 2. Original application addresses of the top-10 most fre-
quently executing blocks in the unprotected run, with their corre-
sponding rank when run under the protection of a PVM. The stan-
dard deviation for these blocks in the protected run comes to 239,
indicating a very high degree of variability. Consequently, more ef-
fort will be required to locate the blocks. A successful replacement
attack restores the rankings.

Application Rank Rank Rank

Address (No Protec-
tion) (Protected) (Attack)

0x804bec0 162 1 162
0x804ae21 17 2 17
0x804ac74 36 3 36
0x804bed3 21 4 21
0x804a7a0 42 5 42
0x804abaf 164 6 164
0x804a81a 88 7 88
0x804a99b 126 8 126
0x80507d4 4 9 4
0x804a7ca 63 10 63

Table 3. Original application addresses of the top 10 most fre-
quently executing blocks when the application is run under the pro-
tection of the PVM, along with their corresponding rank when the
application runs unprotected, and when it is subjected to the re-
placement attack.

similar reordering when rankings were based on the in degree of
the code blocks. As indicated by column 4 in Table 2, replacing
the protective PVM restores the original dynamic properties of the
application. Table 3 shows the list of the ten most frequently exe-
cuted blocks when the application is run under the protection of the
PVM, along with their corresponding ranks in the unprotected run.
Therefore, this study shows that frequency analysis is not useful to
the attacker in the presence of virtualization. The critical informa-
tion (in this case, the ranking based on frequency) is dispersed by
the protective PVM, making it difficult for the adversary to locate
and exploit it.

Finally, the constant shifting of code for the application makes it
difficult to detect the execution location. We ran the PVM-protected
application ten times and observed that application blocks were
translated to different code cache addresses each time. Therefore,
even if the adversary is able to identify critical code (i.e., the ad-
dress of a relevant function) in the on-disk binary, that information
is of no use at run time since there is no a priori knowledge about
the final location of the translated code. For example, in Madou et
al.’s case study, once the watermarking function was determined;

the application was run under the control of a debugger and the
control flow changed to circumvent the function using breakpoints.
This technique will not work in the presence of a protective PVM,
as code is repositioned continually. Thus, to effectively analyze the
application under a debugger, the PVM has to be replaced.

Therefore, PVMs have the potential to provide strong protec-
tion against dynamic analysis on software applications. PVMs can
greatly increase the search space for the attacker, provide mis-
leading run-time information and continuously relocate critical
code, making dynamic analysis exceedingly difficult to accom-
plish. There has been research which aims to reverse engineer
PVM-protected applications, by identifying code belonging to the
VM in the execution trace [15, 44]. However, such methodologies
usually involve performing complex analysis on the trace infor-
mation and are targeted towards applications which are typically
small in size (i.e., a few hundred instructions e.g., malware). These
methodologies fail to provide satisfying results when applied to
VM-protected applications as they are unable to process the com-
plex data and control flow typically associated with large applica-
tions. Thus, the replacement attack methodology is pivotal to the
success of reverse engineering PVM-protected applications. Once
the protective PVM has been replaced, the application can be ana-
lyzed and its true characteristics studied without any obstruction.

8. Discussion
Section 6 described two implementations of an attack that seeks
to remove the protective PVM from a virtualized application, PV .
Both implementations were crafted using freely-available tools,
and resulted in the guest application, P , running with the added
protections disabled. Checksumming guards inserted into PV failed
to prevent the replacement. To successfully orchestrate the attack,
some prior information about PV is required. In this section, we
discuss some heuristics the attacker can use to determine this infor-
mation.

8.1 Determining PVM entry function
To launch a successful attack, the location of the entry function to
the protective PVM must be determined. The attack PVM inter-
cepts any calls to this function, as one of the arguments consists
of the start address to P . To obtain this location, the attacker can
inspect PV for distinctive instruction sequences that indicate the
location of the entry function.

For example, as we described in Section 6.1, prior to initializa-
tion, the PVM saves the current application’s context. Upon initial-
ization, the PVM restores the application’s context. On 32-bit Intel
x86 platforms, the instructions pusha and pushf are commonly
used by dynamic translators to save state. Section 6.3.1 displayed
the instruction sequence used by Strata to save state, which contains
these two instructions. Dynamo-RIO and HDTrans also use these
instructions to store register and flag values prior to initiating trans-
lation2. Investigation into the C benchmarks of the SPEC CPU2000
suite, compiled using standard flags, revealed that none of the appli-
cation binaries contained these instructions. Consequently, an ad-
versary can use the presence of these instructions to help identify
potential entry points into the PVM. Because of the unique actions
of the PVM, simple examination of these potential entry points can
determine the actual entry point.

The attacker can also use information flow analysis to determine
the entry point of a PVM. Most compilers place code and data
in separate sections in the binary file. Data-read accesses into the
code section are likely to be from the PVM. Thus, using taint
analysis on this data and backtracing where the data location was

2 We were not able to verify the use of these instructions in Pin as its source
code is not publicly available.

211

determined will enable the attacker to determine the entry function
of the PVM. Since the PVM initialization typically occurs very
early, the attacker will only have to analyze a smaller amount of
code to determine the entry function. This code is not subjected to
any dynamism, making analysis easier.

8.2 Determining the ISA of the guest application
Another requirement to use a replacement attack is the identifica-
tion of the ISA of the guest application, P . Traditionally, P ’s code
has been protected by obscurity [1, 51] or encryption [20]. The at-
tacker has to analyze the on-disk binary to obtain information re-
quired for determining the ISA, which is then used to configure
the attack PVM. This section discusses some heuristics that the at-
tacker can utilize to obtain the relevant information.

Rolles et al. have done extensive work in investigating ISAs
used by obfuscation tools such as VMProtect and Themida [41].
The semantics of the ISA are not released to the public, providing
security through obscurity. At the time protections are applied,
P ’s instructions are converted to a custom ISA chosen from a
set of template ISAs, which is then interpreted at run time by a
PVM designed specifically for that ISA. These ISAs are RISC-like,
lacking many of the complex features of traditional ISAs like Intel
x86. Since these tools derive the final ISA from a template, the
instruction sequences of two different protected binaries will have
many similarities. This fact makes the analysis of the syntax and
semantics more tractable. Further, parts of the x86 instruction set
such as the SIMD instructions are not virtualized by VMProtect.

The guest ISA can also be protected via encryption. Manu-
ally analyzing and reverse-engineering cryptographic keys and rou-
tines can be an arduous task. Recently, researchers have designed
techniques that facilitate automatic identification and extraction
of cryptographic routines. Gröbert et al. have presented a novel
approach to identify cryptographic routines and keys in an en-
crypted program [21]. Their techniques involves profiling the ap-
plication and applying heuristics to detect the cryptographic op-
erations. Some of the heuristics proposed by the authors include
excessive use of arithmetic functions, loops and investigating the
data flow between intermediate variables across multiple runs. This
technique is able to identify common encryption algorithms, such
as AES and DES, and extracts the key as well.

Even if the application is protected by a proprietary encryp-
tion algorithm, researchers have devised techniques to isolate and
extract this information from the binary. Caballero et al. have de-
signed a technique to automatically identify code fragments from
executable files, so that they are self-contained and can be reused by
external code (called binary code reutilization) [8]. They success-
fully applied this technique to identify and extract cryptographic
routines from a set of malware files. Similary, Leder et al. exam-
ined data in-flow and out-flow in memory buffers, to isolate cryp-
tographic functions [31]. Therefore, such identification techniques
can be applied to the protective PVM to obtain the decryption rou-
tines, and consequently, used to configure the attack PVM.

Decryption key management is also an issue for the protective
PVM. The attacker can use dynamic analysis techniques to extract
the decryption key. Halderman et al. point out that modern DRAMS
retain their contents for a significant amount of time and an attacker
could locate and exploit these keys to analyze encrypted data [22].
Skype is a popular VoIP tool which uses encryption as a tool to
hamper static analysis. Biondi et al. were able to decipher Skype’s
code by obtaining its decryption key from memory [5]. Techniques,
such as white-box cryptography, were proposed to improve key
management in encrypted systems [12]. However, researchers have
since developed solutions to extract the key from such systems [4].
Once the key is available, deciphering the encrypted ISA is straight-
forward regardless of the the strength of the encryption algorithm.

Therefore, obscuring the ISA fails to adequately protect the
guest application from analysis. Previous work has shown that the
attacker can analyze such ISAs using reasonable time and effort [5,
41]. Once the the ISA is known, the attacker can successfully
replace the protective PVM.

9. Related Work
Software systems are increasingly being used to control critical sys-
tems. As such, much research has been performed in the area of
software security. A number of techniques have been devised to
hamper static analysis of applications. Linn et al. described novel
techniques to defeat disassembly of code [32]. Wang et al. proposed
using indirect branches to obfuscate the control flow of the appli-
cation [53]. Chang et al. explored the idea of using a network of
self-verifying checksumming code, called guards, to maintain the
integrity of code [10]. Collberg et al. studied various techniques to
obscure code [13, 14]. However, most of these techniques can be
overcome using dynamic analysis. Researchers have also investi-
gated using run-time techniques to obscure code, including using
self-modifying code to obfuscate instructions [28]. Code encryp-
tion is also useful technique to hamper analysis. The code can be
decrypted by hardware (i.e., a secure co-processor) [56], which can
add substantially to the costs. Software decryption is less expensive
solution [9], but is vulnerable to dynamic analysis.

Software virtualization is an active area of research with im-
plications in software security, both at the system level and at the
process level. Process-level virtual machines, such as Pin [33],
Strata [43] and HDTrans [47], have been used code optimiza-
tion [7], instrumentation [33], and in particular, security [20, 23,
40].

Researchers have used process-level virtualization to improve
the resistance of code to analysis, both to improve the security
of programs [1, 20] and more recently, to obfuscate malicious
software, like viruses, trojans, etc. (called malware). Commer-
cial PVMs have been created recently, such as VMProtect [51],
Themida [36], with a special focus on program security. and Code
Virtualizer [37]. These tools follow the conventional interpretation
model [46] and use obscure ISAs to protect applications from anal-
ysis.

There has been recent work aimed at deobfuscating malware
protected by virtual machines. Coogan et al. have developed a
scheme which focuses on identifying the flow of values to sys-
tem call instructions used by the malware, thereby obviating the
need to analyze VM instructions [15]. However, their scheme does
not produce encouraging results when applied to complex appli-
cations. Sharif et al. have also devised techniques to automatically
reverse engineer malware that is obfuscated by such PVMs [44].
Although their goals are somewhat similar to this work, there are
marked differences. The authors target their work towards software
(typically malware) that is transformed to random ISA’s and then
interpreted on-the-fly at run time. In their model, the PVM does not
generate native code but dispatches application instructions to ap-
propriate handler routines (e.g., using a switch table). In particular,
their work is targeting applications which do not have a perfor-
mance constraint, which is often true of malware. The authors state
that their techniques do not apply to programs protected by binary
translation systems due to the complex run-time behavior of such
systems. Their work is based on the assumption that the interpreters
do not perform any dynamic transformations or generate new code,
making control and data flow analysis easier to perform on the
generated trace. Finally, their approach is focused towards reverse
engineering malware code, which is typically smaller in size (of
the order of a few thousands lines of code). Our attack focuses on
real applications that are protected by PVMs. The proof-of-concept

212

prototypes have been tested on real-life applications, consisting of
hundreds of thousands of lines of code.

System-level virtual machines have been utilized to provide
secure solutions as well. The Terra system implements a trusted
virtual machine monitor which can be used to create closed-box
platforms where the developer can tailor the software stack to meet
security requirements [19]. However, it requires hardware support
to validate the software stack. Chen et al. discuss Overshadow, a
system that cryptographically isolates an application inside a VMM
from the guest OS it is running on. This system offers another layer
of tamper resistance, even in the case of total OS compromise [11].

10. Conclusions
Process-level virtual machines (PVMs) are increasingly being used
to safeguard applications from reverse engineering. PVMs can con-
tinuously transform code during execution, as well as introduce
new protection techniques. This scenario makes it hard for the ad-
versary to analyze and understand the application. Traditionally, the
virtualization layer has always been decoupled from the guest ap-
plication. In this paper, we have presented a novel attack scheme
that replaces the protective PVM packaged with an application at
run time, leaving it vulnerable to analysis. This attack methodology
is successful due to the lack of strong dynamic coupling between
the application and the protective PVM instance. Our methodol-
ogy illustrates that this lack of dynamic cohesion leads to serious
shortcomings when used in software protection. We described an
extensive case study analyzing the protection mechanisms in a real
VM-protected application and discussed two prototypes of this at-
tack constructed using freely available tools. The results from this
work show that there is an urgent need to reassess the protection
properties of PVMs, and to develop techniques that can thwart this
attack methodology.

Acknowledgments
This research is supported by National Science Foundation grants
CNS-00716446 and CCF-0811689 and the Air Force Research
Laboratory (AFRL) under contract FA8650-10-C-7025. The views
and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the AFRL
or the U.S. Government.

References
[1] ANCKAERT, B., JAKUBOWSKI, M., AND VENKATESAN, R. Proteus:

virtualization for diversified tamper-resistance. In DRM ’06: Proceed-
ings of the ACM Workshop on Digital Rights Management (New York,
NY, USA, 2006), ACM Press, pp. 47–58.

[2] APPLE. Mac OS X ABI Mach-o file format reference, 2009.
[3] BELLARD, F. QEMU, a fast and portable dynamic translator. In

ATEC’05: Proceedings of the USENIX Annual Technical Conference
(Berkeley, CA, USA, 2005), USENIX Association, pp. 41–41.

[4] BILLET, O., GILBERT, H., AND ECH-CHATBI, C. Cryptanalysis of
a white box AES implementation. In Selected Areas in Cryptography
(Hiedelberg, 2004), Springer-Verlag, pp. 227–240.

[5] BIONDI, P., AND FABRICE, D. Silver needle in the skype. In Black
Hat Europe (Amsterdam, the Netherlands, 2006).

[6] BORELLO, J.-M., AND MÈ, L. Code obfuscation techniques for
metamorphic viruses. Journal in Computer Virology 4 (2008), 211–
220. 10.1007/s11416-008-0084-2.

[7] BRUENING, D., GARNETT, T., AND AMARASINGHE, S. An infras-
tructure for adaptive dynamic optimization. In CGO ’03: Proceedings
of the IEEE/ACM International Symposium on Code Generation and
Optimization (Los Alamitos, CA, USA, 2003), IEEE Computer Soci-
ety, pp. 265–275.

[8] CABALLERO, J., JOHNSON, N. M., MCCAMANT, S., AND SONG,
D. Binary code extraction and interface identification for security ap-
plications. In NDSS ’10: Proceedings of the Network and Distributed
System Security Symposium (2010), The Internet Society.

[9] CAPPAERT, J., PRENEEL, B., ANCKAERT, B., MADOU, M., AND
DE BOSSCHERE, K. Towards tamper resistant code encryption: prac-
tice and experience. In ISPEC’08: Proceedings of the 4th Interna-
tional Conference on Information Security Practice and Experience
(Berlin, Heidelberg, 2008), Springer-Verlag, pp. 86–100.

[10] CHANG, H., AND ATALLAH, M. Protecting software code by guards.
In Proceedings of the ACM Workshop on Security and Privacy in
Digital Rights Management (2000), pp. 160–175.

[11] CHEN, X., GARFINKEL, T., LEWIS, E. C., SUBRAHMANYAM, P.,
WALDSPURGER, C. A., BONEH, D., DWOSKIN, J., AND PORTS,
D. R. Overshadow: a virtualization-based approach to retrofitting pro-
tection in commodity operating systems. In ASPLOS XIII: Proceed-
ings of the 13th International Conference on Architectural Support
for Programming Languages and Operating Systems (New York, NY,
USA, 2008), ACM Press, pp. 2–13.

[12] CHOW, S., EISEN, P. A., JOHNSON, H., AND OORSCHOT, P. C. V.
White-box cryptography and an AES implementation. In SAC ’02:
Revised Papers from the 9th Annual International Workshop on Se-
lected Areas in Cryptography (London, UK, 2003), Springer-Verlag,
pp. 250–270.

[13] COLLBERG, C., THOMBORSON, C., AND LOW, D. A taxonomy of
obfuscating transformations. University of Auckland Technical Report
(1997), 170.

[14] COLLBERG, C., THOMBORSON, C., AND LOW, D. Manu-
facturing cheap, resilient and stealthy opaque constructs. In
POPL’98:Proceedings of the 25th ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (New York, NY, USA,
1998), ACM Press, pp. 184–196.

[15] COOGAN, K., LU, G., AND DEBRAY, S. Deobfuscating
virtualization-obfuscated software: A semantics-based approach. CCS
’11: Proceedings of the ACM Conference on Computer and Commu-
nications Security (October 2011). To appear.

[16] DE BUS, B., DE SUTTER, B., VAN PUT, L., CHANET, D., AND
DE BOSSCHERE, K. Link-time optimization of ARM binaries. In
LCTES’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED Con-
ference on Languages, Compilers, and Tools for Embedded Systems
(Washington D.C., U.S.A, 7 2004), ACM Press, pp. 211–220.

[17] DEHNERT, J. C., GRANT, B. K., BANNING, J. P., JOHNSON, R.,
KISTLER, T., KLAIBER, A., AND MATTSON, J. The Transmeta
code morphing software: using speculation, recovery, and adaptive
retranslation to address real-life challenges. In CGO’03: Proceedings
of the International Symposium on Code Generation and Optimization
(Washington, DC, USA, 2003), IEEE Computer Society, pp. 15–24.

[18] EAGLE, C. The IDA Pro Book: The Unofficial Guide to the World’s
Most Popular Disassembler. No Starch Press, San Francisco, CA,
USA, 2008.

[19] GARFINKEL, T., PFAFF, B., CHOW, J., ROSENBLUM, M., AND
BONEH, D. Terra: a virtual machine-based platform for trusted com-
puting. In SOSP’03: Proceedings of the 19th ACM Symposium on Op-
erating Systems Principles (New York, NY, USA, 2003), ACM Press,
pp. 193–206.

[20] GHOSH, S., HISER, J. D., AND DAVIDSON, J. W. A secure and
robust approach to software tamper resistance. In IH ’10: Proceedings
of the 12th International Conference on Information Hiding (Berlin,
Heidelberg, 2010), Springer-Verlag, pp. 33–47.

[21] GRÖBERT, F., WILLEMS, C., AND HOLZ, T. Automatic identifica-
tion of cryptographic primitives in binary programs. In RAID ’11:
Proceedings of the 14th International Symposium on Recent Advances
in Intrusion Detection (London, UK, 2011), Springer-Verlag, pp. 45–
65.

[22] HALDERMAN, J. A., SCHOEN, S. D., HENINGER, N., CLARKSON,
W., PAUL, W., CALANDRINO, J. A., FELDMAN, A. J., APPEL-
BAUM, J., AND FELTEN, E. W. Lest we remember: cold-boot attacks
on encryption keys, May 2009.

213

[23] HISER, J. D., COLEMAN, C. L., CO, M., AND DAVIDSON, J. W.
Meds: The memory error detection system. In ESSoS ’09: Proceedings
of the 1st International Symposium on Engineering Secure Software
and Systems (Berlin, Heidelberg, 2009), Springer-Verlag, pp. 164–
179.

[24] HISER, J. D., WILLIAMS, D., FILIPI, A., DAVIDSON, J. W., AND
CHILDERS, B. R. Evaluating fragment construction policies for SDT
systems. In VEE ’06: Proceedings of the 2nd International Conference
on Virtual Execution Environments (New York, NY, USA, 2006),
ACM Press, pp. 122–132.

[25] HISER, J. D., WILLIAMS, D., HU, W., DAVIDSON, J. W., MARS,
J., AND CHILDERS, B. R. Evaluating indirect branch handling mech-
anisms in software dynamic translation systems. In CGO’07: Pro-
ceedings of the International Symposium on Code Generation and
Optimization (Washington, DC, USA, 2007), IEEE Computer Society,
pp. 61–73.

[26] HORSPOOL, R. N., AND MAROVAC, N. An approach to the problem
of detranslation of computer programs. Computer Journal 23, 3
(1980), 223–229.

[27] HU, W., HISER, J. D., WILLIAMS, D., FILIPI, A., DAVIDSON,
J. W., EVANS, D., KNIGHT, J. C., NGUYEN-TUONG, A., AND
ROWANHILL, J. Secure and practical defense against code-injection
attacks using software dynamic translation. In Proceedings of the 2nd
International Conference on Virtual Execution Environments (New
York, NY, USA, 2006), ACM Press, pp. 2–12.

[28] KANZAKI, Y., MONDEN, A., NAKAMURA, M., AND MATSUMOTO,
K.-I. Exploiting self-modification mechanism for program protection.
In COMPSAC’03: Proceedings of the 27th Annual International Con-
ference on Computer Software and Applications (Washington, DC,
USA, 2003), IEEE Computer Society, pp. 170–176.

[29] KC, G. S., KEROMYTIS, A. D., AND PREVELAKIS, V. Countering
code-injection attacks with instruction-set randomization. In CCS
’03: Proceedings of the 10th ACM Conference on Computer and
Communications Security (New York, NY, USA, 2003), ACM Press,
pp. 272–280.

[30] KIRIANSKY, V., BRUENING, D., AND AMARASINGHE, S. P. Secure
execution via program shepherding. In USENIX’02: Proceedings of
the 11th USENIX Security Symposium (Berkeley, CA, USA, 2002),
USENIX Association, pp. 191–206.

[31] LEDER, F., MARTINI, P., AND WICHMANN, A. Finding and extract-
ing crypto routines from malware. In Proceedings of the IEEE 28th In-
ternational Performance Computing and Communications Conference
(IPCCC) (Washington, DC,USA, December 2009), IEEE, pp. 394 –
401.

[32] LINN, C., AND DEBRAY, S. Obfuscation of executable code to
improve resistance to static disassembly. In CCS’03: Proceedings of
the 10th ACM Conference on Computer and Communications Security
(CCS) (Washington D.C., U.S.A, 2003), ACM Press, pp. 290–299.

[33] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER, A.,
LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZELWOOD, K.
Pin: building customized program analysis tools with dynamic instru-
mentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(New York, NY, USA, 2005), ACM Press, pp. 190–200.

[34] MADOU, M., ANCKAERT, B., DE SUTTER, B., AND DE BOSS-
CHERE, K. Hybrid static-dynamic attacks against software protection
mechanisms. In DRM ’05: Proceedings of the 5th ACM workshop on
Digital Rights Management (New York, NY, USA, 2005), ACM Press,
pp. 75–82.

[35] MADOU, M., ANCKAERT, B., MOSELEY, P., DEBRAY, S., DE SUT-
TER, B., AND DE BOSSCHERE, K. Software protection through dy-
namic code mutation. In The 6th International Workshop on Informa-
tion Security Applications (WISA 2005) (August 2005), vol. LNCS,
Springer Verlag.

[36] OREANS TECHNOLOGIES. Themida. http://oreans.com/
themida.php, 2009.

[37] OREONS TECHNOLOGY. Codevirtualizer. http://oreans.com/
codevirtualizer.php, 2009.

[38] PAYER, M., AND GROSS, T. R. Fine-grained user-space security
through virtualization. In VEE’11: Proceedings of the 7th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (New York, NY, USA, 2011), ACM Press, pp. 157–168.

[39] POPEK, G. J., AND GOLDBERG, R. P. Formal requirements for
virtualizable third generation architectures. Communications of the
ACM 17 (July 1974), 412–421.

[40] PORTOKALIDIS, G., AND KEROMYTIS, A. D. Fast and practical
instruction-set randomization for commodity systems. In ACSAC’10:
Proceedings of the 26th Annual Computer Security Applications Con-
ference (New York, NY, USA, 2010), ACM Press, pp. 41–48.

[41] ROLLES, R. Unpacking virtualization obfuscators. In WOOT’09:
Proceedings of the 3rd USENIX Conference on Offensive Technologies
(Berkeley, CA, USA, 2009), USENIX Association, pp. 1–10.

[42] SCOTT, K., AND DAVIDSON, J. Safe virtual execution using software
dynamic translation. In ACSAC ’02: Proceedings of the 18th Annual
Computer Security Applications Conference (Los Alamitos, CA, USA,
2002), IEEE Computer Society, p. 209.

[43] SCOTT, K., KUMAR, N., VELUSAMY, S., CHILDERS, B., DAVID-
SON, J. W., AND SOFFA, M. L. Retargetable and reconfigurable soft-
ware dynamic translation. In CGO ’03: Proceedings of the Interna-
tional Symposium on Code Generation and Optimization (Washington
D.C., U.S.A, 2003), IEEE Computer Society, pp. 36–47.

[44] SHARIF, M., LANZI, A., GIFFIN, J., AND LEE, W. Automatic reverse
engineering of malware emulators. In SP’07: Proceedings of the 2009
30th IEEE Symposium on Security and Privacy (Washington, DC,
USA, 2009), IEEE Computer Society, pp. 94–109.

[45] SITES, R. L., CHERNOFF, A., KIRK, M. B., MARKS, M. P., AND
ROBINSON, S. G. Binary translation. Communcations of the ACM 36
(February 1993), 69–81.

[46] SMITH, J., AND NAIR, R. Virtual Machines: Versatile Platforms for
Systems and Processes (The Morgan Kaufmann Series in Computer
Architecture and Design). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 2005.

[47] SRIDHAR, S., SHAPIRO, J. S., NORTHUP, E., AND BUNGALE, P. P.
HDTrans: an open source, low-level dynamic instrumentation sys-
tem. In VEE’06: Proceedings of the 2nd International Conference on
Virtual Execution Environments (New York, NY, USA, 2006), ACM,
pp. 175–185.

[48] STARFORCE. Starforce crypto. http://www.star-force.com/,
2008.

[49] SZOR, P. The Art of Computer Virus Research and Defense. Addison-
Wesley Professional, 2005.

[50] UDUPA, S., DEBRAY, S., AND MADOU, M. Deobfuscation: reverse
engineering obfuscated code. In WCRE ’05: Proceedings of the Inter-
national Working Conference on Reverse Engineering (Los Alamitos,
CA, USA, Nov. 2005), vol. 0, IEEE Computer Society, pp. 45–54.

[51] VMPROTECT SOFTWARE. VMProtect. http://vmpsoft.com/,
2008.

[52] WANG, C., DAVIDSON, J., HILL, J., AND KNIGHT, J. Protection of
software-based survivability mechanisms. In DSN’01: Proceedings of
the International Conference on Dependable Systems and Networks
(Goteborg, Sweden, 2001), IEEE Computer Society, pp. 193–202.

[53] WANG, C., HILL, J., KNIGHT, J., AND DAVIDSON, J. Software
tamper resistance: Obstructing static analysis of programs. Tech. rep.,
Charlottesville, VA, USA, 2000.

[54] YOUNGDALE, E. Kernel korner: The ELF object file format: Intro-
duction. Linux Journal 1995 (April 1995).

[55] YOURST, M. PTLsim: A cycle accurate full system x86-64 microar-
chitectural simulator. In ISPASS’07: Proceedings of the IEEE Interna-
tional Symposium on Performance Analysis of Systems and Software
(2007), IEEE, pp. 23–34.

[56] ZAMBRENO, J., CHOUDHARY, A., SIMHA, R., NARAHARI, B., AND
MEMON, N. SAFE-OPS: An approach to embedded software security.
Transactions on Embedded Computing Systems 4, 1 (2005), 189–210.

214

