

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.

Virtualization Challenges: A View from Server Consolidation
Perspective

Hui Lv, Yaozu Dong, Jiangang Duan, Kevin Tian
Intel Asia-Pacific Research & Development Ltd.

{hui.lv eddie.dong jianggang.duan kevin.tian}@intel.com

Abstract
Server consolidation, by running multiple virtual machines on top
of a single platform with virtualization, provides an efficient solu-
tion to parallelism and utilization of modern multi-core processors
system. However, the performance and scalability of server con-
solidation solution on modern massive advanced server is not well
addressed.

In this paper, we conduct a comprehensive study of Xen per-
formance and scalability characterization running
SPECvirt_sc2010, and identify that large memory and cache foot-
print, due to the unnecessary high frequent context switch, intro-
duce additional challenges to the system performance and
scalability. We propose two optimizations (dynamically-allocable
tasklets and context-switch rate controller) to improve the perfor-
mance. The results show the improved memory and cache effi-
ciency with a reduction of the overall CPI, resulting in an
improvement of server consolidation capability by 15% in
SPECvirt_sc2010. In the meantime, our optimization achieves an
up to 50% acceleration of service response, which greatly im-
proves the QoS of Xen virtualization solution.

Categories and Subject Descriptors

D.4.8 [Operating Systems]: Performance—Measurement
D.2.8 [Software Engineering]: Metric—Performance measures

General Terms

Measurement, Performance, Design

Keywords

Virtualization; server consolidation; SPECvirt_sc2010, scheduler,
performance optimization

1. Introduction
As the computing industry enters the multi-core era and more and
more CPU cores are integrated into one single die [1] [2], how to
efficiently use the core resources becomes a big challenge to
software. The CPU cycles, used for synchronization among CPU
cores (for example, OS kernel spin-lock), may increase dramati-
cally as the core number increases. On the other hand, finding

concurrency in a program for efficient parallel computing to take
the advantage of core resources, requires excessive engineering
effort and may be not applicable for many software [38][39].

 Virtualization offers a solution to improve efficiency of paral-
lelism and core usage by consolidating multiple independently
running virtual machines (VMs) into a single physical machine. In
virtualization, a new layer of software, named as hypervisor or
virtual machine monitor (such as VMWare [3], Hyper-V [4] KVM
[5] and Xen [6], etc.), runs on top of bare metal hardware to pro-
vide multiple illusions of virtual machine (VM) to run guest OSs.
Virtualization enables a new usage model to commodity the elas-
tic computing resources (that is VMs), for example pay-as-you-
use cloud service. A virtualization system, such as Xen, often over
commits the CPU resources (that is the total number of virtual
CPUs is larger than physical CPUs), which depends on a hypervi-
sor scheduler to map the physical CPUs to different virtual CPUs
in a timeshared manner. However, the performance and scalability
of virtualization solution for server consolidation and the impact
of its scheduling policy, on modern massive advanced server,
remains to be challenging.

SPECvirt_sc2010 is a standard benchmark to measure the ca-
pability of virtualization solution for server consolidation [7]. It
runs as many as possible tiles (a set of VMs) of typical server
workloads, consisting of a Web server, a mail server, and a JAVA
server to complete certain amount of transactions, and use the
number of tiles it can run to indicate the throughput of the virtual-
ized system. The response time, or QoS, is another indicator in
Specvirt_sc2010, reflecting the fact that most transactions in serv-
er workload are latency sensitive. The performance of
SPECvirt_sc2010 is critical for a hypervisor targeting server con-
solidation usage model, such as data center and cloud computing
environment, however, the characterization of SPECvirt_sc2010
and the impact of hypervisor scheduling on SPECvirt_sc2010, on
massive advanced server, are not well studied yet.

In this paper, we conduct a comprehensive study of Xen server
consolidation capability running SPECvirt_sc2010, and share our
findings of the performance overhead on massive advanced server,
and optimizations to improve the performance and scalability of
Xen from server consolidation perspective. The major contribu-
tions of our work are as follows.

1) We conduct a comprehensive study of Xen performance and
scalability characterization running SPECvirt_sc2010 on top
of a state of the art 2-socket Xeon 5680 system (which is one
of, if not the most, the advanced servers in massive produc-
tion). The result shows that Xen scales badly (the CPU cycle
per instruction, or CPI, increases sharply, and the response
time increases exponentially), when the number of VMs in-
creases (that is the tile number goes up in Specvirt_sc2010).

2) We present a thorough analysis on the virtualization overhead,
and identify the scalability issue as a result of large memory

15

VEE’12, March 3–4, 2012, London, England, UK.
Copyright © 2012 ACM 978-1-4503-1175-5/12/03…$10.00.

and cache footprint, due to the unnecessary high frequent con-
text switch. The further analysis reveals that the high frequen-
cy is a result of a) inefficient processing of interrupts, and b)
over aggressive hypervisor scheduling.

3) Optimizations to improve the efficiency of interrupt pro-
cessing and to limit the over aggressive hypervisor scheduling,
are proposed. Dynamically-allocable tasklets is used to elimi-
nate the unnecessary involvement of hypervisor scheduling to
idle VM context, and adaptive hypervisor scheduling rate con-
trol is adopted to limit the context switch if the scheduling
frequency exceeds certain threshold.
The results show the improved memory and cache efficiency

with reduction of the overall CPI, resulting in the improvement of
server consolidation capability by 15% in SPECvirt_sc2010. In
the meantime, our optimization achieves an up to 50% accelera-
tion of service response, which greatly improves the QoS of Xen
virtualization solution.

The rest of this paper is organized as follows. Section 2 pre-
sents the background of server consolidation including a brief
introduction of Xen VMM and the consolidation workload we use.
Section 3 introduces the experimental configuration. In Section 4,
we present the detailed overhead breakdown, followed by the
illustration of two optimizations to address the high frequency
context switch issue in Section 5. The performance benefits of
our optimization are shown in Section 6. Section 7 describes re-
lated work, and Section 8 concludes this paper.

2. Background

2.1 Server Consolidation

Multiple virtual machines are allowed to run on the same physical
hardware in system virtualization, so as to increase system utiliza-
tion and thus reduce cost. Server consolidation reduces the num-
ber and variety of components in the environment. This may not
be limited to servers but also to other physical elements such as
tapes, disks, network devices and connections, operating systems,
and peripherals involved in the server consolidation. It becomes
easy to move and change systems, applications, and peripherals
with fewer hardware and software standards to manage. Although
the physical hardware is shared across the virtual machines, the
virtual machines are completely isolated from each other and each
virtual machine runs a separate operating system instance with its
own applications.

Performance characterization and analysis for server consoli-
dation [8] [9] [11] [32] is important for deployment with fair shar-
ing of resources, providing feedback to IT administrators and
platform architects, projecting and optimizing future platform
performance and so on. In this paper, SPECvirt_sc20101 is adopt-
ed for performance analysis of server consolidation.

2.2 Xen Virtual Machine Monitor

A virtual machine monitor [12] [13] [14] [15] allows multiple
operating systems to share a single machine safely. It isolates
operating systems and controls accesses to hardware resources.
We use open source VMM, Xen, which is widely adopted as a

1 The benchmark runs discussed here are for our research and non-
compliant with the SPEC run-rules. The data presented here are only to
illustrate the points discussed in this paper and cannot be compared with
any other SPECvirt_sc2010 results

representative VMM in both academia and industry, for our study.
The organization of Xen [6] is depicted in Figure 1. Xen consists
of two elements: hypervisor and the driver domain. The hypervi-
sor provides an abstraction layer between the guest operating
systems and the actual hardware. The driver domain, a privileged
VM, called domain0, manages other guest VMs, called domainU.
One of the major functions of the driver domain is to conduct real
I/O operations to a bare device on behalf of domainU to imple-
ment a reliable I/O architecture [16] [17] [18] [19]. With hard-
ware assistance, Single Root I/O Virtualization and Sharing (SR-
IOV) [23][24], which enables efficient sharing of a single I/O
device among multiple VMs, provides a foundation for efficiently
utilization of I/O resources as reaching near-native I/O perfor-
mance. Although this paper is based on Xen, the problem ad-
dressed here is not limited to this specific hypervisor. We have
observed the same issue in KVM.

Figure 1. The Xen virtual machine environment

2.3 SPECvirt_sc2010 Benchmark

Figure 2. SPECvirt_sc2010 block diagram

SPECvirt_sc2010 [7] is SPEC's first benchmark addressing per-
formance evaluation of datacenter servers used in virtualized
server consolidation. The benchmark utilizes several SPEC work-
loads, to complete certain amount of transactions, representing
applications that are common targets of virtualization and server
consolidation as shown in Figure 2. Each of these standard work-
loads is modified to match a typical server consolidation scenario
of CPU resource requirements, memory, disk I/O, and network

16

utilization. These workloads are modified versions of
SPECweb2005, SPECjAppServer2004, and SPECmail2008. Scal-
ing is achieved by running additional sets of virtual machines,
called "tiles", until overall throughput reaches a peak. One tile
consists of 6 different hardware-assistant VMs (HVM). All work-
loads must continue to meet required quality of service (QoS)
criteria. The compliant results are necessary to meet all the Qos
requirements. Performance metrics (throughputs) are obtained by
calculating the arithmetic mean of the 3 normalized values per tile
and summing up the scores for all tiles.

3. Experiment Configuration
The server under test is the latest Intel Xeon 5680 server with two
3.33GHz processors. Each processor has 6 cores, 12 threads with
Hyper-Threading technology [20] on and 12MB shared L3 cache.
Xen 4.1.0 is selected as the virtual machine monitor. We allocate
enough storage and network devices to make sure that there are no
hardware bottlenecks. One LSI HBA is used to connect to an ex-
ternal disk enclosure. Each tile is assigned 4x64GB Intel solid
status disk as storage. Due to the public availability of SR-IOV
network card & iSCSI [33] in data centers and the performance
advantage of hardware-assisted virtualization solution, we use SR-
IOV & iSCSI [33] in our experiment environment. As depicted in
Figure 3, all the disk storages are placed at the remote iSCSI tar-
get machine, directly linked through 10 GB network card to the
server under test. All VMs, running under server side, select
host’s SR-IOV virtual functions as their networks. Each guest
accesses its VFs directly. In this way, IO requests from disks are
exchanged for network bandwidth, walking through the software
layer with the assistance of SR-IOV and iSCSI.

Figure 3. SR-IOV & iSCSI solution

4. Characterization and Analysis
In this Section, we adopt well-designed profiling methodologies
to thoroughly investigate hypervisor’s overhead and show the
challenges met under server consolidation. Accordingly, several
possible solutions are presented as the initial steps in section 5 to
conquer such challenges. Although this work is based on the Xen
hypervisor, we believe the analysis methods and challenges raised
are equally applicable to other hypervisors.

4.1 Scalability Challenges

To provide insights into behaviors of server consolidation, we
present the load scalability of SPECvirt_sc2010 on the latest 2-
way commercial server. As shown in Figure 4, when the system
load is low, the overall system CPU utilization scales up linearly
with the system throughput. 2-tile load provides 99% increase in
CPU utilization over 1-tile and 4-tile achieves 111% CPU utiliza-
tion increase over 2-tile. These numbers indicate relatively good
CPU utilization scalability. However, 8-tile consumes 219% more
CPU resources than 4-tile, indicating a sharp increase of CPU
utilization. The increase ratio becomes even greater at peak per-
formance implying underlying high overhead of scalability as the
system load is overwhelming. As mentioned in Subsection 2.3,
SPECvirt_sc2010 workload cares not only about the throughputs,
but also about QoS. As illustrated in Figure 4, the total response
time (geometric mean result of three sub-workload’s response
time) keeps relatively low until close to the peak throughput from
0.13ms to 0.32ms (146% increase), an exponential-like increase
from 8-tile to 9-tile configuration. The dramatic increase of the
total response time near the peak performance implies potential
bottlenecks existing with high system load, as the hypervisor is
unable to function efficiently under such condition.

Figure 4. CPU utilization & response time trend with throughput

Figure 5. CPU utilization for each VM with throughput

The breakdown of CPU utilization scalability for each VM is

shown in Figure 5 (Idle server is not illustrated here due to low

17

CPU utilization number). VMs of webserver and JAVA applica-
tion server scale worse than those of database server and infra-
structure server when system load becomes heavy. Interestingly,
both webserver and java application server are assigned two virtu-
al CPUs for a single VM to satisfy CPU requirements, while the
rest VMs are assigned only one virtual CPU due to less consump-
tion. One possible reason is that more number of virtual CPUs
brings the extra overhead such as the inter-communication be-
tween different virtual CPUs, which causes the worse scalability
of related VMs. It also implies the efficiency of current hypervisor
that manages multiple virtual CPUs drops, as the number of VM
increases.

Turning our attention to the cause of the high CPU utilization
consumption with heavy system stress shown in Figure 4, the
overall system CPU utilization is divided into four different parts
– guest user, guest kernel, hypervisor and domain0. Because these
four parts are running in different privilege levels – the guest part
(HVM guest) runs in non-root mode and hypervisor and domain0
(PV guest) run in root mode – we can easily breakdown them by
programing the hardware performance counter separately. Guest
parts are the valuable work while hypervisor and domain0 are so
called virtualization overhead. As illustrated in Figure 6, all com-
ponents, except domain0, increase sharply as tile number increas-
es. At the peak throughput, hypervisor part occupies more than 25%
of the total CPU cycles – much higher than expected. It is equally
to say that the hypervisor needs to occupy 6 cores of the total 24
logical cores at the peak performance, which is identified to be a
big overhead.

Figure 6. System CPU utilization breakdown

Equation 1 shows cycles per throughput are decided by the
multiplicative of Cycles per instruction (CPI) and Path Length
(PL). CPI refers to the number of clock cycles that happens when
an instruction is being executed, used to describe a processor's
performance from one aspect. PL refers to instructions required
per transaction, deemed as a measurement of the software’s per-
formance on particular computer hardware. As displayed in Fig-
ure 7, the trend of PL keeps relatively flat when system load is
low, but increases slightly (5.9% increase from 4-tile to 8-tile),
when reaching the peak throughput, implying less efficient soft-
ware execution when system stress is heavy. Whereas CPI in-
creases sharply as throughput grows (88% increase from 1-tile to
9-tile). Obviously, the dramatic increase of CPI is the major con-

tributor for non-linear CPU utilization increase of both guest and
hypervisor parts.

 Cycles/Throughput = CPI X PL (1)

Among various aspects which may impact the value of CPI,
data from hardware performance counter points out that the in-
crease of cache miss rate such as LLC and TLB, depicted in Fig-
ure 8, plays the vital role to the increase of overall CPI. Cache
miss rate of LLC increases by 2.67x and that of TLB increases by
0.38x from 1-tile to 9-tile. High cache miss rate was caused by
larger memory and cache footprint under server consolidation as
VM number goes up. In other words, as the number of consolidat-
ed VMs grows, the memory footprint consumed by both VMs and
hypervisor becomes greatly increased so that current hardware
resource like hierarchical cache and TLB cannot process efficient-
ly, resulting in slow instruction execution. Besides the hardware
approach of enlarging the cache size, there are software ways to
reduce the footprint, such as to merge the same page together as
KSM [35]. Also a well-tuned scheduler to achieve better context
switch frequency – satisfy latency/throughput at the same time –
is another software approach.

Without effective cache usage on multicore platform, such
caches can cause thrashing that severely degrades system perfor-
mance. Some cache-aware schedulers have been discussed and
developed recently in the native system [34]. However, in virtual-
ization environment, it becomes more complex as the intrusion of
isolation of various VMs running to share the same hardware
resource. A well-designed scheduler in virtualization should not
only efficiently isolate various VMs to make them access the un-
derlying hardware resource fairly, but also treat the hardware as a
whole to maximize the throughput. For example, as one of the
practical implementations, KSM allows to share equal anonymous
memory across different processes and in turn also across differ-
ent KVM virtual machines. The object of KSM is to increase
memory density, or conversely, to reduce the memory size with
the same number of running VMs

Figure 7. CPI and Path Length trend with throughput

To resolve the feckless usage of cache in virtualization, con-

trolling context switches frequency by eliminate unnecessary ones
is another important approach to be worthy considered. Unneces-
sary context switches result in unnecessary cache flush, thus caus-
ing extra overhead. Low frequency of context switch among VMs
will produce small overhead of hypervisor and assure cache hot
thus reduce cache footprint. But it may result in the QoS issue,
especially for latency sensitive workloads. High frequency of

18

context switch will otherwise satisfy the QoS requirement to some
extent, but impair the cache performance thus consume high CPU
utilization. So how to select the right frequency is the key issue
scheduler should solve. In section 5, we will show in detail that
current scheduler in virtualization lacks considerations to elimi-
nate unnecessary context switch and impairs the overall perfor-
mance. Meanwhile, as the first step to conquer these challenges, a
scheduler with fine control of context switch frequency is imple-
mented to showcase the benefits from both the CPI and PL sides.

Figure 8. Cache miss rate trend with throughput

4.2 Hypervisor Overhead Breakdown

Scalability issue, as observed in Figure 4, is primarily caused by
the sharp increase of CPI, which can be mitigated by either hard-
ware or software ways. We mainly focus on software solutions, so
that it’s worthwhile to dig into the behaviors of hypervisor to find
out the clues.

To further investigate the hypervisor’s overhead, we need to
firstly clarify the terminology – VMExit. When the running VMs
are HVM guests, a VMExit marks the point at which a transition
is made between the VM currently running and the hypervisor that
executes the sensitive instructions on behalf of guest system. In
other words, when a VMExit event happens, related physical CPU
migrates from non-root mode to root mode, henceforth, hypervi-
sor performs its system management functions according to the
VMExit reasons. With the assistance of tracing tools – XenTrace
– we breakdown the hypervisor’s overhead (25% of the overall
system CPU cycles as shown in Figure 6) according to such cate-
gories (56 VMExit reasons in total). Thus it helps to detect which
VMExit event causes the big overhead in hypervisor.

Figure 9 depicts hypervisor’s detailed CPU cycles breakdown
according to the VMExit number at peak performance. The
VMExit event of ‘External Interrupt’ consumes the largest portion,
more than 12% CPU cycles. The following major parts are ‘APIC
Access’, ‘HLT’ and ‘IO instruction’ which consume 4.78%, 3.73%
and 2.94% respectively. The rest 52 VMExit only contribute less
than 2% CPU utilization. Regarding such distribution, the major
overheads of hypervisor are centralized in a small amount of
VMExit events. In the following paragraphs, we will take a look
into the reasons of top three VMExit events and propose possible
ways to reduce the overhead.

Figure 9. Hypervisor CPU utilization breakdown according to
VMExit number

a) ‘External Interrupt’ VMExit Event
‘External Interrupt’ VMExit event responds to the handling pro-
cess of system interrupt requests (IRQs) including handler’s top
and bottom halves. In our experiment, the software emulated net-
work and disk are passed through by SR-IOV NIC and iSCSI disk
solutions, which produce lots of network IRQs. It is readily to
understand that the ‘External Interrupt’ VMExit event composes a
large portion of the hypervisor’s overhead.

IRQs could happen at any time in the following cases: a) sys-
tem ‘Halt’ period; b) virtual CPU running state or c) ‘Hypervisor’
running state. Only in case b) will system generate the ‘External
Interrupt’ VMExit event and transition from guest to hypervisor
context to handle it. In other cases, system enters hypervisor di-
rectly without such event happening. Therefore, as system load is
heavy, interrupts are more probably to interrupt current virtual
CPU’s running state. One issue emerges here for external interrupt
handling process. If the current running virtual CPU, disrupted by
the external interrupt, is the target virtual CPU to which external
interrupt delivers, a virtual IRQ will be injected directly when this
virtual CPU enters from hypervisor to its running state. However,
if the target VM is running on a different physical CPU, an inter-
processor interrupt (IPI) will be imperatively sent to the target
physical CPU to interrupt it and inject virtual IRQ. In addition, if
the target virtual CPU is not running, a scheduling request should
be raised to wake it up. Such extra procedures, caused by IPIs and
scheduling requests, will possibly aggrandize and thus impair the
running streamline of VMs and cause performance turbulence,
especially under the condition with large scales of VMs. From the
tracing data at peak performance, lots of IPIs and scheduling
events, happening during the handling process of ‘External Inter-
rupt’ VMExit, demonstrate such problem. Sending interrupts to
the wrong core or waking up target virtual CPU frequently are the
major causes of the high overhead in processing ‘External Inter-
rupt’ VMExit.

In [30], it proposed an interrupt migration method to avoid
most of IPIs by marking target core status at virtual CPU migra-
tion. Interrupts are deliver to the right core with this information
except for the condition that the target VM migrates to another
core, in which an IPI is needed to be sent to the original core to
clear the old vector. Consequently, if the frequency of virtual CPU
migration is high with lots of VMs consolidating on one system,
the mitigation degree will be relatively small. In such situation,
the scheduler should comply with the handling process of external
interrupts to balance both efficiency and fairness. As a practical

19

example, we enhance current Xen schedule’s capability in section
5 to overcome the scalability issue caused by excessive schedul-
ing during external interrupt handling process.
b) ‘APIC Access’ VMExit Event
Accesses to the APIC-access page inside the guest VMs are con-
sidered as virtualized APIC accesses, causing VMExit event dur-
ing which register access operations, such as EOI and ICR, are
emulated by hypervisor. The procedure of software emulation
consumes lots of CPU cycles as shown in Figure 9. In [30], it is
observed that, EOI access accounts for most percentage of all
kinds of ‘APIC Access’ emulations under SR-IOV condition. By
passing instruction fetch/emulation stage, it shortens the code path
of vEOI emulation greatly, resulting in decrease of total CPU
usage. However, the overhead of ‘APIC Access’ VMExit is still
high when the number of IRQs is large for consolidation work-
loads.
c) ‘HLT’ VMExit Event
‘HLT’ VMExit event occurs when the current VM is idle and
executes HALT instruction. Hypervisor marks the current VM’s
state as ‘blocked’ and enters scheduling procedure. If there are no
available VMs to run at this time, system will enter idle state. The
CPU cycles consumed in ‘HLT’ VMExit as shown in Figure 9
were calculated by eliminating the idle state. It is the real over-
head consumed by hypervisor to process scheduling. For CPU
intensive workloads, rare number of ‘HLT’ VMExit events is
triggered due to long running time slice. Whereas for IO intensive
and client-server type workloads, such as SPECvirt_sc2010, large
number of ‘HLT’ VMExit events is produced due to intermittent
running-state exchanges of virtual CPUs. Apparently, scheduling
work is considered as the vital factor to reduce the overhead in
this process. For example, if the pattern of tasks running inside
VMs can be detected, then a deliberate scheduling scheme can be
carried out to maximize the efficiency of cache usage.

The above analysis of hypervisor’s behaviors demonstrates
that scheduler is one of the vital factor in the constitution of virtu-
alization overhead. Current scheduling scheme in Xen shows
bottlenecks on the massive advanced system with heavier load
(more VMs and heavier stress) as shown in Figure 4. In the fol-
lowing section 5, a close analysis related to scheduling challenges
will be presented with specified identification. Then two optimi-
zations are presented to showcase the performance benefits.

5. Optimization Methods
In this section, we analyze the performance of Xen’s credit sched-
uler and propose two solutions, dynamically-allocable tasklets and
context-switch rate controller, to optimize the scalability perfor-
mance. The result shows the improvement of server consolidation
capability by 15% in SPECvirt_sc2010. In the meantime, our
optimization achieves an up to 50% acceleration of service re-
sponse.

5.1 Challenges in Scheduler

In order to exactly identify the software scalability bottlenecks,
code level profiling tools are necessary. OProfile is a system-wide
profiler for Linux systems, capable of profiling all running code at
low overhead. It is based on statistical profiling – continually
sampling currently executing code at every fixed hardware events.
Large set of sample approximating to the real hardware event
distribution are employed. Xenoprofile [14] extends to Xen and
Oprofile to fully profile across multiple domains and cover code
in user processes, kernel and hypervisor. We strengthen Xenopro-

file’s functionalities by enabling call-graph to obtain the full pic-
ture of callees constitution for specified functions. As shown in
Figure 11, for each function entry in the left column, the right side
functions are called by this entry. We also see a special entry with
a ‘[self]’ marker. This records the normal samples for the function
itself, but the percentage becomes relative to all callees. This al-
lows comparing time spent on the function itself with that on
functions it calls. In order to reduce the profiling overhead, we
choose 4 as the call-graph depth.

As shown in Figure 10, cycles of top four functions increase as
system load and throughput grow. It makes sense for
‘vmx_asm_do_vmentry’ to consume the biggest part of CPU re-
source due to the primary path walked when the system transits
from VM to hypervisor. The ‘Schedule’ function consumes the
second largest part. Moreover, the following functions, such as
‘do_softirq’ and ‘context_switch, are all related to the scheduling
process. For example, the majority amount of ‘softirq’ is raised to
trigger the scheduling process as listed in Figure 11.

Figure 10. Top functions call-graph trend with throughput

Figure 11. Top hot functions call-graph distribution

vmx_vmexit_handler (38.80%)
do_softirq (37.57%)

vmx_asm_do_vmentry
(root) 5.83%

vmx_intr_assist (11.47%)

vmx_asm_do_vmentry [self] (3.37%)
Others (3.04%)

context_switch (51.48%)
csched_schedule (27.18%)

schedule (root) 3.69% stop_timer (5.54%)
schedule [self] (5.19%)
Others (10.62%)

schedule (81.44%)
timer_softirq_action (6.25%)

__do_softirq (root) 3.57% _spin_unlock_irq (5.35%)
__do_softirq [self] (1.56%)
others (5.40%)

__do_softirq (95.69%)
rcu_pending (1.44%)

do_softirq (root) 2.96% do_softirq [self] (1.23%)
schedule (0.87%)
others (0.78%)

20

By tracing each scheduling process from the beginning to the
end, cycles utilized by the context switch procedure are obtained.
Table 1, cycles consumed by the context switch process occupy
more than 27% of total hypervisor cycles at peak performance.
From the frequency side, data in Table 1, collected by counting
based tools, shows the procedure of scheduling (Sched: scheduler)
is triggered 29 thousand times per second per physical core, and
26 thousand of which cause context switches (Sched: context
switches). Context switch here refers to the process of de-schedule
the current running virtual CPU and schedule in the next virtual
CPU. One question is that is it reasonable to trigger so many con-
text switches – approximately 26 thousand per second for one
physical thread at peak performance? Stated differently, the aver-
age running tile slice for a virtual CPU once scheduled in is far
less than tenth of a microsecond.

Table 1. Scheduler events number & CPU utilization at peak

From the cause number distribution of context switch shown in
Figure 12, most of the context switches take place in the ‘External
Interrupt’ VMExit events, constituting 65% of the total number.
Subsequently, 21% context switches occur in the ‘HLT’ VMExit
events. Since ‘HLT’ VMExit occurs when the current VM is idle
and executes HALT instruction, hypervisor primarily activates the
scheduling process. However, the high frequency of context
switches in the ‘External Interrupt’ VMExit events is unreasona-
ble. From the code path of handling pass-through ‘IRQ’ (produced
by SR-IOV devices) in Table 2, hypervisor raises the ‘SCHED-
ULE_SOFTIRQ’ to trigger a scheduling operation during ‘Exter-
nal Interrupt’ handler. Thus, system switches to the idle virtual
CPU’s context to process such tasklets. Basically, the idle virtual
CPU shares the same context as the original one so that the over-
head should be small. However, if the number of external inter-
rupts is large enough, such kind of transition overhead cannot be
ignored anymore.

Figure 12. The Cause of Context switch

On the other hand, in virtualization environment, all external
interrupts are handled by hypervisor that physical IRQs designat-

ed to some VMs are injected as virtual IRQs. Correspondingly,
hypervisor kicks related VCPUs by raising scheduling requests
combined with IPIs in some conditions, as discussed in section 4.2.
Therefore, if the number of IRQ is very huge, the scheduling hap-
pens more frequently which explains the scheduling distribution
in Figure 12. For current scheduler in Xen, there is no scheme to
control the scheduling rate to eliminate the unnecessary schedul-
ing requests so as to cause high frequency of context switch.

Table 2. IRQ pass-through delivery code path

Therefore, scheduler in Xen meets bottlenecks, which origi-
nate from the following two aspects: a) inefficient interrupt han-
dling process mechanism and b) lack of context switch frequency
control. In next paragraphs, as the first step to conquer the sched-
uling challenges for virtualization under server consolidation, two
optimizations are proposed, aiming to reduce the context switch
frequency thus improve the overall throughput.

5.2 Dynamically-allocable tasklets

Considering the first bottleneck, since not all tasklet users need to
run in virtual CPU context (more specifically, the idle virtual CPU
context), the best fix is to make it per-tasklet configurable. Based
on what we observed, the method of dynamically-allocable task-
lets is devised. In this new mechanism, tasklets are dynamically-
allocable tasks, running in either virtual CPU context or in softirq
context on at most one CPU at a time. Softirq versus virtual CPU
context execution is specified during per-tasklet initialization.
This method avoids all tasklets running in virtual CPU context at
the same time. Consequently, a number of unnecessary context
switches is expected to be reduced.

By adopting the dynamically-allocable tasklets method, the
number of context switches at peak performance is reduced by
54%, which is a significant improvement to the efficiency of in-
terrupt processing, as shown in Table 3. However, the scheduling
number is still high, more than 13k per second per thread, which
means the average running time slice for one virtual CPU is still
below 0.1 million second. A context switch rate controller is fur-
ther proposed to solve this issue in the next paragraph.

Table 3. Context switch number comparison at peak performance

5.3 Context-Switch Rate Controller (CSRC)

Three different CPU schedulers were introduced in recent years –
Borrowed Virtual Time (BVT) [28], Simple Earliest Deadline
First (SEDF) [10] and Credit Scheduler [26] [29] – all of which
allow the user to specify CPU allocation via CPU share (weights).
The credit scheduler, Xen’s latest scheduler, is a proportional
share scheduler with a load balancing feature for SMP systems.
The virtue of the credit scheduler is the simplicity of the operation
with reasonable fairness guarantee and performance.

p

21

Figure 13 displays the flow of Xen’s credit scheduler. There
are two major parts in this flow: 1) pick up the next running virtu-
al CPU and 2) do context switch when selecting a new different
running virtual CPU. Since credit scheduler sorts run queue ac-
cording to priority instead of credit, the current running virtual
CPU is added to the tail of the run-queue with the same priority.
Therefore, if the run-queue with the same priority as current virtu-
al CPU is not empty, the current virtual CPU will be scheduled
out and the head virtual CPU in the run queue will be scheduled in.
It explains the data in Table 3 why the number of context switch
(12006) is very close to the number of scheduler triggered (13668).
At peak throughput, the numbers of virtual CPU and physical
CPU are in the high ratio 60:24, so it is possible that there are
runnable candidate virtual CPUs in the run-queue as the schedul-
ing process is triggered. In this condition, the current virtual CPU
is more probably to be scheduled out, following the context
switch process.

Figure 13. Flow of credit scheduler

Considering excessive number of hypervisor scheduling in
Xen’s current scheduler, we carry out one proposal to reduce the
scheduling’s overhead by controlling the frequency of context
switch, called Context-Switch Rate Controller (CSRC). The basic
philosophy is to reduce the context switch number, if possible,
when the rate of VCPU scheduling exceeds the threshold. Two
criterions are presented here: 1) to skip the current scheduling
process, if the frequency of context switch is bigger than the
threshold during last period (10 million second) under the condi-
tion that the last running virtual CPU is still runnable (not
blocked). The frequency number, counted during the last 10 mil-
lion second period is applied to judge whether the scheduling
frequency is too high. 2) if the last running virtual CPU runs less
than some time slice (1million second for example) and is still
runnable, to skip this scheduling process, aiming to elongate the
running slice for specified virtual CPUs whose running time slice
is too short.

Taking the flow in Figure 14 for example, the current running
virtual CPU is vcpu1 and the system is under hypervisor’s envi-
ronment. When the scheduler is triggered at some point, it will
first judge whether the frequency of scheduling is too high. If yes,
it will check whether vcpu1 is still runnable. If it is still yes,
vcpu1 will return directly to skip the following scheduling process.
If the scheduling frequency is below the threshold, it will check
whether vpu1’s last running slice is less than 1 million second, if

so and vcpu1 is still runnable, it will return to continue its running
stage directly.

After applying the CSRC method, the number of context
switch at peak performance (with CSRC method, system obtains
higher performance than previous result) reduces slightly as
shown in Table 4, but the number of context switch reduces al-
most by 20%, demonstrating CSRC method effectively reduces
the frequency of context switch. Detailed performance benefits,
brought by the proposed methods, are to be exhibited in section 6.

Figure 14. Proposals of SRC scheme

Table 4. Context switch number comparison at peak performance

6. Evaluation
As depicted in Figure 16, by adopting the method of dynamically-
allocable tasklet, the CPU utilization decreases from 92% to 89%
comparing to the original result at peak performance (9-tile). After
supplying CSRC method, the system CPU utilization decreases
even more, about 81% at the same throughput comparing to the
original peak results. Furthermore, due to lower CPU utilization,
more loads can be added to achieve higher throughput with CSRC.
When considering the compliant results – achieving QoS require-
ments – the peak performance (throughput per CPU utilization)
with CSRC is improved by 15% comparing to the original result,
as shown in Figure 15. There is no obvious performance change
when system load is light. SPECvirt_sc2010 workload takes both
throughput and QoS into consideration. In Figure 17, it reveals
that proposed methods of dynamically-allocable tasklets and
CSRC shorten the response time significantly when close to peak
performance, explaining that such methods achieve higher
throughput with qualified QoS. It is also observed that, when sys-
tem load is light, the response time of proposed methods is slight-
ly higher than original results due to relative less frequent
scheduling when applying CSRC method. However it has little
influence on the overall performance.

22

Figure 15. Peak throughput per CPU utilization comparison

Figure 16. Proposals of dynamically-allocable tasklets and CSRC
improve reduce CPU utilization and improve overall throughputs

Figure 17. Proposals of dynamically-allocable tasklets and CSRC
shorten the response time significantly when close to peak per-
formance

As displayed in Figure 18, PL of the optimized CSRC method
at peak performance (9-tile) reduces by 4%, implying more effi-

cient software execution – less number of context switches reduc-
es the instructions required for each function. From the CPI side
shown in Figure 19, CPI of optimized CSRC method obtains 6%
reduction than original result at 9-tile. Less number of context
switches reduces the cache miss ratio – 6% reduction for LLC and
15% for TLB, resulting in lower CPI. All above prove that CSRC
benefits from both hardware and software aspects.

Figure 18. Path length trend comparisons

Figure 19. CPI trend comparisons

Finally, from the CPU utilization breakdown of different privi-

lege levels as shown in Figure 20, both guest and hypervisor parts
obtain lower CPU utilization when applying CSRC methods. CPU
utilization at the same throughput (9-tile) reduces significantly
from 92% to 81% by controlling the context switch rate. The hy-
pervisor part contributes 6% and the guest part contributes the
other 5%. As discussed above, CPU utilization reduction of guest
part is primarily caused by the lower CPI and hypervisor part is
caused by both PL and CPI.

To sum up, integrated with the two methods proposed in this
section, the overall system throughput of SPECvirt_sc2010 is
improved by 15%. The optimized methods obtains lower CPU
utilization by reducing both CPI and PL, benefited from less
number of context switches. The results show that, current fre-
quency of context switch is so high that impair the server consoli-

23

dation’s performance, which can be partially solved by fine-
grained scheduling rate controller. There are still more considera-
tions for scheduler in virtualization, such as to reduce memory
and cache footprint, to be aware of running tasks in running VMs,
to fairly and efficiently allocate and utilize the underlying hard-
ware resources and so on.

Figure 20. CPU utilization breakdown comparisons at same
throughput (9-tile)

7. Related Work
Analyzing and improving virtual consolidation performance is a
popular topic in the research community. There are many studies
performed to improve virtualization’s performance [29] [36] [31]
[27]. In software, Liao et al. [29] [36] proposed some scheduling
optimizations to improve I/O performance. Besides software op-
timizations, hardware-assisted solutions, such as VMDq [31], self-
virtualized devices [27] and SR-IOV [24] are proposed in virtual-
ization to achieve high-performance.

Studies for better hypervisor resource scheduler [19] [25] [28]
are covered in several previous works. Using Xen as hypervisor,
Cherkasova et al. [25] studied the impact that three different
schedulers have on the throughput of three I/O-intensive bench-
marks. In addition to the Credit and SEDF schedulers, their study
also addressed Xen’s BVT [28] scheduler. They evaluated how a
single instance of these applications was affected by the choice of
scheduling policy. In effect, they evaluated how the scheduler
divided the processing resources between the guest domain and
the driver domain. Ongaro et al. [19] explored the relationship
between domain scheduling in a hypervisor and I/O performance
using multiple guest domains concurrently running different types
of applications. In addition, their work examined a number of new
and existing extensions to Xen’s credit schedule targeted at im-
proving I/O performance. Finally, their study showed that latency-
sensitive applications perform best if they are not combined in the
same domain with a computing intensive application, but instead
are placed within their own domain.

Compared to previous research work leveraging simple work-
load and hardware, we conducted our measurements and analysis
with the state of art hardware. The workload we used is also mod-
ified through complex industry benchmark, thus representative
enough of real virtual consolidation environments. We believe our
performance data and conclusion are more realistic and can be
used as a reference for real IT product system design.

8. Conclusion and Future Work
In this paper, through analyzing performance scalability of a rep-
resentative consolidation workload on the latest 2-way X86 multi-
ple core architecture, we identify both challenges and
opportunities for virtualization performance under server consoli-
dation condition: i) large memory and cache footprint caused by
high frequency context switch brings in notable bottlenecks, and ii)
the current scheduler can be improved with a finer control algo-
rithm. Regarding these, we propose two potential optimization
opportunities: applying a dynamically-allocable tasklets method
brings in great context switch number reduction and a context
switch rate control prototype results in total 15% performance
improvement and up to 50% acceleration of service response.
However, there is still great headroom for improvement. In future
work, a guest-level sensitive scheduler considering its internal
workloads and with finer control on priorities is arguably better in
allocating the hardware resources between virtual machines to
achieve a better overall system level performance. Long term
fairness between virtual machines should also be considered in the
scheduler design.

Acknowledgements
We would like to thank Keir Fraser for his contributions to com-
pose the dynamically-allocable tasklets algorithm for this study.

References
[1] Intel Corporation. Terascale computing.

http://www.intel.com/research/platform/terascale/index.htm.
[2] Intel Corporation. Intel Develops Tera-Scale Research Chips.

http://www.intel.com/pressroom/archive/releases/20060926corpb.ht
m.

[3] VMware. http://www.vmware.com/.
[4] Microsoft Virtual Server, http://www.microsoft.com/hyper-v-server/
[5] Kernel Based Virtual Machine http://www.linux-kvm.org/
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R.

Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualiza-
tion. In Proceedings of the Symposium on Operating Systems Prin-
ciples (SOSP), Oct. 2003

[7] SPECvirt_sc2010 http://www.spec.org/virt_sc2010/
[8] P. ApparaoNewell, Towards Modeling & Analysis of Consolidated

CMP Servers, Workshop on the Design, Analysis, and Simulation of
Chip Multi-Processors (dasCMP), 2007

[9] Jeffrey P. Casazza, Redefining server performance characterization
for virtualization benchmarking, Intel Technology journal August
2006

[10] I. M. Leslie, D. Mcauley, R. Black, T. Roscoe, P. T. Barham, D.
Evers, R. Fairbairns, and E. Hyden. The Design and Implementation
of an Operating System to Support Distributed Multimedia Applica-
tions. IEEE Journal of Selected Areas in Communications, 1996

[11] VMmark http://www.vmware.com/products/vmmark/
[12] M. Rosenblum. VMware’s Virtual Platform: A virtual machine

monitor for commodity PCs. In Hot Chips 11: Stanford University,
Stanford, CA, August 15–17, 1999

[13] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. War_eld, and M.
Williamson. Safe hardware access with the Xen virtual machine
monitor. In 1st Workshop on Operating System and Architectural
Support for the on demand IT InfraStructure (OASIS), Oct 2004

24

[14] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwae-
nepoel. Diagnosing performance overheads in the Xen virtual ma-
chine environment. In Proceedings of the First ACM/USENIX
International Conference on Virtual Execution Environments (VEE),
pages 13–23, June 2005

[15] Selvamuthukumar Senthilvelan and Murugappan Senthilvelan. Study
of content-based sharing on the xen virtual machine monitor
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Mu
ru-Selva/cs736-report.pdf.

[16] Wiegert, J., et al.: Challenges for Scalable Networking in a Virtual-
ized Server. In: 16th International Conference on Computer Com-
munications and Networks

[17] A. Menon, A.L. Cox, and W. Zwaenepoel. Optimizing network
virtualization in Xen. In Proceedings of the 2006 USENIX Annual
Technical Conference, pages 15–28, June 2006

[18] L. Cherkasova and R. Gardner. Measuring CPU overhead for I/O
processing in the Xen virtual machine monitor. In USENIX Annual
Technical Conference, Apr. 2005

[19] Diego Ongaro , Alan L. Cox , Scott Rixner, Scheduling I/O in virtual
machine monitors, Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution envi-
ronments, March 05-07, 2008, Seattle, WA, USA

[20] Susan J. Eggers , Joel S. Emer , Henry M. Levy , Jack L. Lo , Re-
becca L. Stamm , Dean M. Tullsen, Simultaneous Multithreading: A
Platform for Next-Generation Processors, IEEE Micro, v.17 n.5,
p.12-19, September 1997

[21] Xudong Zheng, Jiangang Duan, Shameem F Akhter, Zhidong Yu,
Hui Lv, A Consolidation Workload Characterization Study on Mod-
ern Platform, CMG’09

[22] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MAR-
TINS, F. C. M., ANDERSON, A. V., BENNETT, S. M., KAGI, A.,
LEUNG, F. H., AND SIMTH, L. 2005. Intel Virtualization Technol-
ogy. IEEE Computer. 38, 5, 48–56

[23] Yaozu Dong, Zhao Yu, Greg Rose: SR-IOV Networking in Xen:
Architecture, Design and Implementation. Workshop on I/O Virtual-
ization 2008

[24] DONG, Y., YANG, X., LI, X., LI, J., TIAN, K., AND GUAN, H.
2010. High Performance Network Virtualization with SR-IOV. In
Proceeding of the 16th IEEE International Symposium on High-
Performance Computer Architecture (HPCA'10). IEEE, Bangalore,
India, 271-280

[25] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the Three
CPU Schedulers in Xen. ACM SIGMETRICS Performance Evalua-
tion Review, 35(2):42–51, 2007

[26] Credit Scheduler.
http://wiki.xensource.com/xenwiki/CreditScheduler

[27] RAJ, H., AND SCHWAN, K. 2007. High performance and scalable
I/O virtualization via self-virtualized devices. In Proceeding of the
16th international symposium on high performance distributed com-
puting (HPDC’07). ACM, Monterrey, CA, 179-188

[28] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) sched-
uling: supporting latency-sensitive threads in a general-purpose
scheduler. In Proceedings of the 17th ACM SOSP, 1999.

[29] GUO, D., LIAO, G., AND BHUYAN, L. N. 2009. Performance
characterization and cache-aware core scheduling in a virtualized
multi-core server under 10GbE. In Proceeding of 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC’09). IEEE,
Austin, TX, 168-177

[30] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian,
Haibing Guan. High performance network virtualization with SR-
IOV. HPCA'2010. pp.1~10

[31] SANTOS, J. R., TURNER, Y. JANAKIRAMAN, G., AND PRATT,
I. 2008. Bridging the gap between software and hardware techniques
for I/O virtualization, In Proceeding of the USENIX Annual Tech-
nical Conference (USENIX’08). USENIX, Boston, MA, 29-42.

[32] Hui Lv, Xudong Zheng, Zhiteng Huang, Jiangang Duan, Tackling
the Challenges of Server Consolidation on Multi-Core Systems.
IISWC’2010

[33] Open-iscsi project http://www.open-iscsi.org/
[34] J. Calandrino and J. Anderson. On the design and implementation of

a cache-aware multicore real-time scheduler. In Proceedings of the
21st Euromicro Conference on Real-Time Systems, July 2009.

[35] Arcangeli, Andrea ; Eidus, Izik ; Wright, Chris: Increasing memory
density by using KSM. http://www.kernel.org/doc/ols/2009/#19-28.
Version: 2009

[36] LIAO, G., BHUYAN, L. N., WU, W., YU, H., AND KING, S. R.
2010. A new TCB cache to efficiently manage TCP sessions for
Web servers. In Proceeding of the 6th ACM/IEEE Symposium on
Architecture for Networking and Communication Systems
(ANCS’10). ACM, San Diego, CA, 1-10.

[37] Jun Nakajima, Qian Lin, Sheng Yang, Min Zhu, Shang Gao, Min-
gyuan Xia, Peijie Yu, Yaozu Dong, Zhengwei Qi, Kai Chen, Haibing
Guan: Optimizing virtual machines using hybrid virtualization. SAC
2011: 573-578

[38] A. J. Bernstein, Program Analysis for Parallel Processing, IEEE
Trans. on Electronic Computers". EC-15, pp. 757–62, 1966

[39] X. Zhang, A. E. Eichenberger, Y. Luo, K. O’Brien , K. O’Brien,
Exploiting Parallelism with Dependence-Aware Scheduling, In Pro-
ceedings of the 18th International Conference on Parallel Architec-
ture and Compilation Techniques (PACT’09) (Raleigh, NC, USA,
Sept. 2009), ACM, pp. 193–202

25

