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Abstract  
Server consolidation, by running multiple virtual machines on top 
of a single platform with virtualization, provides an efficient solu-
tion to parallelism and utilization of modern multi-core processors 
system. However, the performance and scalability of server con-
solidation solution on modern massive advanced server is not well 
addressed. 

In this paper, we conduct a comprehensive study of Xen per-
formance and scalability characterization running 
SPECvirt_sc2010, and identify that large memory and cache foot-
print, due to the unnecessary high frequent context switch, intro-
duce additional challenges to the system performance and 
scalability.  We propose two optimizations (dynamically-allocable 
tasklets and context-switch rate controller) to improve the perfor-
mance. The results show the improved memory and cache effi-
ciency with a reduction of the overall CPI, resulting in an 
improvement of server consolidation capability by 15% in 
SPECvirt_sc2010. In the meantime, our optimization achieves an 
up to 50% acceleration of service response, which greatly im-
proves the QoS of Xen virtualization solution. 
 
Categories and Subject Descriptors  

D.4.8 [Operating Systems]: Performance—Measurement 
D.2.8 [Software Engineering]: Metric—Performance measures 

General Terms  

Measurement, Performance, Design 

Keywords  
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1. Introduction 
As the computing industry enters the multi-core era and more and 
more CPU cores are integrated into one single die [1] [2], how to 
efficiently use the core resources becomes a big challenge to 
software. The CPU cycles, used for synchronization among CPU 
cores (for example, OS kernel spin-lock), may increase dramati-
cally as the core number increases. On the other hand, finding 

concurrency in a program for efficient parallel computing to take 
the advantage of core resources, requires excessive engineering 
effort and may be not applicable for many software [38][39]. 

 Virtualization offers a solution to improve efficiency of paral-
lelism and core usage by consolidating multiple independently 
running virtual machines (VMs) into a single physical machine. In 
virtualization, a new layer of software, named as hypervisor or 
virtual machine monitor (such as VMWare [3], Hyper-V [4] KVM 
[5] and Xen [6], etc.), runs on top of bare metal hardware to pro-
vide multiple illusions of virtual machine (VM) to run guest OSs. 
Virtualization enables a new usage model to commodity the elas-
tic computing resources (that is VMs), for example pay-as-you-
use cloud service. A virtualization system, such as Xen, often over 
commits the CPU resources (that is the total number of virtual 
CPUs is larger than physical CPUs), which depends on a hypervi-
sor scheduler to map the physical CPUs to different virtual CPUs 
in a timeshared manner. However, the performance and scalability 
of virtualization solution for server consolidation and the impact 
of its scheduling policy, on modern massive advanced server, 
remains to be challenging. 

SPECvirt_sc2010 is a standard benchmark to measure the ca-
pability of virtualization solution for server consolidation [7]. It 
runs as many as possible tiles (a set of VMs) of typical server 
workloads, consisting of a Web server, a mail server, and a JAVA 
server to complete certain amount of transactions, and use the 
number of tiles it can run to indicate the throughput of the virtual-
ized system. The response time, or QoS, is another indicator in 
Specvirt_sc2010, reflecting the fact that most transactions in serv-
er workload are latency sensitive. The performance of 
SPECvirt_sc2010 is critical for a hypervisor targeting server con-
solidation usage model, such as data center and cloud computing 
environment, however, the characterization of SPECvirt_sc2010 
and the impact of hypervisor scheduling on SPECvirt_sc2010, on 
massive advanced server, are not well studied yet. 

In this paper, we conduct a comprehensive study of Xen server 
consolidation capability running SPECvirt_sc2010, and share our 
findings of the performance overhead on massive advanced server, 
and optimizations to improve the performance and scalability of 
Xen from server consolidation perspective. The major contribu-
tions of our work are as follows. 

1) We conduct a comprehensive study of Xen performance and 
scalability characterization running SPECvirt_sc2010 on top 
of a state of the art 2-socket Xeon 5680 system (which is one 
of, if not the most, the advanced servers in massive produc-
tion). The result shows that Xen scales badly (the CPU cycle 
per instruction, or CPI, increases sharply, and the response 
time increases exponentially), when the number of VMs in-
creases (that is the tile number goes up in Specvirt_sc2010). 

2) We present a thorough analysis on the virtualization overhead, 
and identify the scalability issue as a result of large memory 
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and cache footprint, due to the unnecessary high frequent con-
text switch. The further analysis reveals that the high frequen-
cy is a result of a) inefficient processing of interrupts, and b) 
over aggressive hypervisor scheduling. 

3) Optimizations to improve the efficiency of interrupt pro-
cessing and to limit the over aggressive hypervisor scheduling, 
are proposed. Dynamically-allocable tasklets is used to elimi-
nate the unnecessary involvement of hypervisor scheduling to 
idle VM context, and adaptive hypervisor scheduling rate con-
trol is adopted to limit the context switch if the scheduling 
frequency exceeds certain threshold. 
The results show the improved memory and cache efficiency 

with reduction of the overall CPI, resulting in the improvement of 
server consolidation capability by 15% in SPECvirt_sc2010. In 
the meantime, our optimization achieves an up to 50% accelera-
tion of service response, which greatly improves the QoS of Xen 
virtualization solution. 

The rest of this paper is organized as follows. Section 2 pre-
sents the background of server consolidation including a brief 
introduction of Xen VMM and the consolidation workload we use. 
Section 3 introduces the experimental configuration. In Section 4, 
we present the detailed overhead breakdown, followed by the 
illustration of two optimizations to address the high frequency 
context switch issue in Section 5.  The performance benefits of 
our optimization are shown in Section 6. Section 7 describes re-
lated work, and Section 8 concludes this paper. 

2. Background 

2.1 Server Consolidation 

Multiple virtual machines are allowed to run on the same physical 
hardware in system virtualization, so as to increase system utiliza-
tion and thus reduce cost. Server consolidation reduces the num-
ber and variety of components in the environment. This may not 
be limited to servers but also to other physical elements such as 
tapes, disks, network devices and connections, operating systems, 
and peripherals involved in the server consolidation. It becomes 
easy to move and change systems, applications, and peripherals 
with fewer hardware and software standards to manage. Although 
the physical hardware is shared across the virtual machines, the 
virtual machines are completely isolated from each other and each 
virtual machine runs a separate operating system instance with its 
own applications. 

Performance characterization and analysis for server consoli-
dation [8] [9] [11] [32] is important for deployment with fair shar-
ing of resources, providing feedback to IT administrators and 
platform architects, projecting and optimizing future platform 
performance and so on. In this paper, SPECvirt_sc20101 is adopt-
ed for performance analysis of server consolidation. 

2.2 Xen Virtual Machine Monitor 

A virtual machine monitor [12] [13] [14] [15] allows multiple 
operating systems to share a single machine safely. It isolates 
operating systems and controls accesses to hardware resources. 
We use open source VMM, Xen, which is widely adopted as a 
                                                 

1  The benchmark runs discussed here are for our research and non-
compliant with the SPEC run-rules. The data presented here are only to 
illustrate the points discussed in this paper and cannot be compared with 
any other SPECvirt_sc2010 results 

representative VMM in both academia and industry, for our study. 
The organization of Xen [6] is depicted in Figure 1. Xen consists 
of two elements: hypervisor and the driver domain. The hypervi-
sor provides an abstraction layer between the guest operating 
systems and the actual hardware. The driver domain, a privileged 
VM, called domain0, manages other guest VMs, called domainU. 
One of the major functions of the driver domain is to conduct real 
I/O operations to a bare device on behalf of domainU to imple-
ment a reliable I/O architecture [16] [17] [18] [19].  With hard-
ware assistance, Single Root I/O Virtualization and Sharing (SR-
IOV) [23][24], which enables efficient sharing of a single I/O 
device among multiple VMs, provides a foundation for efficiently 
utilization of I/O resources as reaching near-native I/O perfor-
mance. Although this paper is based on Xen, the problem ad-
dressed here is not limited to this specific hypervisor. We have 
observed the same issue in KVM. 
 

 

 
 

Figure 1. The Xen virtual machine environment 
 

2.3 SPECvirt_sc2010 Benchmark 

 

 
 

Figure 2. SPECvirt_sc2010 block diagram 
 
 
SPECvirt_sc2010 [7] is SPEC's first benchmark addressing per-
formance evaluation of datacenter servers used in virtualized 
server consolidation. The benchmark utilizes several SPEC work-
loads, to complete certain amount of transactions, representing 
applications that are common targets of virtualization and server 
consolidation as shown in Figure 2. Each of these standard work-
loads is modified to match a typical server consolidation scenario 
of CPU resource requirements, memory, disk I/O, and network 
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utilization. These workloads are modified versions of 
SPECweb2005, SPECjAppServer2004, and SPECmail2008. Scal-
ing is achieved by running additional sets of virtual machines, 
called "tiles", until overall throughput reaches a peak.   One tile 
consists of 6 different hardware-assistant VMs (HVM). All work-
loads must continue to meet required quality of service (QoS) 
criteria. The compliant results are necessary to meet all the Qos 
requirements. Performance metrics (throughputs) are obtained by 
calculating the arithmetic mean of the 3 normalized values per tile 
and summing up the scores for all tiles. 

3. Experiment Configuration 
The server under test is the latest Intel Xeon 5680 server with two 
3.33GHz processors. Each processor has 6 cores, 12 threads with 
Hyper-Threading technology [20] on and 12MB shared L3 cache. 
Xen 4.1.0 is selected as the virtual machine monitor. We allocate 
enough storage and network devices to make sure that there are no 
hardware bottlenecks. One LSI HBA is used to connect to an ex-
ternal disk enclosure. Each tile is assigned 4x64GB Intel solid 
status disk as storage. Due to the public availability of SR-IOV 
network card & iSCSI [33] in data centers and the performance 
advantage of hardware-assisted virtualization solution, we use SR-
IOV & iSCSI [33] in our experiment environment. As depicted in 
Figure 3, all the disk storages are placed at the remote iSCSI tar-
get machine, directly linked through 10 GB network card to the 
server under test. All VMs, running under server side, select 
host’s SR-IOV virtual functions as their networks. Each guest 
accesses its VFs directly. In this way, IO requests from disks are 
exchanged for network bandwidth, walking through the software 
layer with the assistance of SR-IOV and iSCSI. 

 
Figure 3. SR-IOV & iSCSI solution 

4. Characterization and Analysis 
In this Section, we adopt well-designed profiling methodologies 
to thoroughly investigate hypervisor’s overhead and show the 
challenges met under server consolidation. Accordingly, several 
possible solutions are presented as the initial steps in section 5 to 
conquer such challenges. Although this work is based on the Xen 
hypervisor, we believe the analysis methods and challenges raised 
are equally applicable to other hypervisors. 

4.1 Scalability Challenges  

To provide insights into behaviors of server consolidation, we 
present the load scalability of SPECvirt_sc2010 on the latest 2-
way commercial server. As shown in Figure 4, when the system 
load is low, the overall system CPU utilization scales up linearly 
with the system throughput. 2-tile load provides 99% increase in 
CPU utilization over 1-tile and 4-tile achieves 111% CPU utiliza-
tion increase over 2-tile. These numbers indicate relatively good 
CPU utilization scalability. However, 8-tile consumes 219% more 
CPU resources than 4-tile, indicating a sharp increase of CPU 
utilization. The increase ratio becomes even greater at peak per-
formance implying underlying high overhead of scalability as the 
system load is overwhelming. As mentioned in Subsection 2.3, 
SPECvirt_sc2010 workload cares not only about the throughputs, 
but also about QoS.  As illustrated in Figure 4, the total response 
time (geometric mean result of three sub-workload’s response 
time) keeps relatively low until close to the peak throughput from 
0.13ms to 0.32ms (146% increase), an exponential-like increase 
from 8-tile to 9-tile configuration. The dramatic increase of the 
total response time near the peak performance implies potential 
bottlenecks existing with high system load, as the hypervisor is 
unable to function efficiently under such condition. 
 

 
Figure 4. CPU utilization & response time trend with throughput 
 

 
Figure 5. CPU utilization for each VM with throughput 

 
The breakdown of CPU utilization scalability for each VM is 

shown in Figure 5 (Idle server is not illustrated here due to low
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CPU utilization number). VMs of webserver and JAVA applica-
tion server scale worse than those of database server and infra-
structure server when system load becomes heavy. Interestingly, 
both webserver and java application server are assigned two virtu-
al CPUs for a single VM to satisfy CPU requirements, while the 
rest VMs are assigned only one virtual CPU due to less consump-
tion. One possible reason is that more number of virtual CPUs 
brings the extra overhead such as the inter-communication be-
tween different virtual CPUs, which causes the worse scalability 
of related VMs. It also implies the efficiency of current hypervisor 
that manages multiple virtual CPUs drops, as the number of VM 
increases. 

Turning our attention to the cause of the high CPU utilization 
consumption with heavy system stress shown in Figure 4, the 
overall system CPU utilization is divided into four different parts 
– guest user, guest kernel, hypervisor and domain0. Because these 
four parts are running in different privilege levels – the guest part 
(HVM guest) runs in non-root mode and hypervisor and domain0 
(PV guest) run in root mode – we can easily breakdown them by 
programing the hardware performance counter separately. Guest 
parts are the valuable work while hypervisor and domain0 are so 
called virtualization overhead. As illustrated in Figure 6, all com-
ponents, except domain0, increase sharply as tile number increas-
es. At the peak throughput, hypervisor part occupies more than 25% 
of the total CPU cycles – much higher than expected.  It is equally 
to say that the hypervisor needs to occupy 6 cores of the total 24 
logical cores at the peak performance, which is identified to be a 
big overhead.  

 
Figure 6. System CPU utilization breakdown 

Equation 1 shows cycles per throughput are decided by the 
multiplicative of Cycles per instruction (CPI) and Path Length 
(PL). CPI refers to the number of clock cycles that happens when 
an instruction is being executed, used to describe a processor's 
performance from one aspect. PL refers to instructions required 
per transaction, deemed as a measurement of the software’s per-
formance on particular computer hardware. As displayed in Fig-
ure 7, the trend of PL keeps relatively flat when system load is 
low, but increases slightly (5.9% increase from 4-tile to 8-tile), 
when reaching the peak throughput, implying less efficient soft-
ware execution when system stress is heavy. Whereas CPI in-
creases sharply as throughput grows (88% increase from 1-tile to 
9-tile). Obviously, the dramatic increase of CPI is the major con-

tributor for non-linear CPU utilization increase of both guest and 
hypervisor parts.  
 

                     Cycles/Throughput = CPI X PL                        (1) 

Among various aspects which may impact the value of CPI, 
data from hardware performance counter points out that the in-
crease of cache miss rate such as LLC and TLB, depicted in Fig-
ure 8, plays the vital role to the increase of overall CPI. Cache 
miss rate of LLC increases by 2.67x and that of TLB increases by 
0.38x from 1-tile to 9-tile. High cache miss rate was caused by 
larger memory and cache footprint under server consolidation as 
VM number goes up. In other words, as the number of consolidat-
ed VMs grows, the memory footprint consumed by both VMs and 
hypervisor becomes greatly increased so that current hardware 
resource like hierarchical cache and TLB cannot process efficient-
ly, resulting in slow instruction execution. Besides the hardware 
approach of enlarging the cache size, there are software ways to 
reduce the footprint, such as to merge the same page together as 
KSM [35]. Also a well-tuned scheduler to achieve better context 
switch frequency – satisfy latency/throughput at the same time – 
is another software approach. 

Without effective cache usage on multicore platform, such 
caches can cause thrashing that severely degrades system perfor-
mance. Some cache-aware schedulers have been discussed and 
developed recently in the native system [34]. However, in virtual-
ization environment, it becomes more complex as the intrusion of 
isolation of various VMs running to share the same hardware 
resource. A well-designed scheduler in virtualization should not 
only efficiently isolate various VMs to make them access the un-
derlying hardware resource fairly, but also treat the hardware as a 
whole to maximize the throughput. For example, as one of the 
practical implementations, KSM allows to share equal anonymous 
memory across different processes and in turn also across differ-
ent KVM virtual machines. The object of KSM is to increase 
memory density, or conversely, to reduce the memory size with 
the same number of running VMs 
 

 
Figure 7. CPI and Path Length trend with throughput 

 
 
To resolve the feckless usage of cache in virtualization, con-

trolling context switches frequency by eliminate unnecessary ones 
is another important approach to be worthy considered. Unneces-
sary context switches result in unnecessary cache flush, thus caus-
ing extra overhead. Low frequency of context switch among VMs 
will produce small overhead of hypervisor and assure cache hot 
thus reduce cache footprint. But it may result in the QoS issue, 
especially for latency sensitive workloads. High frequency of 
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context switch will otherwise satisfy the QoS requirement to some 
extent, but impair the cache performance thus consume high CPU 
utilization. So how to select the right frequency is the key issue 
scheduler should solve. In section 5, we will show in detail that 
current scheduler in virtualization lacks considerations to elimi-
nate unnecessary context switch and impairs the overall perfor-
mance. Meanwhile, as the first step to conquer these challenges, a 
scheduler with fine control of context switch frequency is imple-
mented to showcase the benefits from both the CPI and PL sides. 
 

 
Figure 8. Cache miss rate trend with throughput 

 
 

4.2 Hypervisor Overhead Breakdown 

Scalability issue, as observed in Figure 4, is primarily caused by 
the sharp increase of CPI, which can be mitigated by either hard-
ware or software ways. We mainly focus on software solutions, so 
that it’s worthwhile to dig into the behaviors of hypervisor to find 
out the clues.  

To further investigate the hypervisor’s overhead, we need to 
firstly clarify the terminology – VMExit. When the running VMs 
are HVM guests, a VMExit marks the point at which a transition 
is made between the VM currently running and the hypervisor that 
executes the sensitive instructions on behalf of guest system. In 
other words, when a VMExit event happens, related physical CPU 
migrates from non-root mode to root mode, henceforth, hypervi-
sor performs its system management functions according to the 
VMExit reasons. With the assistance of tracing tools – XenTrace 
– we breakdown the hypervisor’s overhead (25% of the overall 
system CPU cycles as shown in Figure 6) according to such cate-
gories (56 VMExit reasons in total). Thus it helps to detect which 
VMExit event causes the big overhead in hypervisor. 

Figure 9 depicts hypervisor’s detailed CPU cycles breakdown 
according to the VMExit number at peak performance. The 
VMExit event of ‘External Interrupt’ consumes the largest portion, 
more than 12% CPU cycles. The following major parts are ‘APIC 
Access’, ‘HLT’ and ‘IO instruction’ which consume 4.78%, 3.73% 
and 2.94% respectively.  The rest 52 VMExit only contribute less 
than 2% CPU utilization. Regarding such distribution, the major 
overheads of hypervisor are centralized in a small amount of 
VMExit events. In the following paragraphs, we will take a look 
into the reasons of top three VMExit events and propose possible 
ways to reduce the overhead. 

 
Figure 9. Hypervisor CPU utilization breakdown according to 
VMExit number  
 
 
a)  ‘External Interrupt’ VMExit Event 
‘External Interrupt’ VMExit event responds to the handling pro-
cess of system interrupt requests (IRQs) including handler’s top 
and bottom halves. In our experiment, the software emulated net-
work and disk are passed through by SR-IOV NIC and iSCSI disk 
solutions, which produce lots of network IRQs. It is readily to 
understand that the ‘External Interrupt’ VMExit event composes a 
large portion of the hypervisor’s overhead.  

IRQs could happen at any time in the following cases: a) sys-
tem ‘Halt’ period; b) virtual CPU running state or c) ‘Hypervisor’ 
running state. Only in case b) will system generate the ‘External 
Interrupt’ VMExit event and transition from guest to hypervisor 
context to handle it. In other cases, system enters hypervisor di-
rectly without such event happening. Therefore, as system load is 
heavy, interrupts are more probably to interrupt current virtual 
CPU’s running state. One issue emerges here for external interrupt 
handling process. If the current running virtual CPU, disrupted by 
the external interrupt, is the target virtual CPU to which external 
interrupt delivers, a virtual IRQ will be injected directly when this 
virtual CPU enters from hypervisor to its running state. However, 
if the target VM is running on a different physical CPU, an inter-
processor interrupt (IPI) will be imperatively sent to the target 
physical CPU to interrupt it and inject virtual IRQ. In addition, if 
the target virtual CPU is not running, a scheduling request should 
be raised to wake it up. Such extra procedures, caused by IPIs and 
scheduling requests, will possibly aggrandize and thus impair the 
running streamline of VMs and cause performance turbulence, 
especially under the condition with large scales of VMs. From the 
tracing data at peak performance, lots of IPIs and scheduling 
events, happening during the handling process of ‘External Inter-
rupt’ VMExit, demonstrate such problem. Sending interrupts to 
the wrong core or waking up target virtual CPU frequently are the 
major causes of the high overhead in processing ‘External Inter-
rupt’ VMExit. 

In [30], it proposed an interrupt migration method to avoid 
most of IPIs by marking target core status at virtual CPU migra-
tion. Interrupts are deliver to the right core with this information 
except for the condition that the target VM migrates to another 
core, in which an IPI is needed to be sent to the original core to 
clear the old vector. Consequently, if the frequency of virtual CPU 
migration is high with lots of VMs consolidating on one system, 
the mitigation degree will be relatively small. In such situation, 
the scheduler should comply with the handling process of external 
interrupts to balance both efficiency and fairness. As a practical 
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example, we enhance current Xen schedule’s capability in section 
5 to overcome the scalability issue caused by excessive schedul-
ing during external interrupt handling process. 
b) ‘APIC Access’ VMExit Event 
Accesses to the APIC-access page inside the guest VMs are con-
sidered as virtualized APIC accesses, causing VMExit event dur-
ing which register access operations, such as EOI and ICR, are 
emulated by hypervisor. The procedure of software emulation 
consumes lots of CPU cycles as shown in Figure 9. In [30], it is 
observed that, EOI access accounts for most percentage of all 
kinds of ‘APIC Access’ emulations under SR-IOV condition. By 
passing instruction fetch/emulation stage, it shortens the code path 
of vEOI emulation greatly, resulting in decrease of total CPU 
usage. However, the overhead of ‘APIC Access’ VMExit is still 
high when the number of IRQs is large for consolidation work-
loads. 
c) ‘HLT’ VMExit Event 
‘HLT’ VMExit event occurs when the current VM is idle and 
executes HALT instruction. Hypervisor marks the current VM’s 
state as ‘blocked’ and enters scheduling procedure. If there are no 
available VMs to run at this time, system will enter idle state. The 
CPU cycles consumed in ‘HLT’ VMExit as shown in Figure 9 
were calculated by eliminating the idle state. It is the real over-
head consumed by hypervisor to process scheduling. For CPU 
intensive workloads, rare number of ‘HLT’ VMExit events is 
triggered due to long running time slice. Whereas for IO intensive 
and client-server type workloads, such as SPECvirt_sc2010, large 
number of ‘HLT’ VMExit events is produced due to intermittent 
running-state exchanges of virtual CPUs. Apparently, scheduling 
work is considered as the vital factor to reduce the overhead in 
this process. For example, if the pattern of tasks running inside 
VMs can be detected, then a deliberate scheduling scheme can be 
carried out to maximize the efficiency of cache usage.  

The above analysis of hypervisor’s behaviors demonstrates 
that scheduler is one of the vital factor in the constitution of virtu-
alization overhead. Current scheduling scheme in Xen shows 
bottlenecks on the massive advanced system with heavier load 
(more VMs and heavier stress) as shown in Figure 4. In the fol-
lowing section 5, a close analysis related to scheduling challenges 
will be presented with specified identification. Then two optimi-
zations are presented to showcase the performance benefits. 

5. Optimization Methods 
In this section, we analyze the performance of Xen’s credit sched-
uler and propose two solutions, dynamically-allocable tasklets and 
context-switch rate controller, to optimize the scalability perfor-
mance. The result shows the improvement of server consolidation 
capability by 15% in SPECvirt_sc2010. In the meantime, our 
optimization achieves an up to 50% acceleration of service re-
sponse. 

5.1 Challenges in Scheduler 

In order to exactly identify the software scalability bottlenecks, 
code level profiling tools are necessary. OProfile is a system-wide 
profiler for Linux systems, capable of profiling all running code at 
low overhead. It is based on statistical profiling – continually 
sampling currently executing code at every fixed hardware events. 
Large set of sample approximating to the real hardware event 
distribution are employed. Xenoprofile [14] extends to Xen and 
Oprofile to fully profile across multiple domains and cover code 
in user processes, kernel and hypervisor. We strengthen Xenopro-

file’s functionalities by enabling call-graph to obtain the full pic-
ture of callees constitution for specified functions. As shown in 
Figure 11, for each function entry in the left column, the right side 
functions are called by this entry. We also see a special entry with 
a ‘[self]’ marker. This records the normal samples for the function 
itself, but the percentage becomes relative to all callees. This al-
lows comparing time spent on the function itself with that on 
functions it calls. In order to reduce the profiling overhead, we 
choose 4 as the call-graph depth. 

As shown in Figure 10, cycles of top four functions increase as 
system load and throughput grow. It makes sense for 
‘vmx_asm_do_vmentry’ to consume the biggest part of CPU re-
source due to the primary path walked when the system transits 
from VM to hypervisor. The ‘Schedule’ function consumes the 
second largest part. Moreover, the following functions, such as 
‘do_softirq’ and ‘context_switch, are all related to the scheduling 
process. For example, the majority amount of ‘softirq’ is raised to 
trigger the scheduling process as listed in Figure 11.  
 

 
Figure 10. Top functions call-graph trend with throughput 

 

 
Figure 11. Top hot functions call-graph distribution 

 

vmx_vmexit_handler (38.80%)
do_softirq (37.57%)

vmx_asm_do_vmentry
(root) 5.83%

vmx_intr_assist (11.47%)

vmx_asm_do_vmentry [self] (3.37%)
Others (3.04%)

context_switch (51.48%)
csched_schedule (27.18%)

schedule (root) 3.69% stop_timer (5.54%)
schedule [self] (5.19%)
Others (10.62%)

schedule (81.44%)
timer_softirq_action (6.25%)

__do_softirq (root) 3.57% _spin_unlock_irq (5.35%)
__do_softirq [self] (1.56%)
others (5.40%)

__do_softirq (95.69%)
rcu_pending (1.44%)

do_softirq (root)  2.96% do_softirq [self] (1.23%)
schedule (0.87%)
others (0.78%)
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By tracing each scheduling process from the beginning to the 
end, cycles utilized by the context switch procedure are obtained. 
Table 1, cycles consumed by the context switch process occupy 
more than 27% of total hypervisor cycles at peak performance. 
From the frequency side, data in Table 1, collected by counting 
based tools, shows the procedure of scheduling (Sched: scheduler) 
is triggered 29 thousand times per second per physical core, and 
26 thousand of which cause context switches (Sched: context 
switches). Context switch here refers to the process of de-schedule 
the current running virtual CPU and schedule in the next virtual 
CPU. One question is that is it reasonable to trigger so many con-
text switches – approximately 26 thousand per second for one 
physical thread at peak performance? Stated differently, the aver-
age running tile slice for a virtual CPU once scheduled in is far 
less than tenth of a microsecond. 

Table 1. Scheduler events number & CPU utilization at peak 

 

From the cause number distribution of context switch shown in 
Figure 12, most of the context switches take place in the ‘External 
Interrupt’ VMExit events, constituting 65% of the total number. 
Subsequently, 21% context switches occur in the ‘HLT’ VMExit 
events. Since ‘HLT’ VMExit occurs when the current VM is idle 
and executes HALT instruction, hypervisor primarily activates the 
scheduling process. However, the high frequency of context 
switches in the ‘External Interrupt’ VMExit events is unreasona-
ble. From the code path of handling pass-through ‘IRQ’ (produced 
by SR-IOV devices) in Table 2, hypervisor raises the ‘SCHED-
ULE_SOFTIRQ’ to trigger a scheduling operation during ‘Exter-
nal Interrupt’ handler.  Thus, system switches to the idle virtual 
CPU’s context to process such tasklets. Basically, the idle virtual 
CPU shares the same context as the original one so that the over-
head should be small. However, if the number of external inter-
rupts is large enough, such kind of transition overhead cannot be 
ignored anymore. 

 
Figure 12. The Cause of Context switch 

 
 

On the other hand, in virtualization environment, all external 
interrupts are handled by hypervisor that physical IRQs designat-

ed to some VMs are injected as virtual IRQs. Correspondingly, 
hypervisor kicks related VCPUs by raising scheduling requests 
combined with IPIs in some conditions, as discussed in section 4.2. 
Therefore, if the number of IRQ is very huge, the scheduling hap-
pens more frequently which explains the scheduling distribution 
in Figure 12. For current scheduler in Xen, there is no scheme to 
control the scheduling rate to eliminate the unnecessary schedul-
ing requests so as to cause high frequency of context switch. 
 

Table 2. IRQ pass-through delivery code path 

 
 

Therefore, scheduler in Xen meets bottlenecks, which origi-
nate from the following two aspects: a) inefficient interrupt han-
dling process mechanism and b) lack of context switch frequency 
control. In next paragraphs, as the first step to conquer the sched-
uling challenges for virtualization under server consolidation, two 
optimizations are proposed, aiming to reduce the context switch 
frequency thus improve the overall throughput. 

5.2 Dynamically-allocable tasklets 

Considering the first bottleneck, since not all tasklet users need to 
run in virtual CPU context (more specifically, the idle virtual CPU 
context), the best fix is to make it per-tasklet configurable. Based 
on what we observed, the method of dynamically-allocable task-
lets is devised. In this new mechanism, tasklets are dynamically-
allocable tasks, running in either virtual CPU context or in softirq 
context on at most one CPU at a time. Softirq versus virtual CPU 
context execution is specified during per-tasklet initialization. 
This method avoids all tasklets running in virtual CPU context at 
the same time. Consequently, a number of unnecessary context 
switches is expected to be reduced. 

By adopting the dynamically-allocable tasklets method, the 
number of context switches at peak performance is reduced by 
54%, which is a significant improvement to the efficiency of in-
terrupt processing, as shown in Table 3. However, the scheduling 
number is still high, more than 13k per second per thread, which 
means the average running time slice for one virtual CPU is still 
below 0.1 million second. A context switch rate controller is fur-
ther proposed to solve this issue in the next paragraph. 
 
Table 3. Context switch number comparison at peak performance 

 
 

5.3 Context-Switch Rate Controller (CSRC) 

Three different CPU schedulers were introduced in recent years – 
Borrowed Virtual Time (BVT) [28], Simple Earliest Deadline 
First (SEDF) [10] and Credit Scheduler [26] [29] – all of which 
allow the user to specify CPU allocation via CPU share (weights). 
The credit scheduler, Xen’s latest scheduler, is a proportional 
share scheduler with a load balancing feature for SMP systems. 
The virtue of the credit scheduler is the simplicity of the operation 
with reasonable fairness guarantee and performance.  

p
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Figure 13 displays the flow of Xen’s credit scheduler. There 
are two major parts in this flow: 1) pick up the next running virtu-
al CPU and 2) do context switch when selecting a new different 
running virtual CPU. Since credit scheduler sorts run queue ac-
cording to priority instead of credit, the current running virtual 
CPU is added to the tail of the run-queue with the same priority. 
Therefore, if the run-queue with the same priority as current virtu-
al CPU is not empty, the current virtual CPU will be scheduled 
out and the head virtual CPU in the run queue will be scheduled in. 
It explains the data in Table 3 why the number of context switch 
(12006) is very close to the number of scheduler triggered (13668). 
At peak throughput, the numbers of virtual CPU and physical 
CPU are in the high ratio 60:24, so it is possible that there are 
runnable candidate virtual CPUs in the run-queue as the schedul-
ing process is triggered. In this condition, the current virtual CPU 
is more probably to be scheduled out, following the context 
switch process. 

 
Figure 13. Flow of credit scheduler 

Considering excessive number of hypervisor scheduling in 
Xen’s current scheduler, we carry out one proposal to reduce the 
scheduling’s overhead by controlling the frequency of context 
switch, called Context-Switch Rate Controller (CSRC). The basic 
philosophy is to reduce the context switch number, if possible, 
when the rate of VCPU scheduling exceeds the threshold. Two 
criterions are presented here: 1) to skip the current scheduling 
process, if the frequency of context switch is bigger than the 
threshold during last period (10 million second) under the condi-
tion that the last running virtual CPU is still runnable (not 
blocked). The frequency number, counted during the last 10 mil-
lion second period is applied to judge whether the scheduling 
frequency is too high. 2) if the last running virtual CPU runs less 
than some time slice (1million second for example) and is still 
runnable, to skip this scheduling process, aiming to elongate the 
running slice for specified virtual CPUs whose running time slice 
is too short. 

Taking the flow in Figure 14 for example, the current running 
virtual CPU is vcpu1 and the system is under hypervisor’s envi-
ronment. When the scheduler is triggered at some point, it will 
first judge whether the frequency of scheduling is too high. If yes, 
it will check whether vcpu1 is still runnable. If it is still yes, 
vcpu1 will return directly to skip the following scheduling process. 
If the scheduling frequency is below the threshold, it will check 
whether vpu1’s last running slice is less than 1 million second, if 

so and vcpu1 is still runnable, it will return to continue its running 
stage directly. 

After applying the CSRC method, the number of context 
switch at peak performance (with CSRC method, system obtains 
higher performance than previous result) reduces slightly as 
shown in Table 4, but the number of context switch reduces al-
most by 20%, demonstrating CSRC method effectively reduces 
the frequency of context switch. Detailed performance benefits, 
brought by the proposed methods, are to be exhibited in section 6. 
 
 

 
Figure 14. Proposals of SRC scheme 

 
 

Table 4. Context switch number comparison at peak performance  

 
 
6. Evaluation 
As depicted in Figure 16, by adopting the method of dynamically-
allocable tasklet, the CPU utilization decreases from 92% to 89% 
comparing to the original result at peak performance (9-tile). After 
supplying CSRC method, the system CPU utilization decreases 
even more, about 81% at the same throughput comparing to the 
original peak results. Furthermore, due to lower CPU utilization, 
more loads can be added to achieve higher throughput with CSRC. 
When considering the compliant results – achieving QoS require-
ments – the peak performance (throughput per CPU utilization) 
with CSRC is improved by 15% comparing to the original result, 
as shown in Figure 15. There is no obvious performance change 
when system load is light. SPECvirt_sc2010 workload takes both 
throughput and QoS into consideration. In Figure 17, it reveals 
that proposed methods of dynamically-allocable tasklets and 
CSRC shorten the response time significantly when close to peak 
performance, explaining that such methods achieve higher 
throughput with qualified QoS. It is also observed that, when sys-
tem load is light, the response time of proposed methods is slight-
ly higher than original results due to relative less frequent 
scheduling when applying CSRC method. However it has little 
influence on the overall performance. 
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Figure 15. Peak throughput per CPU utilization comparison 

 
 

 
Figure 16. Proposals of dynamically-allocable tasklets and CSRC 
improve reduce CPU utilization and improve overall throughputs 
 
 

 
Figure 17. Proposals of dynamically-allocable tasklets and CSRC 
shorten the response time significantly when close to peak per-
formance 
 

As displayed in Figure 18, PL of the optimized CSRC method 
at peak performance (9-tile) reduces by 4%, implying more effi-

cient software execution – less number of context switches reduc-
es the instructions required for each function. From the CPI side 
shown in Figure 19, CPI of optimized CSRC method obtains 6% 
reduction than original result at 9-tile. Less number of context 
switches reduces the cache miss ratio – 6% reduction for LLC and 
15% for TLB, resulting in lower CPI. All above prove that CSRC 
benefits from both hardware and software aspects. 
 
 

 
Figure 18. Path length trend comparisons 

 

 
Figure 19. CPI trend comparisons 

 
Finally, from the CPU utilization breakdown of different privi-

lege levels as shown in Figure 20, both guest and hypervisor parts 
obtain lower CPU utilization when applying CSRC methods. CPU 
utilization at the same throughput (9-tile) reduces significantly 
from 92% to 81% by controlling the context switch rate. The hy-
pervisor part contributes 6% and the guest part contributes the 
other 5%. As discussed above, CPU utilization reduction of guest 
part is primarily caused by the lower CPI and hypervisor part is 
caused by both PL and CPI. 

To sum up, integrated with the two methods proposed in this 
section, the overall system throughput of SPECvirt_sc2010 is 
improved by 15%. The optimized methods obtains lower CPU 
utilization by reducing both CPI and PL, benefited from less 
number of context switches. The results show that, current fre-
quency of context switch is so high that impair the server consoli-
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dation’s performance, which can be partially solved by fine-
grained scheduling rate controller. There are still more considera-
tions for scheduler in virtualization, such as to reduce memory 
and cache footprint, to be aware of running tasks in running VMs, 
to fairly and efficiently allocate and utilize the underlying hard-
ware resources and so on. 
 
 

 
Figure 20. CPU utilization breakdown comparisons at same 
throughput (9-tile) 
 
7. Related Work 
Analyzing and improving virtual consolidation performance is a 
popular topic in the research community. There are many studies 
performed to improve virtualization’s performance [29] [36] [31] 
[27]. In software, Liao et al. [29] [36] proposed some scheduling 
optimizations to improve I/O performance. Besides software op-
timizations, hardware-assisted solutions, such as VMDq [31], self-
virtualized devices [27] and SR-IOV [24] are proposed in virtual-
ization to achieve high-performance. 

Studies for better hypervisor resource scheduler [19] [25] [28] 
are covered in several previous works. Using Xen as hypervisor, 
Cherkasova et al. [25] studied the impact that three different 
schedulers have on the throughput of three I/O-intensive bench-
marks. In addition to the Credit and SEDF schedulers, their study 
also addressed Xen’s BVT [28] scheduler. They evaluated how a 
single instance of these applications was affected by the choice of 
scheduling policy. In effect, they evaluated how the scheduler 
divided the processing resources between the guest domain and 
the driver domain. Ongaro et al. [19] explored the relationship 
between domain scheduling in a hypervisor and I/O performance 
using multiple guest domains concurrently running different types 
of applications. In addition, their work examined a number of new 
and existing extensions to Xen’s credit schedule targeted at im-
proving I/O performance. Finally, their study showed that latency-
sensitive applications perform best if they are not combined in the 
same domain with a computing intensive application, but instead 
are placed within their own domain. 

Compared to previous research work leveraging simple work-
load and hardware, we conducted our measurements and analysis 
with the state of art hardware. The workload we used is also mod-
ified through complex industry benchmark, thus representative 
enough of real virtual consolidation environments. We believe our 
performance data and conclusion are more realistic and can be 
used as a reference for real IT product system design. 

8. Conclusion and Future Work 
In this paper, through analyzing performance scalability of a rep-
resentative consolidation workload on the latest 2-way X86 multi-
ple core architecture, we identify both challenges and 
opportunities for virtualization performance under server consoli-
dation condition: i) large memory and cache footprint caused by 
high frequency context switch brings in notable bottlenecks, and ii) 
the current scheduler can be improved with a finer control algo-
rithm. Regarding these, we propose two potential optimization 
opportunities: applying a dynamically-allocable tasklets method 
brings in great context switch number reduction and a context 
switch rate control prototype results in total 15% performance 
improvement and up to 50% acceleration of service response. 
However, there is still great headroom for improvement. In future 
work, a guest-level sensitive scheduler considering its internal 
workloads and with finer control on priorities is arguably better in 
allocating the hardware resources between virtual machines to 
achieve a better overall system level performance. Long term 
fairness between virtual machines should also be considered in the 
scheduler design. 
 

Acknowledgements 
We would like to thank Keir Fraser for his contributions to com-
pose the dynamically-allocable tasklets algorithm for this study.
 

References  
[1] Intel Corporation. Terascale computing.  

http://www.intel.com/research/platform/terascale/index.htm. 
[2] Intel Corporation. Intel Develops Tera-Scale Research Chips.  

http://www.intel.com/pressroom/archive/releases/20060926corpb.ht
m. 

[3] VMware. http://www.vmware.com/. 
[4] Microsoft Virtual Server, http://www.microsoft.com/hyper-v-server/ 
[5] Kernel Based Virtual Machine http://www.linux-kvm.org/ 
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. 

Neugebauer, I. Pratt, and A. Warfield. Xen and the art of virtualiza-
tion. In Proceedings of the Symposium on Operating Systems Prin-
ciples (SOSP), Oct. 2003 

[7] SPECvirt_sc2010 http://www.spec.org/virt_sc2010/ 
[8] P. ApparaoNewell, Towards Modeling & Analysis of Consolidated 

CMP Servers, Workshop on the Design, Analysis, and Simulation of 
Chip Multi-Processors (dasCMP), 2007  

[9] Jeffrey P. Casazza, Redefining server performance characterization 
for virtualization benchmarking, Intel Technology journal August 
2006 

[10] I. M. Leslie, D. Mcauley, R. Black, T. Roscoe, P. T. Barham, D. 
Evers, R. Fairbairns, and E. Hyden. The Design and Implementation 
of an Operating System to Support Distributed Multimedia Applica-
tions. IEEE Journal of Selected Areas in Communications, 1996 

[11] VMmark http://www.vmware.com/products/vmmark/ 
[12] M. Rosenblum. VMware’s Virtual Platform: A virtual machine 

monitor for commodity PCs. In Hot Chips 11: Stanford University, 
Stanford, CA, August 15–17, 1999 

[13] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. War_eld, and M. 
Williamson. Safe hardware access with the Xen virtual machine 
monitor. In 1st Workshop on Operating System and Architectural 
Support for the on demand IT InfraStructure (OASIS), Oct 2004 

24



[14] A. Menon, J. R. Santos, Y. Turner, G. J. Janakiraman, and W. Zwae-
nepoel. Diagnosing performance overheads in the Xen virtual ma-
chine environment. In Proceedings of the First ACM/USENIX 
International Conference on Virtual Execution Environments (VEE), 
pages 13–23, June 2005 

[15] Selvamuthukumar Senthilvelan and Murugappan Senthilvelan. Study 
of content-based sharing on the xen virtual machine monitor 
http://www.cs.wisc.edu/~remzi/Classes/736/Spring2005/Projects/Mu
ru-Selva/cs736-report.pdf. 

[16] Wiegert, J., et al.: Challenges for Scalable Networking in a Virtual-
ized Server. In: 16th International Conference on Computer Com-
munications and Networks 

[17] A. Menon, A.L. Cox, and W. Zwaenepoel. Optimizing network 
virtualization in Xen. In Proceedings of the 2006 USENIX Annual 
Technical Conference, pages 15–28, June 2006 

[18] L. Cherkasova and R. Gardner. Measuring CPU overhead for I/O 
processing in the Xen virtual machine monitor. In USENIX Annual 
Technical Conference, Apr. 2005 

[19] Diego Ongaro , Alan L. Cox , Scott Rixner, Scheduling I/O in virtual 
machine monitors, Proceedings of the fourth ACM SIG-
PLAN/SIGOPS international conference on Virtual execution envi-
ronments, March 05-07, 2008, Seattle, WA, USA  

[20] Susan J. Eggers , Joel S. Emer , Henry M. Levy , Jack L. Lo , Re-
becca L. Stamm , Dean M. Tullsen, Simultaneous Multithreading: A 
Platform for Next-Generation Processors, IEEE Micro, v.17 n.5, 
p.12-19, September 1997  

[21] Xudong Zheng, Jiangang Duan, Shameem F Akhter, Zhidong Yu, 
Hui Lv, A Consolidation Workload Characterization Study on Mod-
ern Platform, CMG’09 

[22] UHLIG, R., NEIGER, G., RODGERS, D., SANTONI, A. L., MAR-
TINS, F. C. M., ANDERSON, A. V., BENNETT, S. M., KAGI, A., 
LEUNG, F. H., AND SIMTH, L. 2005. Intel Virtualization Technol-
ogy. IEEE Computer. 38, 5, 48–56 

[23] Yaozu Dong, Zhao Yu, Greg Rose: SR-IOV Networking in Xen: 
Architecture, Design and Implementation. Workshop on I/O Virtual-
ization 2008  

[24] DONG, Y., YANG, X., LI, X., LI, J., TIAN, K., AND GUAN, H. 
2010. High Performance Network Virtualization with SR-IOV. In 
Proceeding of the 16th IEEE International Symposium on High-
Performance Computer Architecture (HPCA'10). IEEE, Bangalore, 
India, 271-280 

[25] L. Cherkasova, D. Gupta, and A. Vahdat. Comparison of the Three 
CPU Schedulers in Xen. ACM SIGMETRICS Performance Evalua-
tion Review, 35(2):42–51, 2007 

[26] Credit Scheduler.  
http://wiki.xensource.com/xenwiki/CreditScheduler 

[27] RAJ, H., AND SCHWAN, K. 2007. High performance and scalable 
I/O virtualization via self-virtualized devices. In Proceeding of the 
16th international symposium on high performance distributed com-
puting (HPDC’07). ACM, Monterrey, CA, 179-188 

[28] K. J. Duda and D. R. Cheriton. Borrowed-virtual-time (BVT) sched-
uling: supporting latency-sensitive threads in a general-purpose 
scheduler. In Proceedings of the 17th ACM SOSP, 1999. 

[29] GUO, D., LIAO, G., AND BHUYAN, L. N. 2009. Performance 
characterization and cache-aware core scheduling in a virtualized 
multi-core server under 10GbE. In Proceeding of 2009 IEEE Interna-
tional Symposium on Workload Characterization (IISWC’09). IEEE, 
Austin, TX, 168-177 

[30] Yaozu Dong, Xiaowei Yang, Xiaoyong Li, Jianhui Li, Kun Tian, 
Haibing Guan. High performance network virtualization with SR-
IOV.  HPCA'2010. pp.1~10 

[31] SANTOS, J. R., TURNER, Y. JANAKIRAMAN, G., AND PRATT, 
I. 2008. Bridging the gap between software and hardware techniques 
for I/O virtualization, In Proceeding of the USENIX Annual Tech-
nical Conference (USENIX’08). USENIX, Boston, MA, 29-42. 

[32] Hui Lv, Xudong Zheng, Zhiteng Huang, Jiangang Duan, Tackling 
the Challenges of Server Consolidation on Multi-Core Systems. 
IISWC’2010 

[33] Open-iscsi project http://www.open-iscsi.org/ 
[34] J. Calandrino and J. Anderson. On the design and implementation of 

a cache-aware multicore real-time scheduler. In Proceedings of the 
21st Euromicro Conference on Real-Time Systems, July 2009. 

[35] Arcangeli, Andrea ; Eidus, Izik ; Wright, Chris: Increasing memory 
density by using KSM. http://www.kernel.org/doc/ols/2009/#19-28. 
Version: 2009 

[36] LIAO, G., BHUYAN, L. N., WU, W., YU, H., AND KING, S. R. 
2010. A new TCB cache to efficiently manage TCP sessions for 
Web servers. In Proceeding of the 6th ACM/IEEE Symposium on 
Architecture for Networking and Communication Systems 
(ANCS’10). ACM, San Diego, CA, 1-10. 

[37] Jun Nakajima, Qian Lin, Sheng Yang, Min Zhu, Shang Gao, Min-
gyuan Xia, Peijie Yu, Yaozu Dong, Zhengwei Qi, Kai Chen, Haibing 
Guan: Optimizing virtual machines using hybrid virtualization. SAC 
2011: 573-578 

[38] A. J. Bernstein, Program Analysis for Parallel Processing, IEEE 
Trans. on Electronic Computers". EC-15, pp. 757–62, 1966 

[39] X. Zhang, A. E. Eichenberger, Y. Luo, K. O’Brien , K. O’Brien, 
Exploiting Parallelism with Dependence-Aware Scheduling, In Pro-
ceedings of the 18th International Conference on Parallel Architec-
ture and Compilation Techniques (PACT’09) (Raleigh, NC, USA, 
Sept. 2009), ACM, pp. 193–202 

 

 

25




