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Example: Erlang loss system (Pechinkin, 1987)

Single-resource loss system – original model

I Single-resource loss system with capacity C

I Individuals (customers, calls, or jobs) arrive as Poisson process rate α
and are accepted subject to the capacity constraint

I Individual workloads are i.i.d. with mean 1

I When there are n individuals in the system (n ≤ C ), it works at
rate n, dividing this effort equally (processor sharing)
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Example: Erlang loss system (Pechinkin, 1987)

Single-resource loss system – associated closed model

I As original model, but no arrivals and no departures

I When an individual’s workload is complete, it immediately acquires a
new one and remains in the system

I Hence n independent stationary renewal processes

I System has n individuals with probability π(n), n = 0, 1, . . . ,C

{1)n(¼
t

=3)n()n(¼
t
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Example: Erlang loss system (Pechinkin, 1987)

Single-resource loss system – comparison of closed and
original models

{1)n(¼
t

=3)n()n(¼
t

I Now modify the stationary closed model by allowing arrivals (rate α)
and departures to obtain the original model

I A departing individual leaves the system stationary and an arriving
individual finds the system stationary

I Hence the closed system and the original system are
indistinguishable—and so the latter is also stationary—provided

π(n)n = π(n − 1)α
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Single-class networks

Single-class networks: model

Whenever there are n individuals in the system:

I Individuals arrive as Poisson process rate α(n)

I Individual workloads are i.i.d. with mean 1

I When there are n individuals in the system (n ≥ 0), it works at total
rate β(n) (with β(0) = 0), dividing this effort equally (processor
sharing)
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Single-class networks

Single-class networks: result

Theorem
Suppose that the distribution π on Z+ is the solution of the balance
equations

π(n)β(n) = π(n − 1)α(n − 1), n ≥ 1, (1)

and that ∑
n≥0

π(n)α(n) <∞.

Then the distribution π is stationary for the associated number of
individuals in the system.

Further, under the stationary distribution, and conditional on there being n
individuals in the system, the distribution of their residual workloads is the
same as that of n independent stationary renewal processes (with
inter-event distribution that of the original workload).
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Single-class networks

Proof.
Introduce Markovian framework by defining the state of the system at any
time to be the number of individuals together with their residual workloads.

Consider also the modified closed system in which neither arrivals nor
departures are permitted, and in which workloads are continually renewed.

Let (Pt)t≥0 and (P̂t)t≥0 be the semigroups of transition kernels associated
respectively with the original and closed processes.

For any distribution π on Z+, let µπ be the distribution of the closed
system in which π is the distribution of the number n of individuals in the
system, and in which, conditional on n, the corresponding n renewal
processes are independent and stationary. Then, for any π,

µπP̂t = µπ for all t > 0.

But, under the balance condition (1), we have

µπP̂t = µπPt for all t > 0.
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Single-class networks

Single-class networks: generalisation

In the case where we do not have processor-sharing, the same insensitivity
result continues to hold, provided the discipline is symmetric in the sense
of Kelly (“Rev. & Stoch. Networks”).

Essentially departures must be seamlessly substituted for by arrivals (in
terms of probability fluxes) without disruption of the work-sharing
discipline.

Then the stationary distribution π is again as given by the balance
equations (1), and, under stationarity, the residual workload of each
individual is again as given by the stationary residual workload in the
corresponding renewal process.

Example: “last-in-first-out preemptive resume”
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Multi-class networks

Multi-class networks: no transitions between classes

Here, under the same symmetry condition (e.g. processor sharing) the
same insensitivity result again holds.

The stationary joint distribution of the number of calls in each class again
being given by the solution of the corresponding detailed balance
equations.

Example: Multi-class, processor-sharing loss network, in which individuals
are admitted subject to overall capacity constraints.
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Multi-class networks

Multi-class networks: transitions between classes

Here again we require the same symmetry condition with regard to arrivals
and departures in each class (e.g. processor sharing).

However, we now require the transition rates between classes to be such
that, under stationarity, for each state n and for each class i , we have
partial balance between the total flows out of and into class i .

Then again the same insensitivity result holds, the stationary distribution
being given by the solution of the partial balance equations.

Example: processor-sharing Whittle network.

Special case: processor-sharing Jackson network – in which the stationary
distribution has product form.
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Multi-class networks
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