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Introduction

Preliminaries

@ Primary motivation from sensor networks whersensors are
deployed in a geographic area.

o Each sensor node makes a measurement in the area that g;cover
measured value is assumed to be a 1-bit binary data. Noale
bit x; andx = [xq, ..., Xa].

@ A special node, (sink, collector) needs to evaluate

f:{0,1}N - B

whereB is the codmain of and assumed finite but may depend
onn. Typical interest is in max@R), min (AND), parity,
histogram, and, the identity function that wartat sink.
e Symmetric functionsf (xq, . . ., Xy) is invariant to permutations of
X1, ..., Xn.
o Decomposable function§(x) = g(f(x), ..., f(xK))) where
xM ... x®) is a partition ofx.
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Introduction

Preliminaries

@ Nodes communicate over a link;
e In a wired channel, transmission is ‘heard’ by only one reeei
o In a wireless channel all ‘neighbours’ (nodes in spatiakprity)
can decode the transmission, possibly with error. Furtiane of
the neighbours can transmit simultaneously.
@ Ourinterest is in wireless networks; they should exploétsd
reuse for efficiencies.
@ Communication links can be assumed to be noisy or noisefree.
e Many noise models have been considered; here we will conside
theweak noise modelf a ‘binary symmetric channel’ with error
probability exactlye.
@ Objective: Design communication and computation algorih
to achieve the objective—obtafiix) at the sink.
o Performance issues: energy (number of transmissions rand/o

receptions), throughput and delay.
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Introduction

Network Models

Single and multihop networks
@ Single hop, collocated, or broadcast networks: Every naake c
decode transmissions from every other node. Network graph i
fully connected.
@ Multihop networks: Network nodes could be placed on a
‘regular’ grid or they could be randomly deployed.
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Introduction

Protocol

@ Protocol defines a sequence of computations and transméssio

@ Collision free protocol:collisions avoided, sequence of
transmitters may depend on history.

@ Obliviousprotocol: schedule fixed beforehand.
In a network with noisy links.

@ Obliviousprotocol guarantees no collisions.

o Valid protocol: error probability as small as required. Two
variations—arbitrarily small or going to zero as— cc.
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Random, Multihop, Noisefree Networks

Random, Multihop Noisefree Networks

Nodes 12, ... nare randomly distributed ové®, 1]2.
Nodei is located ay; and has datg.

Definex := [X1, ..., %] andy := [y1,...,Yn).

X belongs to a finite set’, e.g.,A = {0, 1}.

We will assumey; is uniformly distributed in0, 1] andx; is
arbitrary.
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Random, Multihop, Noisefree Networks

Random Multinop Networks: Quick Overview of Basics

@ nnodes are uniformly distributed {0, 1)2.

@ Boolean model for network (communication) graph: Nodes at
Euclidean distance less thaphave communicating edge, i.e.,
the communicating graph is a random geometric graph.

@ Communication constraints: A node cannot receive andinéns
simultaneously; Collisions at receiver if more than onetef i
neighbours are transmitting.

o Need connected network; Asymptotic connectivity thredhola

random networkr,, = € (w"’%).

@ User, =0 <\ / k’%) to minimise transmission energy and

maximise reuse. This means localities of aréds,) are like
small colocated networks, each havigglogn) nodes.
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Random, Multihop, Noisefree Networks

Key Background Result

1

EE e EE e

o Tessellatd0, 1]2 into square cells of sid® <\ / k’%) .

@ The number of nodes in each squar®idog n) with high
probability.
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Random, Multihop, Noisefree Networks

Summary of Results for Noisefree Networks

[Giridhar & Kumar,2005]

@ Assume block coding—each node collebtsamples andl(-) is
evaluated foN samples

Single Hop| Random Multihop
Identity e (3) o (3)
Histogram e () © (@)
Type-Sensitive e (1) © (@)
Type-Threshold(min) © (@) © (Iog ﬁ)gn)

Manjunath Distributed Computation



Structure-Free Networks

Motivating Structure-Free Networks

[Kamath & M,2008]

@ Network organisation and clock synchronisation are
requirements of above protocols; organisation can be etgen

o Can we do away with knowledge of structure of the network and
time synchronisation? Use random access (Aloha for MAC.

o What are the tradeoffs for differing levels of structure? To
compute the maxno delay penalty!

@ There will be an energy penalty.
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Structure-Free Networks

Random, Multihop Noiseless Structure Free Networks

@ Nodes know neither their absolute nor relative locationtha
network

@ Nodes therefore, have no idea about the n etwork topology

@ We would also like that the nodes not have their clocks
synchronised;

@ Each node however, knows the total number of nodes
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Structure-Free Networks

Computing MAX Once

Let % be the data bit at Node i angl:= max<i<n Xi.

@ In each slot, Node i transmits with probability=p p,
independently of all other transmissions in the network

o If Node i receives a bit successfully in slottten it sets Xt) to
be this bit, else it setsj¥) = 0

@ Node i initiates ¥{0) = 0 and updates ;Yusing
Yi(t) = max{Yi(t — 1), Xi(t)}

o If Node i transmits in slot,tthen it would transmit
Ti(t) = Yi(t— 1)

o MAX will be known to all nodes if we wait long enough
@ Issue: Time to obtain MAX at sink and suitableandpy.
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Structure-Free Networks

Computing MAX Once

@ An attempt probability op = p, = (kicz2logn)~? results in a
successful transmission lspmenode from a cell in any given

slot with probability atleasps := %e, which is a constant
independent oh

N\ Sinklocsted attne origin

Phasell ~  ------- = Phase Ill
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Structure-Free Networks

Computing MAX Once

Assume sink is located at the origin.

@ All nodes in a cell have transmitted at least onc®tog? n)
time slots w.h.p.

o Now the data has to diffuse to the cells.
o The diffusion to the bottom of square is completed in

O <1 /,ogn> slots w.h.p.

@ Now each column of cells has computed the MAX in the column
and the partial result is available at some node in the bottym

@ The result now diffuses to the sink @ (1 / gn> slots w.h.p.

ProtocolOne-Shot MAX computes the MAX irD <, /,ogn> slots

with probability atleasf1 — —) for any positive constants .
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Structure-Free Networks

Pipelined Computation of MAX

@ Some structure in the network can achieve higher throughput
@ Nodes can compute their hop distance from the sink node;
modulo 3, suffices

Protocol
Let Z(r) be the data at Node i in round The sink wishes to compute
Z(r) = max<i<n Z(r)
Node i transmits in each slot with probability=p p,, independently of
all other transmissions in the network
Each round consists of slots.

@ Transmission: If Node i transmits in slot t of roundthen it
transmits(A;, Bi, Ti(r, t)) where(A;, Bi) = h;
mod 3 Ti(r,t) = max{Z(r —d+h),Yi(r —1)},d = Z isan
upper bound on the hop distance of a node )
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Structure-Free Networks

Pipelined Computation of MAX

@ Reception: If Node i senses an idle or a collision or a succéssf
transmission by a node with hop distance different f(omt- 1),
then it sets Xr,t) = 0O, else it sets Xr, t) to be equal to the dat
bit received. It sets;¥r,0) = 0 at the beginning of the round and
then, updates asilf,t) = max{Yi(r,t — 1), X;(r,t)}. At the end
of the round, it sets;{r) = Y(r, 7).

The sink node, Nod& decodes the MAX as
Z(r —d) = max{Zs(r —d), Ys(r)}

o)
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Structure-Free Networks

Pipelined Computation of MAX

@ Inroundr, the set of nodes at hop distange+ 1) relay the
MAX of the data bits from roundr — d + h+ 1), of all nodes
with hop distance greater thdrto some node at hop distanbe

@ For successful computation of the MAX at roundve require
each node at hop distanhdo have successfully transmitted
atleast once in rountr — d + h).

@ From our analysis of Phase | of Proto¢dhe-Shot MAX, this
will happen w.h.p. ifr = ©(log?n).

The protocol achieves athroughputml( iod? n) .
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Structure-Free Networks

Computing the Histogram Once

@ Each node generates an independent exponential random
variable of mean 1 in each round.

@ In each slot, each node transmits independently with piibtyab
p and listens with probabilityl — p).

o |dentical to MAX except that the truncated, quantised ramdo
number is transmitted in each slot.

Theorem

If all the nodes execute the protod®he-Shot Histogram, then the
histogram(%, 1 is available to all nodes in @n’/2(logn)*/?) slots

with probability atleast(l )(1 - W) and with the following

3+m?
accuracy: e o e % < ﬁ—; < Me’sm e forb=0,1 (dy — 0
as n— oo)

-
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Summary

Structure-Free Networks

One-shot MAX

Structure-Free

Coordinated

Time

o)

oy

Transmissions

n3/2
© (wg7s)

o(n)

Pipelined MAX

Hop Distance

Coordinated

Throughput

© (i)

© (irn)

Transmissions

©(nlogn)

o(n)
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Approximate Computation

Approximate Computation

[lyer, M & Sundaresan,2009]

@ Connectivity requires that= O "’%‘) . This means the
degree of every node 3(logn).

o Degree determines spatial reuse; And hence the throughput.
Ideally, we would like a degree @(1).

@ Operate in the percolation regime.
@ Choose communication rangg \) to satisfy

nr2(\) =\, v n, (4.1)

for a particular\ > A\; where) is the density at which there is
percolation in the Poisson point process.
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Approximate Computation

Percolating Networks

o Can reduce, and yet have an arbitrarily large fraction of the
nodes connected in a giant component.
@ Second largest component can also be precisely characteris

Lemma

Let ry()\) be a sequence satisfying2ih) = A with A\ > \.. For every
d > 0, size of largest component k() of G(Xy; rn(X)) satisfies

1 Lin(A) ‘ }
limsup—logPr{|——~= -1/ >6§; <0
bV e {‘npoow =

and the size of the second largest component L) satisfies

“Ln_g.jpT log Pr{Lon(A) > on} < 0.
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Approximate Computation

A Graph with Bounded Degree

@ The node does not have a bounded degree. But the number of
nodes with large degree is small.

Lemma

For everyd, e > 0, there exists a sufficiently largeand sufficiently
large k such that the sequence of graphsti rn(\)) (indexed by n)
satisfies the following:

(1) The fraction of nodes in the largest component is at l&ast), i.e.,
n~1Lyn(A) > (1 - 4),inc.c. as n— oc;

(2) The fraction of nodes with degree upper bounded by k is at leas:,
i.e., mZn()\) < e, inc.c. as n— oo.

o
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Approximate Computation

A Graph with Bounded Degree

@ For nodes that have degree more than a specified constant, we
can disconnect the excess nodes from the graph and reseale th
transmission range to retain the giant component. We cam sho

Theorem

For everyd > 0, there exists sufficiently large but finitéé and K such
that the sequence of random geometric grapli&Grn()\’)) contains
a subgraph GVy;rp())), where \, C X, with the following
properties:

s The subgraph is connected;
¢ The maximum degree of the subgraph is upper boundet by k
o |Vn|/n>1-4inc.c.

>
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Approximate Computation

Computation on the Graphs with Bounded Degree

Use the algorithms identical to those developed earliehergtaph
with bounded degree.

Theorem

For error free networks, for any € (0,1) ande € (0, 1), there is a
protocol that computes the histogram with the following
performances:
© Pr{ey > 30} < 2= for all sufficiently large n.
@ The refresh rate i©9(1).
© The number of transmissions@n) and the total transmission
energy isO(n'~%2). The number of receptions &(n).

© The delay i®(y/n)

-
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Approximate Computation

Computation on the Graphs with Bounded Degree

@ The computed histogram is only probably approximately exirr
(PAC); the normalised histogram error is at moswdth
probability greater than 1 2=.

@ The PAC relaxation enables us to compute the PAC histogram at
a constant refresh rate.

@ Histogram is computed using the average function with séfre
rate©(1). This is a log logh over the previously best known
algorithm.

@ Any continuous function of the histogram can be computed in a
PAC fashion at refresh rate(1).

o Median and mode are type-sensitive functions but cannot be
computed using this method. Computation of type-threshold
functions may also result in arbitrarily large errors.
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Noisy Links

MAX in Noisy Multihop Networks

@ We can construct a protocol witio order penalty in either
timeor in the number of transmissions.

Theorem (Kanoria & M,2007)

MAX(or OR) can be computed in a noisy RP network by an oblivious

protocol using®(n) total transmissions in a tim® < @)
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Noisy Links

Parity in a Colocated Network

[Gallager,1988]
e Partitionm nodes intan/k groups ofk.
@ Each node transmits its fitimes; each node estimates the value
of the bit of each member of its group using a majority rule.
o Every node estimates the parity of its group from estimateitsf
and transmits this estimate.

Thus estimate of every group is transmittetimes.

@ Each node uses majority rule to estimate parity of each gofup
bits (from thek estimates). And then estimate the parity of the
bits.

@ k should beO(logm) andj = O(logk).

RequiresO (mlog logm) transmissions.

@ Recently shown that this is indeed the optimal scheme by
[Goyal, Saks & Kindler, 2006].
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Noisy Links

Histogram in a Random Planar Network

[Ying, Srikant & Dullerud,2006]
Intra cell: Each cell is a broadcast network. Adapt [Galfef288]

@ Each node transmits its val@(log logn) times.

o Ineach cellO ( poit= ) nodes are selected to broadcast their
estimates of the intra cell histogram.
@ Cell centre decodes these transmissions using a majokgyau
estimate the cell histrogram.
Inter Cell:

@ Use block codes or repetition codes for point-to-point
communication to propagate the aggregated values up tédtre
the sink.

RequiresO (nlog logn) bit transmissions.
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Noisy Links

Histogram in a Random Planar Network

Can we do better tha® (nlog logn) bit transmissions?
No!
Let § be a desired upper bound on the probability fi{akis in error

Theorem (Dutta, Kanoria, M & Radhakrishnan,2008)

Let R< n=¥ for someB > 0. Lets < 1 ande € (0, 1). Then, with
probability 1 — o(1) (over the placement of processors) evémrror
protocol onN (n, R) with e-noise for computing the parity function
@ : {0,1}" — {0, 1} requiresQ2(nlog logn) transmissions.

Manjunath Distributed Computation



Noisy Links

Acknowledgments

C Dutta, TIFR Mumbai

Srikanth K lyer, [ISc Bangalore

S Kamath, formerly IIT Bombay, now at UC Berkeley ’
Y Kanoria, formerly IIT Bombay, now at Stanford

R Mazumdar, Univ of Waterloo

J Radhakrsishnan, TIFR Mumbai

Rajesh Sundaresan, 11Sc Bangalore

Manjunath Distributed Computation



	Introduction
	Random, Multihop, Noisefree Networks 
	Structure-Free Networks
	Approximate Computation
	Noisy Links

