Distributed Computation over Random Wireless Networks

D. Manjunath

Bharti Centre for Communication Department of Electrical Engineering IIT Bombay

9 Jun 2009

A 10

- 2 Random, Multihop, Noisefree Networks
- 3 Structure-Free Networks
- 4 Approximate Computation

э

andom, Multihop, Noisefree Networks Structure-Free Networks Approximate Computation Noisy Links

Preliminaries

- Primary motivation from sensor networks where *n* sensors are deployed in a geographic area.
- Each sensor node makes a measurement in the area that it covers; measured value is assumed to be a 1-bit binary data. Node *i* has bit x_i and x = [x₁,...,x_n].
- A special node, (sink, collector) needs to evaluate

$$f: \{0,1\}^N \to \mathcal{B}$$

where \mathcal{B} is the codmain of f and assumed finite but may depend on n. Typical interest is in max (OR), min (AND), parity, histogram, and, the identity function that wants **x** at sink.

- Symmetric functions: $f(x_1, \ldots, x_n)$ is invariant to permutations of x_1, \ldots, x_n .
- Decomposable functions: $f(\mathbf{x}) = g(f(\mathbf{x}^{(1)}), \dots, f(\mathbf{x}^{(K)}))$ where $\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(K)}$ is a partition of \mathbf{x} .

Random, Multihop, Noisefree Networks Structure-Free Networks Approximate Computation Noisy Links

Preliminaries

- Nodes communicate over a link;
 - In a wired channel, transmission is 'heard' by only one receiver.
 - In a wireless channel all 'neighbours' (nodes in spatial proximity) can decode the transmission, possibly with error. Further, none of the neighbours can transmit simultaneously.
 - Our interest is in wireless networks; they should exploit spatial reuse for efficiencies.
- Communication links can be assumed to be noisy or noisefree.
 - Many noise models have been considered; here we will consider the *weak noise model* of a 'binary symmetric channel' with error probability exactly ϵ .
- Objective: Design communication and computation algorithms to achieve the objective—obtain $f(\mathbf{x})$ at the sink.
- Performance issues: energy (number of transmissions and/or receptions), throughput and delay.

Random, Multihop, Noisefree Networks Structure-Free Networks Approximate Computation Noisy Links

Network Models

Single and multihop networks

- Single hop, collocated, or broadcast networks: Every node can decode transmissions from every other node. Network graph is fully connected.
- Multihop networks: Network nodes could be placed on a 'regular' grid or they could be randomly deployed.

Random, Multihop, Noisefree Networks Structure-Free Networks Approximate Computation Noisy Links

Protocol

- Protocol defines a sequence of computations and transmissions.
- *Collision free protocol:* collisions avoided, sequence of transmitters may depend on history.
- Oblivious protocol: schedule fixed beforehand.

In a network with noisy links.

- Oblivious protocol guarantees no collisions.
- Valid protocol: error probability as small as required. Two variations—arbitrarily small or going to zero as $n \to \infty$.

< / → <

Random, Multihop Noisefree Networks

- Nodes $1, 2, \ldots n$ are randomly distributed over $[0, 1]^2$.
- Node *i* is located at y_i and has data x_i .
- Define $\mathbf{x} := [x_1, ..., x_n]$ and $\mathbf{y} := [y_1, ..., y_n]$.
- x_i belongs to a finite set \mathcal{X} , e.g., $\mathcal{X} = \{0, 1\}$.
- We will assume y_i is uniformly distributed in $[0, 1]^2$ and x_i is arbitrary.

Random Multihop Networks: Quick Overview of Basics

- *n* nodes are uniformly distributed in $[0, 1]^2$.
- Boolean model for network (communication) graph: Nodes at Euclidean distance less than r_n have communicating edge, i.e., the communicating graph is a random geometric graph.
- Communication constraints: A node cannot receive and transmit simultaneously; Collisions at receiver if more than one of its neighbours are transmitting.
- Need connected network; Asymptotic connectivity threshold in a random network: $r_n = \Omega\left(\sqrt{\frac{\log n}{n}}\right)$.

• Use $r_n = c_1\left(\sqrt{\frac{\log n}{n}}\right)$ to minimise transmission energy and maximise reuse. This means localities of areas $\Theta(r_n)$ are like small colocated networks, each having $\Theta(\log n)$ nodes.

Key Background Result

- Tessellate $[0,1]^2$ into square cells of side $\Theta\left(\sqrt{\frac{\log n}{n}}\right)$.
- The number of nodes in each square is Θ(log *n*) with high probability.

4 日 2 4 同 2 4 回 2 4 0

Summary of Results for Noisefree Networks

[Giridhar & Kumar,2005]

• Assume block coding—each node collects N samples and $f(\cdot)$ is evaluated for N samples

	Single Hop	Random Multihop
Identity	$\Theta\left(\frac{1}{n}\right)$	$\Theta\left(\frac{1}{n}\right)$
Histogram	$\Theta\left(\frac{1}{n}\right)$	$\Theta\left(\frac{1}{\log n}\right)$
Type-Sensitive	$\Theta\left(\frac{1}{n}\right)$	$\Theta\left(\frac{1}{\log n}\right)$
Type-Threshold(min)	$\Theta\left(\frac{1}{\log n}\right)$	$\Theta\left(\frac{1}{\log\log n}\right)$

Motivating Structure-Free Networks

[Kamath & M,2008]

- Network organisation and clock synchronisation are requirements of above protocols; organisation can be expensive.
- Can we do away with knowledge of structure of the network and time synchronisation? Use random access (Aloha for MAC.
- What are the tradeoffs for differing levels of structure? To compute the max, no delay penalty!
- There will be an energy penalty.

Random, Multihop Noiseless Structure Free Networks

- Nodes know neither their absolute nor relative locations in the network
- Nodes therefore, have no idea about the n etwork topology
- We would also like that the nodes not have their clocks synchronised;
- Each node however, knows *n*, the total number of nodes

Computing MAX Once

Protocol

Let x_i be the data bit at Node i and $\S := \max_{1 \le i \le n} x_i$.

- In each slot, Node i transmits with probability p = p_n independently of all other transmissions in the network
- If Node i receives a bit successfully in slot t, then it sets X_i(t) to be this bit, else it sets X_i(t) = 0
- Node *i* initiates $Y_i(0) = 0$ and updates Y_i using $Y_i(t) = \max\{Y_i(t-1), X_i(t)\}$
- If Node *i* transmits in slot *t*, then it would transmit $T_i(t) = Y_i(t-1)$
- MAX will be known to all nodes if we wait long enough
- Issue: Time to obtain MAX at sink and suitable r_n and p_n .

Computing MAX Once

• An attempt probability of $p = p_n = (k_1c_2 \log n)^{-1}$ results in a successful transmission by *some* node from a cell in any given slot with probability atleast $p_S := \frac{c_1}{c_2e}$, which is a constant independent of *n*

Computing MAX Once

Assume sink is located at the origin.

- All nodes in a cell have transmitted at least once in $O(\log^2 n)$ time slots w.h.p.
- Now the data has to diffuse to the cells.
- The diffusion to the bottom of square is completed in $O\left(\sqrt{\frac{n}{\log n}}\right)$ slots w.h.p.
- Now each column of cells has computed the MAX in the column and the partial result is available at some node in the bottom row.
- The result now diffuses to the sink in $O\left(\sqrt{\frac{n}{\log n}}\right)$ slots w.h.p.

Protocol One-Shot MAX computes the MAX in $O\left(\sqrt{\frac{n}{\log n}}\right)$ slots

with probability at least $(1 - \frac{k}{n^{\alpha}})$ for any positive constants k, α .

Pipelined Computation of MAX

- Some structure in the network can achieve higher throughput
- Nodes can compute their hop distance from the sink node; modulo 3, suffices

Protocol

Let $Z_i(r)$ be the data at Node *i* in round *r*. The sink wishes to compute $Z(r) = \max_{1 \le i \le n} Z_i(r)$ Node *i* transmits in each slot with probability $p = p_n$ independently of all other transmissions in the network Each round consists of τ slots.

• Transmission: If Node i transmits in slot t of round r, then it transmits $(A_i, B_i, T_i(r, t))$ where $(A_i, B_i) \equiv h_i \mod 3, T_i(r, t) = \max\{Z_i(r - d + h_i), Y_i(r - 1)\}, d = \frac{2}{s_n}$ is an upper bound on the hop distance of a node

Pipelined Computation of MAX

Protocol

• Reception: If Node i senses an idle or a collision or a successful transmission by a node with hop distance different from $(h_i + 1)$, then it sets $X_i(r, t) = 0$, else it sets $X_i(r, t)$ to be equal to the data bit received. It sets $Y_i(r, 0) = 0$ at the beginning of the round and then, updates as $Y_i(r, t) = \max{Y_i(r, t-1), X_i(r, t)}$. At the end of the round, it sets $Y_i(r) = Y_i(r, \tau)$.

The sink node, Node 0, decodes the MAX as $\mathcal{Z}(r-d) = \max\{Z_s(r-d), Y_s(r)\}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Pipelined Computation of MAX

- In round *r*, the set of nodes at hop distance (h + 1) relay the MAX of the data bits from round (r d + h + 1), of all nodes with hop distance greater than *h* to some node at hop distance *h*.
- For successful computation of the MAX at round r, we require each node at hop distance h to have successfully transmitted atleast once in round (r d + h).
- From our analysis of Phase I of Protocol One-Shot MAX, this will happen w.h.p. if $\tau = \Theta(\log^2 n)$.

The protocol achieves a throughput of $\Omega\left(\frac{1}{\log^2 n}\right)$.

(日)

Computing the Histogram Once

- Each node generates an independent exponential random variable of mean 1 in each round.
- In each slot, each node transmits independently with probability p and listens with probability (1 p).
- Identical to MAX except that the truncated, quantised random number is transmitted in each slot.

Theorem

If all the nodes execute the protocol One-Shot Histogram, then the histogram $(\frac{\hat{n}_0}{n}, \frac{\hat{n}_1}{n})$ is available to all nodes in $O(n^{7/2}(\log n)^{1/2})$ slots with probability atleast $(1 - \frac{\pi^2}{6n})(1 - \frac{k}{n^{\alpha-3}})$ and with the following accuracy: $\frac{n_b}{n}e^{-\frac{3+\pi^2}{6n}}e^{-d_{n_b}} \leq \frac{\hat{n}_b}{n} \leq \frac{n_b}{n}e^{\frac{3+\pi^2}{6n}}e^{-d_{n_b}}$ for b = 0, 1. $(d_n \to 0$ as $n \to \infty)$

Summary

One-shot MAX	Structure-Free	Coordinated
Time	$\Theta\left(\sqrt{\frac{n}{\log n}}\right)$	$\Theta\left(\sqrt{\frac{n}{\log n}}\right)$
Transmissions	$\Theta\left(\frac{n^{3/2}}{\log^{3/2}n}\right)$	$\Theta(n)$
Pipelined MAX	Hop Distance	Coordinated
Throughput	$\Theta\left(\frac{1}{\log^2 n}\right)$	$\Theta\left(\frac{1}{\log n}\right)$
Transmissions	$\Theta(n\log n)$	$\Theta(n)$

ヘロト 人間 とくほとく ほとう

æ

Approximate Computation

[Iyer, M & Sundaresan, 2009]

- Connectivity requires that $r = O\left(\sqrt{\frac{\log n}{n}}\right)$. This means the degree of every node is $O(\log n)$.
- Degree determines spatial reuse; And hence the throughput. Ideally, we would like a degree of O(1).
- Operate in the percolation regime.
- Choose communication range $r_n(\lambda)$ to satisfy

$$nr_n^2(\lambda) = \lambda, \ \forall \ n,$$
 (4.1)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

for a particular $\lambda > \lambda_c$ where λ_c is the density at which there is percolation in the Poisson point process.

Percolating Networks

- Can reduce r_n and yet have an arbitrarily large fraction of the nodes connected in a giant component.
- Second largest component can also be precisely characterised.

Lemma

Let $r_n(\lambda)$ be a sequence satisfying $nr_n^2(\lambda) = \lambda$ with $\lambda > \lambda_c$. For every $\delta > 0$, size of largest component $L_{1,n}(\lambda)$ of $G(\mathcal{X}_n; r_n(\lambda))$ satisfies

$$\limsup_{n \to \infty} \frac{1}{\sqrt{n}} \log \Pr\left\{ \left| \frac{L_{1,n}(\lambda)}{n p_{\infty}(\lambda)} - 1 \right| \ge \delta \right\} < 0$$

and the size of the second largest component $L_{2,n}(\lambda)$ satisfies

$$\limsup_{n\to\infty}\frac{1}{\sqrt{n}}\log\Pr\left\{L_{2,n}(\lambda)>\delta n\right\}<0.$$

A Graph with Bounded Degree

• The node does not have a bounded degree. But the number of nodes with large degree is small.

Lemma

For every $\delta, \varepsilon > 0$, there exists a sufficiently large λ and sufficiently large k such that the sequence of graphs $G(\mathcal{X}_n; r_n(\lambda))$ (indexed by n) satisfies the following:

- (1) The fraction of nodes in the largest component is at least 1δ , i.e., $n^{-1}L_{1,n}(\lambda) \ge (1 \delta)$, in c.c. as $n \to \infty$;
- (2) The fraction of nodes with degree upper bounded by k is at least 1 − ε, i.e., n⁻¹Z_{k,n}(λ) ≤ ε, in c.c. as n → ∞.

イロト イ部ト イヨト イヨト

A Graph with Bounded Degree

• For nodes that have degree more than a specified constant, we can disconnect the excess nodes from the graph and rescale the transmission range to retain the giant component. We can show

Theorem

For every $\delta > 0$, there exists sufficiently large but finite λ' and k' such that the sequence of random geometric graphs $G(\mathcal{X}_n; r_n(\lambda'))$ contains a subgraph $G(V_n; r_n(\lambda'))$, where $V_n \subset \mathcal{X}_n$, with the following properties:

- The subgraph is connected;
- The maximum degree of the subgraph is upper bounded by k';
- $|V_n|/n \ge 1 \delta$ in c.c.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computation on the Graphs with Bounded Degree

Use the algorithms identical to those developed earlier on the graph with bounded degree.

Theorem

For error free networks, for any $\delta \in (0, 1)$ and $\varepsilon \in (0, 1)$, there is a protocol that computes the histogram with the following performances:

- $\Pr\{e_n > 3\delta\} \le 2\varepsilon$ for all sufficiently large *n*.
- **2** The refresh rate is $\Theta(1)$.
- The number of transmissions is Θ(n) and the total transmission energy is Θ(n^{1-d/2}). The number of receptions is Θ(n).
- The delay is $\Theta(\sqrt{n})$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Computation on the Graphs with Bounded Degree

- The computed histogram is only probably approximately correct (PAC); the normalised histogram error is at most 3δ with probability greater than $1 2\varepsilon$.
- The PAC relaxation enables us to compute the PAC histogram at a constant refresh rate.
- Histogram is computed using the average function with refresh rate $\Theta(1)$. This is a log log *n* over the previously best known algorithm.
- Any continuous function of the histogram can be computed in a PAC fashion at refresh rate $\Theta(1)$.
- Median and mode are type-sensitive functions but cannot be computed using this method. Computation of type-threshold functions may also result in arbitrarily large errors.

MAX in Noisy Multihop Networks

• We can construct a protocol with **no order penalty in either time or in the number of transmissions**.

Theorem (Kanoria & M,2007)

MAX(or OR) can be computed in a noisy RP network by an oblivious protocol using $\Theta(n)$ *total transmissions in a time* $\Theta\left(\sqrt{\frac{n}{\log n}}\right)$.

• • • • • • • • •

Parity in a Colocated Network

[Gallager,1988]

- Partition m nodes into m/k groups of k.
- Each node transmits its bit *j* times; each node estimates the value of the bit of each member of its group using a majority rule.
- Every node estimates the parity of its group from estimate of bits and transmits this estimate.
- Thus estimate of every group is transmitted *k* times.
- Each node uses majority rule to estimate parity of each group of bits (from the *k* estimates). And then estimate the parity of the *m* bits.
- k should be $O(\log m)$ and $j = O(\log k)$.
- Requires $O(m \log \log m)$ transmissions.
- Recently shown that this is indeed the optimal scheme by [Goyal, Saks & Kindler, 2006].

Histogram in a Random Planar Network

[Ying, Srikant & Dullerud,2006]

Intra cell: Each cell is a broadcast network. Adapt [Gallager, 1988]

- Each node transmits its value $O(\log \log n)$ times.
- In each cell $O\left(\frac{\log n}{\log \log n}\right)$ nodes are selected to broadcast their estimates of the intra cell histogram.
- Cell centre decodes these transmissions using a majority rule to estimate the cell histrogram.

Inter Cell:

• Use block codes or repetition codes for point-to-point communication to propagate the aggregated values up the tree to the sink.

Requires $O(n \log \log n)$ bit transmissions.

(日)

Histogram in a Random Planar Network

Can we do better than $O(n \log \log n)$ bit transmissions? No!

Let δ be a desired upper bound on the probability that $f(\cdot)$ is in error

Theorem (Dutta, Kanoria, M & Radhakrishnan, 2008)

Let $R \leq n^{-\beta}$ for some $\beta > 0$. Let $\delta < \frac{1}{2}$ and $\epsilon \in (0, 1)$. Then, with probability 1 - o(1) (over the placement of processors) every δ -error protocol on $\mathcal{N}(n, R)$ with ϵ -noise for computing the parity function $\oplus : \{0, 1\}^n \to \{0, 1\}$ requires $\Omega(n \log \log n)$ transmissions.

< ロ > < 同 > < 回 > < 回 > < 回 >

Acknowledgments

C Dutta, TIFR Mumbai Srikanth K Iyer, IISc Bangalore S Kamath, formerly IIT Bombay, now at UC Berkeley ' Y Kanoria, formerly IIT Bombay, now at Stanford R Mazumdar, Univ of Waterloo J Radhakrsishnan, TIFR Mumbai Rajesh Sundaresan, IISc Bangalore