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Preliminaries

Primary motivation from sensor networks wheren sensors are
deployed in a geographic area.
Each sensor node makes a measurement in the area that it covers;
measured value is assumed to be a 1-bit binary data. Nodei has
bit xi andx = [x1, . . . , xn].

A special node, (sink, collector) needs to evaluate

f : {0, 1}N → B
whereB is the codmain off and assumed finite but may depend
on n. Typical interest is in max (OR), min (AND), parity,
histogram, and, the identity function that wantsx at sink.

Symmetric functions:f (x1, . . . , xn) is invariant to permutations of
x1, . . . , xn.
Decomposable functions:f (x) = g(f (x(1)), . . . , f (x(K))) where
x(1), . . . x(K) is a partition ofx.
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Preliminaries

Nodes communicate over a link;
In a wired channel, transmission is ‘heard’ by only one receiver.
In a wireless channel all ‘neighbours’ (nodes in spatial proximity)
can decode the transmission, possibly with error. Further,none of
the neighbours can transmit simultaneously.
Our interest is in wireless networks; they should exploit spatial
reuse for efficiencies.

Communication links can be assumed to be noisy or noisefree.
Many noise models have been considered; here we will consider
theweak noise modelof a ‘binary symmetric channel’ with error
probability exactlyǫ.

Objective: Design communication and computation algorithms
to achieve the objective—obtainf (x) at the sink.
Performance issues: energy (number of transmissions and/or
receptions), throughput and delay.
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Network Models
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Single and multihop networks

Single hop, collocated, or broadcast networks: Every node can
decode transmissions from every other node. Network graph is
fully connected.
Multihop networks: Network nodes could be placed on a
‘regular’ grid or they could be randomly deployed.
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Protocol

Protocol defines a sequence of computations and transmissions.

Collision free protocol:collisions avoided, sequence of
transmitters may depend on history.

Obliviousprotocol: schedule fixed beforehand.

In a network with noisy links.

Obliviousprotocol guarantees no collisions.

Valid protocol: error probability as small as required. Two
variations—arbitrarily small or going to zero asn → ∞.
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Random, Multihop Noisefree Networks

Nodes 1, 2, . . . n are randomly distributed over[0, 1]2.

Nodei is located atyi and has dataxi .

Definex := [x1, . . . , xn] andy := [y1, . . . , yn].

xi belongs to a finite setX , e.g.,X = {0, 1}.
We will assumeyi is uniformly distributed in[0, 1]2 andxi is
arbitrary.
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Random Multihop Networks: Quick Overview of Basics

n nodes are uniformly distributed in[0, 1]2.
Boolean model for network (communication) graph: Nodes at
Euclidean distance less thanrn have communicating edge, i.e.,
the communicating graph is a random geometric graph.
Communication constraints: A node cannot receive and transmit
simultaneously; Collisions at receiver if more than one of its
neighbours are transmitting.
Need connected network; Asymptotic connectivity threshold in a

random network:rn = Ω

(

√

logn
n

)

.

Usern = c1

(

√

logn
n

)

to minimise transmission energy and

maximise reuse. This means localities of areasΘ(rn) are like
small colocated networks, each havingΘ(logn) nodes.
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Key Background Result

Tessellate[0, 1]2 into square cells of sideΘ

(

√

logn
n

)

.

The number of nodes in each square isΘ(logn) with high
probability.
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Summary of Results for Noisefree Networks

[Giridhar & Kumar,2005]

Assume block coding—each node collectsN samples andf (·) is
evaluated forN samples

Single Hop Random Multihop

Identity Θ
(

1
n

)

Θ
(

1
n

)

Histogram Θ
(

1
n

)

Θ
(

1
logn

)

Type-Sensitive Θ
(

1
n

)

Θ
(

1
logn

)

Type-Threshold(min) Θ
(

1
logn

)

Θ
(

1
log logn

)
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Motivating Structure-Free Networks

[Kamath & M,2008]

Network organisation and clock synchronisation are
requirements of above protocols; organisation can be expensive.

Can we do away with knowledge of structure of the network and
time synchronisation? Use random access (Aloha for MAC.

What are the tradeoffs for differing levels of structure? To
compute the max, no delay penalty!

There will be an energy penalty.
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Random, Multihop Noiseless Structure Free Networks

Nodes know neither their absolute nor relative locations inthe
network

Nodes therefore, have no idea about the n etwork topology

We would also like that the nodes not have their clocks
synchronised;

Each node however, knowsn, the total number of nodes
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Computing MAX Once

Protocol

Let xi be the data bit at Node i and§ := max1≤i≤n xi .

In each slot, Node i transmits with probability p= pn

independently of all other transmissions in the network

If Node i receives a bit successfully in slot t, then it sets Xi(t) to
be this bit, else it sets Xi(t) = 0

Node i initiates Yi(0) = 0 and updates Yi using
Yi(t) = max{Yi(t − 1), Xi(t)}
If Node i transmits in slot t, then it would transmit
Ti(t) = Yi(t − 1)

MAX will be known to all nodes if we wait long enough
Issue: Time to obtain MAX at sink and suitablern andpn.
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Computing MAX Once

An attempt probability ofp = pn = (k1c2 logn)−1 results in a
successful transmission bysomenode from a cell in any given
slot with probability atleastpS := c1

c2e, which is a constant
independent ofn

at the origin

Phase II Phase III

Sink located
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Computing MAX Once

Assume sink is located at the origin.
All nodes in a cell have transmitted at least once inO(log2 n)
time slots w.h.p.
Now the data has to diffuse to the cells.
The diffusion to the bottom of square is completed in

O

(

√

n
logn

)

slots w.h.p.

Now each column of cells has computed the MAX in the column
and the partial result is available at some node in the bottomrow.

The result now diffuses to the sink inO

(

√

n
logn

)

slots w.h.p.

ProtocolOne-Shot MAX computes the MAX inO

(

√

n
logn

)

slots

with probability atleast(1− k
nα ) for any positive constantsk, α.
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Pipelined Computation of MAX

Some structure in the network can achieve higher throughput
Nodes can compute their hop distance from the sink node;
modulo 3, suffices

Protocol

Let Zi(r) be the data at Node i in round r. The sink wishes to compute
Z(r) = max1≤i≤n Zi(r)
Node i transmits in each slot with probability p= pn independently of
all other transmissions in the network
Each round consists ofτ slots.

Transmission: If Node i transmits in slot t of round r, then it
transmits(Ai, Bi , Ti(r, t)) where(Ai, Bi) ≡ hi

mod 3, Ti(r, t) = max{Zi(r − d + hi), Yi(r − 1)}, d = 2
sn

is an
upper bound on the hop distance of a node
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Pipelined Computation of MAX

Protocol

Reception: If Node i senses an idle or a collision or a successful
transmission by a node with hop distance different from(hi + 1),
then it sets Xi(r, t) = 0, else it sets Xi(r, t) to be equal to the data
bit received. It sets Yi(r, 0) = 0 at the beginning of the round and
then, updates as Yi(r, t) = max{Yi(r, t − 1), Xi(r, t)}. At the end
of the round, it sets Yi(r) = Yi(r, τ).

The sink node, Node0, decodes the MAX as
Z(r − d) = max{Zs(r − d), Ys(r)}
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Pipelined Computation of MAX

In roundr, the set of nodes at hop distance(h + 1) relay the
MAX of the data bits from round(r − d + h + 1), of all nodes
with hop distance greater thanh to some node at hop distanceh.

For successful computation of the MAX at roundr, we require
each node at hop distanceh to have successfully transmitted
atleast once in round(r − d + h).

From our analysis of Phase I of ProtocolOne-Shot MAX, this
will happen w.h.p. ifτ = Θ(log2 n).

The protocol achieves a throughput ofΩ
(

1
log2 n

)

.
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Computing the Histogram Once

Each node generates an independent exponential random
variable of mean 1 in each round.

In each slot, each node transmits independently with probability
p and listens with probability(1− p).

Identical to MAX except that the truncated, quantised random
number is transmitted in each slot.

Theorem

If all the nodes execute the protocolOne-Shot Histogram, then the
histogram( n̂0

n , n̂1
n ) is available to all nodes in O

(

n7/2(logn)1/2
)

slots

with probability atleast(1− π2

6n)(1− k
nα−3 ) and with the following

accuracy: nb
n e−

3+π2

6n e−dnb ≤ n̂b
n ≤ nb

n e
3+π2

6n e−dnb for b = 0, 1. (dn → 0
as n→ ∞)
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Summary

One-shot MAX Structure-Free Coordinated

Time Θ

(

√

n
logn

)

Θ

(

√

n
logn

)

Transmissions Θ
(

n3/2

log3/2 n

)

Θ(n)

Pipelined MAX Hop Distance Coordinated

Throughput Θ
(

1
log2 n

)

Θ
(

1
logn

)

Transmissions Θ(n logn) Θ(n)
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Approximate Computation

[Iyer, M & Sundaresan,2009]

Connectivity requires thatr = O

(

√

logn
n

)

. This means the

degree of every node isO(logn).

Degree determines spatial reuse; And hence the throughput.
Ideally, we would like a degree ofO(1).

Operate in the percolation regime.

Choose communication rangern(λ) to satisfy

nr2
n(λ) = λ, ∀ n, (4.1)

for a particularλ > λc whereλc is the density at which there is
percolation in the Poisson point process.
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Percolating Networks

Can reducern and yet have an arbitrarily large fraction of the
nodes connected in a giant component.
Second largest component can also be precisely characterised.

Lemma

Let rn(λ) be a sequence satisfying nr2
n(λ) = λ with λ > λc. For every

δ > 0, size of largest component L1,n(λ) of G(Xn; rn(λ)) satisfies

lim sup
n→∞

1√
n

log Pr

{
∣

∣

∣

∣

L1,n(λ)

np∞(λ)
− 1

∣

∣

∣

∣

≥ δ

}

< 0

and the size of the second largest component L2,n(λ) satisfies

lim sup
n→∞

1√
n

log Pr{L2,n(λ) > δn} < 0.
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A Graph with Bounded Degree

The node does not have a bounded degree. But the number of
nodes with large degree is small.

Lemma

For everyδ, ε > 0, there exists a sufficiently largeλ and sufficiently
large k such that the sequence of graphs G(Xn; rn(λ)) (indexed by n)
satisfies the following:

(1) The fraction of nodes in the largest component is at least1− δ, i.e.,
n−1L1,n(λ) ≥ (1− δ), in c.c. as n→ ∞;

(2) The fraction of nodes with degree upper bounded by k is at least 1− ε,
i.e., n−1Zk,n(λ) ≤ ε, in c.c. as n→ ∞.
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A Graph with Bounded Degree

For nodes that have degree more than a specified constant, we
can disconnect the excess nodes from the graph and rescale the
transmission range to retain the giant component. We can show

Theorem

For everyδ > 0, there exists sufficiently large but finiteλ′ and k′ such
that the sequence of random geometric graphs G(Xn; rn(λ

′)) contains
a subgraph G(Vn; rn(λ

′)), where Vn ⊂ Xn, with the following
properties:

The subgraph is connected;

The maximum degree of the subgraph is upper bounded by k′;

|Vn|/n ≥ 1− δ in c.c.
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Computation on the Graphs with Bounded Degree

Use the algorithms identical to those developed earlier on the graph
with bounded degree.

Theorem

For error free networks, for anyδ ∈ (0, 1) andε ∈ (0, 1), there is a
protocol that computes the histogram with the following
performances:

1 Pr{en > 3δ} ≤ 2ε for all sufficiently large n.
2 The refresh rate isΘ(1).
3 The number of transmissions isΘ(n) and the total transmission

energy isΘ(n1−d/2). The number of receptions isΘ(n).
4 The delay isΘ(

√
n)
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Computation on the Graphs with Bounded Degree

The computed histogram is only probably approximately correct
(PAC); the normalised histogram error is at most 3δ with
probability greater than 1− 2ε.

The PAC relaxation enables us to compute the PAC histogram at
a constant refresh rate.

Histogram is computed using the average function with refresh
rateΘ(1). This is a log logn over the previously best known
algorithm.

Any continuous function of the histogram can be computed in a
PAC fashion at refresh rateΘ(1).

Median and mode are type-sensitive functions but cannot be
computed using this method. Computation of type-threshold
functions may also result in arbitrarily large errors.
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MAX in Noisy Multihop Networks

We can construct a protocol withno order penalty in either
time or in the number of transmissions.

Theorem (Kanoria & M,2007)

MAX(or OR) can be computed in a noisy RP network by an oblivious

protocol usingΘ(n) total transmissions in a timeΘ

(

√

n
logn

)

.
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Parity in a Colocated Network

[Gallager,1988]
Partitionmnodes intom/k groups ofk.
Each node transmits its bitj times; each node estimates the value
of the bit of each member of its group using a majority rule.
Every node estimates the parity of its group from estimate ofbits
and transmits this estimate.
Thus estimate of every group is transmittedk times.
Each node uses majority rule to estimate parity of each groupof
bits (from thek estimates). And then estimate the parity of them
bits.
k should beO(logm) andj = O(logk).
RequiresO(mlog logm) transmissions.
Recently shown that this is indeed the optimal scheme by
[Goyal, Saks & Kindler, 2006].
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Histogram in a Random Planar Network

[Ying, Srikant & Dullerud,2006]
Intra cell: Each cell is a broadcast network. Adapt [Gallager,1988]

Each node transmits its valueO(log logn) times.

In each cellO
(

logn
log logn

)

nodes are selected to broadcast their

estimates of the intra cell histogram.

Cell centre decodes these transmissions using a majority rule to
estimate the cell histrogram.

Inter Cell:

Use block codes or repetition codes for point-to-point
communication to propagate the aggregated values up the tree to
the sink.

RequiresO(n log logn) bit transmissions.
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Histogram in a Random Planar Network

Can we do better thanO(n log logn) bit transmissions?
No!
Let δ be a desired upper bound on the probability thatf (·) is in error

Theorem (Dutta, Kanoria, M & Radhakrishnan,2008)

Let R≤ n−β for someβ > 0. Letδ < 1
2 andǫ ∈ (0, 1). Then, with

probability 1− o(1) (over the placement of processors) everyδ-error
protocol onN (n, R) with ǫ-noise for computing the parity function
⊕ : {0, 1}n → {0, 1} requiresΩ(n log logn) transmissions.
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