Bilateral vs. multilateral content exchange

Ramesh Johari

Joint work with Christina Aperjis (Stanford) and Michael Freedman (Princeton)

Peer-to-peer technology today

• Comprises 35-90% of "all" Internet traffic

Not just a technology for (illicit) filesharing

Prices and content exchange

We view content exchange as an exchange economy:

Prices are used to match demand with supply.

In content exchange:

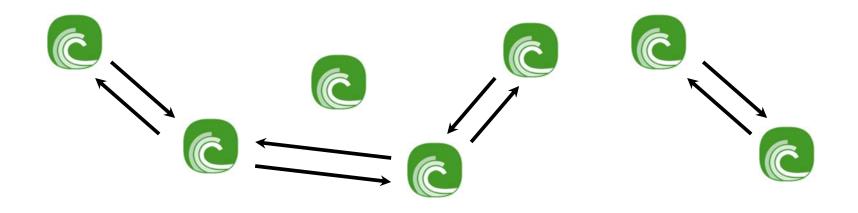
Demand = download requests for content

Supply = scarce system resources

What does a price-based analysis tell us about matching demand with supply?

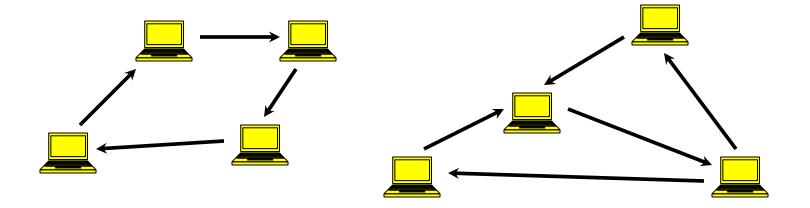
Content exchange mechanisms

• Most prevalent exchange systems are *bilateral:* downloading possible in return for uploading to the same peer.



Content exchange mechanisms

- Most prevalent exchange systems are *bilateral:* downloading possible in return for uploading to the same peer.
- In this talk we explore the use of prices and a virtual currency to enable multilateral exchange among peers



Content exchange mechanisms

- Most prevalent exchange systems are *bilateral:* downloading possible in return for uploading to the same peer.
- In this talk we explore the use of *prices* and a virtual *currency* to enable *multilateral* exchange among peers
- Basic goal:

Rigorous comparison of *efficiency* of bilateral and multilateral content exchange

Outline

- Bilateral content exchange
- Multilateral content exchange
- Bilateral vs. multilateral: Pareto efficiency
- Bilateral vs. multilateral: Participation
- Conclusions and future work

Preliminaries

• Notation:

 $\begin{aligned} r_{ijf} &= \text{upload rate of file } f \text{ from } i \text{ to } j \\ d_{if} &= \sum_j r_{jif} = \text{download rate of } f \text{ for peer } i \\ u_i &= \sum_{j,f} r_{jif} = \text{upload rate of peer } i \\ B_i &= \text{bandwidth constraint of peer } i \\ V_i(\underline{\mathbf{d}}_i) - c_i(u_i) &= \textit{utility to peer } i \text{ from } (\underline{\mathbf{d}}_i, u_i) \end{aligned}$

• Feasible set of rates is:

 $X = \{ \underline{\mathbf{r}} : \underline{\mathbf{r}} \ge \mathbf{0}; \quad u_i \le B_i \text{ for all } i; \\ r_{ijf} = \mathbf{0} \text{ if user } i \text{ does not have file } f \}$

Bilateral content exchange

- Peers exchange content on a pairwise basis
- Let $r_{ij} = \sum_{f} r_{ijf}$ = rate of upload from i to j
- Exchange ratio: $\gamma_{ij} = r_{ji}/r_{ij}$
- As if there exist prices p_{ij} , p_{ji} , and all exchange is settlement-free:

$$p_{ij} r_{ij}$$
 = $p_{ji} r_{ji}$

Thus:

$$\gamma_{ij} = p_{ij}/p_{ji}$$

Bilateral equilibrium

- Bilateral peer optimization for i given γ : maximize $V_i(\underline{d}_i) - c_i(u_i)$ subject to $\sum_f r_{jif} = \gamma_{ij} \sum_f r_{ijf}$, for all j $\mathbf{r} \in X$
- Bilateral equilibrium (BE) is a vector \mathbf{r}^* and exchange ratios γ^* such that: All users have simultaneously optimized
- We set the following convention:

 γ_{ij} * = 0 \Leftrightarrow *i* has no file that *j* wants, or vice versa

Market clearing

Important point:

- There is an embedded *market-clearing* operation in the definition of equilibrium.
- The optimal r_{ijf} and r_{jif} chosen by peer *i* given $\underline{\gamma}^*$ must coincide with the optimal r_{ijf} and r_{jif} chosen by peer *j* given $\underline{\gamma}^*$

Multilateral content exchange

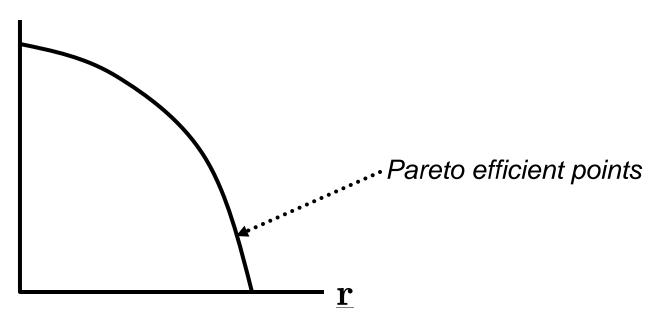
- Suppose instead that users can trade a *virtual currency*, where downloading from peer j costs p_j per unit rate
- Multilateral peer optimization for *i* given <u>p</u>: maximize $V_i(\underline{d}_i)$ subject to $\sum_{j,f} p_j r_{jif} = \sum_{j,f} p_i r_{ijf}$

 $\mathbf{r} \in X$

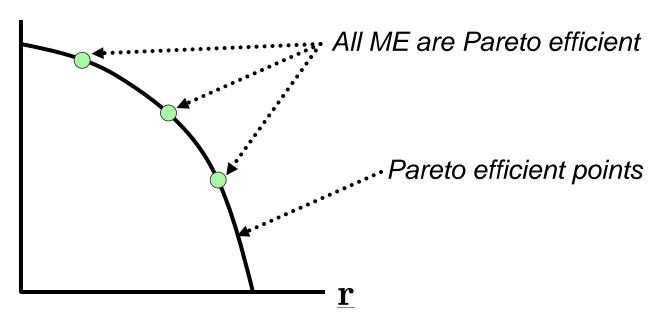
Multilateral equilibrium

- Multilateral equilibrium (ME) is a vector \underline{r}^* and prices \underline{p}^* such that: All users have simultaneously optimized
- Under mild conditions, both BE and ME exist
- We now provide two comparisons of efficiency: one qualitative, one quantitative

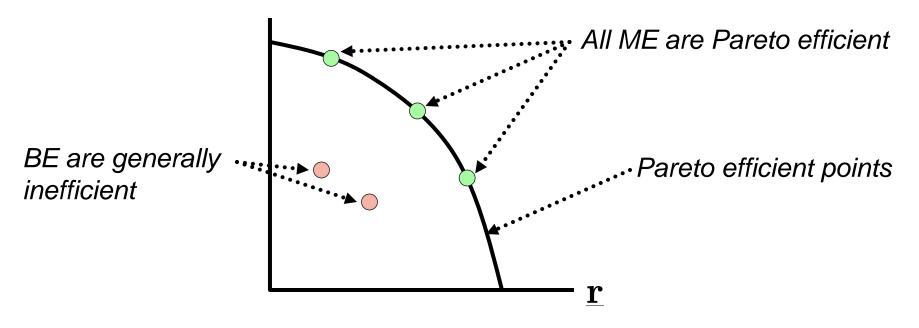
 An allocation <u>r</u> is *Pareto efficient* if: no user's utility can be strictly improved without strictly reducing another user's utility



 An allocation <u>r</u> is *Pareto efficient* if: no user's utility can be strictly improved without strictly reducing another user's utility



 An allocation <u>r</u> is *Pareto efficient* if: no user's utility can be strictly improved without strictly reducing another user's utility



When are BE efficient?

Theorem:

A BE $(\underline{\gamma}^*, \underline{r}^*)$ is Pareto efficient if and only if there exists a vector of prices \underline{p}^* such that $(\underline{p}^*, \underline{r}^*)$ is a ME

[Hard part to prove is the "only if"]

Pareto efficiency: Proof

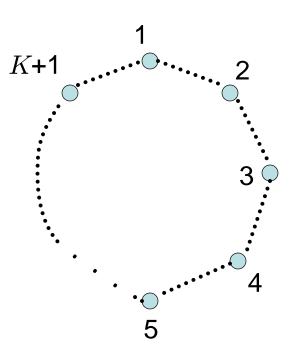
- The proof exploits a connection between equilibria and reversible Markov chains
- Let R_{ij} * = $\sum_{f} r_{ijf}$ *, and R_{ii} * = - $\sum_{j \neq i} R_{ij}$ *
- For simplicity, suppose \mathbf{R}^* is an *irreducible* rate matrix of a continuous time MC (generalizes to nonirreducible case)
- Let $\underline{\mathbf{p}}$ be the unique invariant distribution of $\underline{\mathbf{R}}^{\boldsymbol{\star}}$
- If \mathbf{R}^* is reversible, then:

$$p_i R_{ij}^* = p_j R_{ji}^* \Rightarrow \gamma_{ij}^* = p_i / p_j \Rightarrow BE \equiv ME$$

Pareto efficiency: Proof

What if \mathbf{R}^* is not reversible?

• We construct a sequence of peers 1, ..., K+1 with: $p_k/p_{k+1} > \gamma_{k,k+1}*$ and $\mathbf{1} \equiv K+1$



Pareto efficiency: Proof

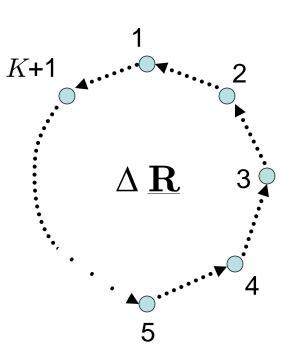
What if \mathbf{R}^* is not reversible?

- We construct a sequence of peers 1, ..., K+1 with: $p_k/p_{k+1} > \gamma_{k,k+1}*$ and $1 \equiv K+1$
- Consider slightly increasing the rates $R_{k+1,k}$ *
- Show that if

 $\Delta R_{k+1,k} / \Delta R_{k,k-1} > \gamma_{k,k+1} *,$

then peer k is strictly better off

• Since $\prod_k \gamma_{k,k+1} * < 1$, such a $\Delta \underline{\mathbf{R}}$ can be found



How many peers are able to trade in equilibrium in BE and ME?

We use a random model to quantify the density of trade produced by the two models.

Participation: Simplified model

Consider a model with N peers and K files. Each peer has one file to upload, and desires one file to download.

- Two peers are complementary if each has what the other wants.
- Lemma: A peer participates in a BE if and only if she has a complementary peer.

Participation

We consider a random model where the probability a peer wants or has file f is proportional to f^{-s} (Zipf's law).

We have results on two settings:

- $s \rightarrow \mathbf{0}$: uniform popularity
- *s* > 1 : very heavy tailed

Participation

When $s \rightarrow 0$:

- If N^{1-ε} > K, then almost all peers trade in ME with high probability
- If $K > \sqrt{N}$, then a constant fraction of peers do not trade in BE
- So: If $N^{1-\epsilon} > K > \sqrt{N}$, then ME has significantly higher participation

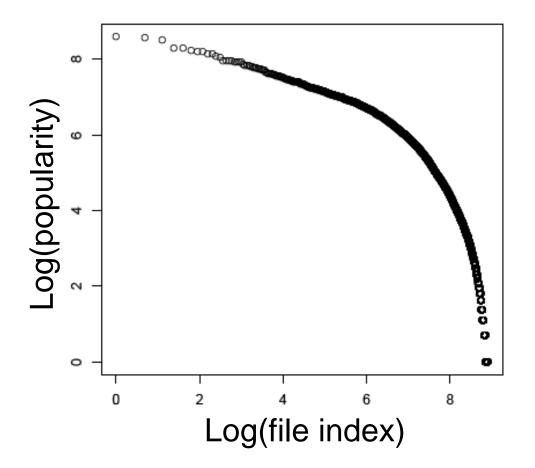
Participation

When *s* **> 1**:

- High concentration of popularity in a small number of files
- In this case, constant fraction of peers trade in BE with high probability as $K, N \rightarrow \infty$ (and same holds for ME as well)
- So in this case, BE performs well

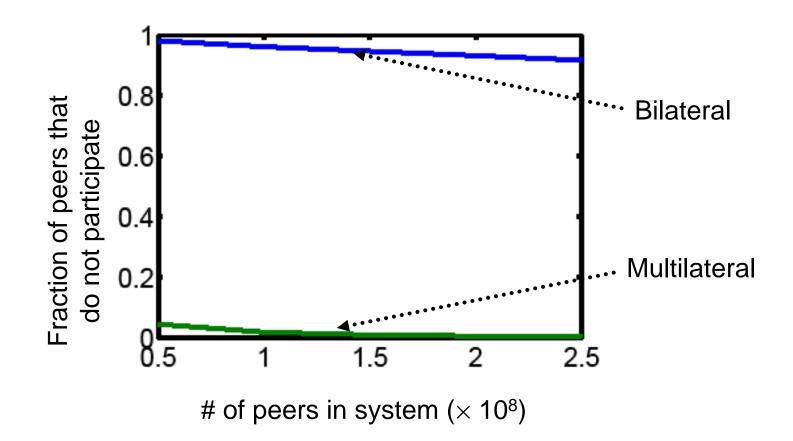
BT popularity data

• 1.4M downloads, 680K peers, 7.3K files



Data-driven comparison

• What if we sample a random graph from this popularity distribution?



Data-driven comparison

- This comparison suggests that ME matches many more peers than BE
- However, as # of files a peer has *increases*, BE rapidly approaches ME
 - e.g., if all peers have 10 files, # of unmatched peers in BE is <2% in a system of 80K peers

Conclusions

- We have also characterized *why* one price per per is the best scheme to use.
- We also have simple analysis of peer incentives in a price-based system.

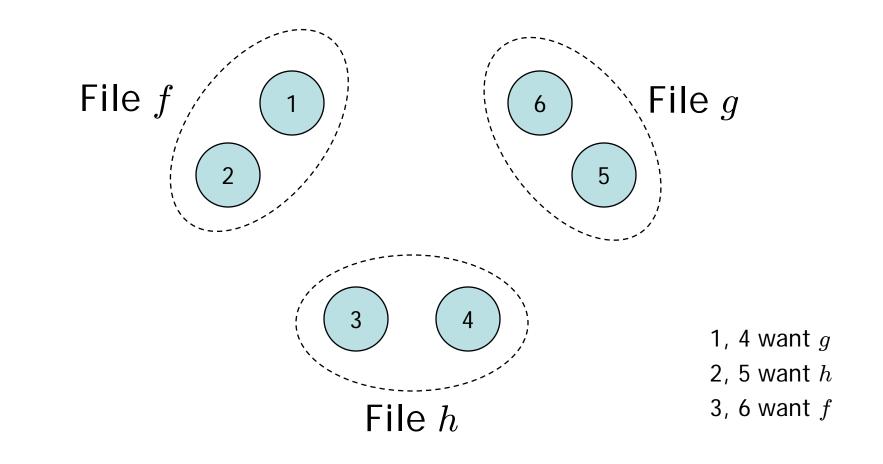
Open issues:

How do we define BE and ME for a system with network constraints?

What is the messaging overhead of a price-based P2P system above a barter P2P system?

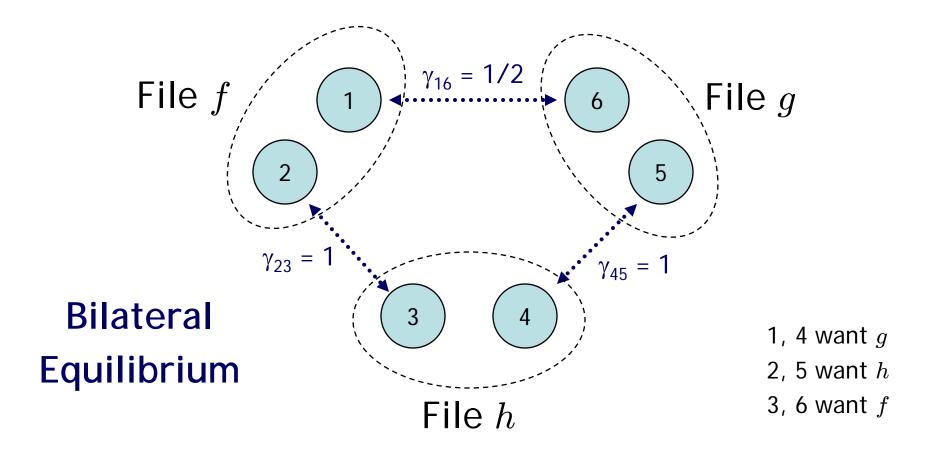
Are price-based systems dynamically efficient?

$$B_1 = 2; B_2 = \cdots = B_6 = 1$$



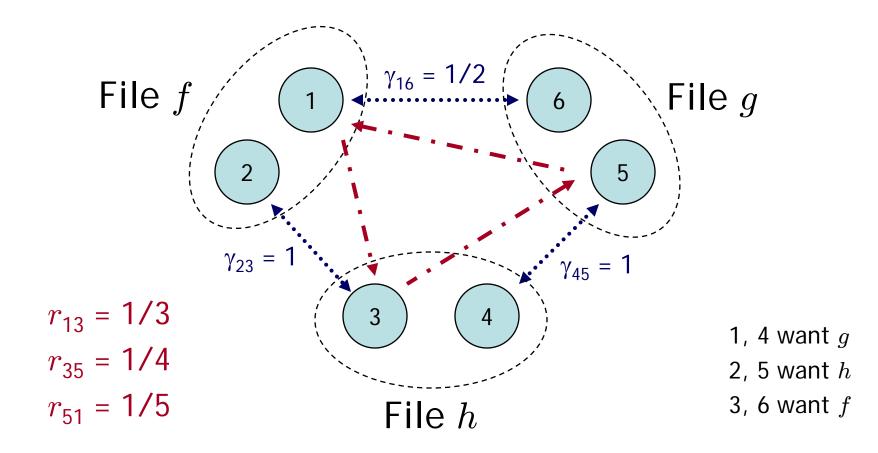
Example

$$B_1 = 2; B_2 = \dots = B_6 = 1$$



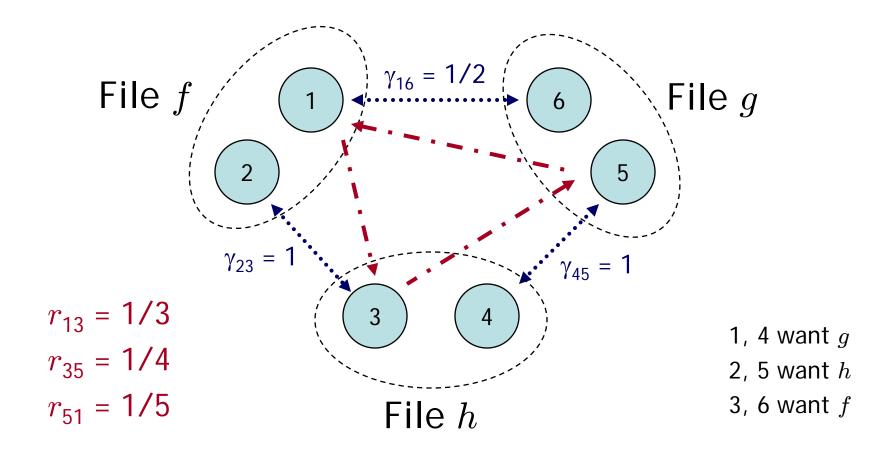
Example

There exists a profitable deviation for {1, 3, 5}:



Example

Total rate to $1 = 1/5 + 1/2 \times (2 - 1/3) > 1$, etc.



Bilateral vs. multilateral: The core

- Bilateral equilibria are not generally in the core
- Key results:
 - (1) Multilateral equilibria are always in the core (w.r.t. $\gamma_{ij} = p_i/p_j$)
 - (2) Suppose every peer uploads one file.

If \mathbf{r}^* is a bilateral equilibrium with d_{if} > 0 for all i and files f that i wants, and if \mathbf{r}^* is in the core,

then \mathbf{r}^* is a multilateral equilibrium.

Insight into proof of (2)

• Key step in establishing (2):

Bilateral eq. is a multilateral eq. iff there exists p s.t. $\gamma_{ij} = p_i/p_j$ for all i, j[Idea: this ensures the peer optimizations become the same]

- If $\gamma_{ij} = p_i/p_j$, then $\Pi \gamma_{ij}$ along any cycle must equal 1
- We show that if the product is not equal to 1, then the bilateral eq. is not in the core