

Hermes

Clustering Users in Large-Scale E-mail Services

Thomas Karagiannis, Christos Gkantsidis, Dushyanth Narayanan, Antony Rowstron

Microsoft Research Cambridge, UK

The email social graph

Edges between users that exchange emails

Edges weights capture the frequency of email exchanges, e.g.

- # emails in a week
- total number of bytes / mo
- ...

Frequent exchanges

Collaboration pattern:

- Frequent email exchanges between groups of users

The email social graph

Edges between users that exchange emails

Edges weights capture the frequency of email exchanges, e.g.

- # emails in a week
- total number of bytes / mo
- ...

Each user has a home server User email exchanges
Traffic between servers

3

System under study

~128K Users

68 exchange servers

⇒ ~1800 users/server

Observed all email activity for 22 weeks (~5 months):

- ~337m emails
- [2.2M emails , 636.3 GB] / day
- ~4 recipients / email + sender

Current allocation of users to servers

Microsoft's corporate email

Current user placement:

New users are added to the least loaded server in their region

Hence, agnostic to communication patterns

⇒ **Storage** and network overheads

~128K Users, 68 exchange servers ⇒ ~1800 users/server

Current allocation of users to servers

Current user placement:

New users are added to the least loaded server in their region

Better allocation of users to servers

Goal:

- Detect communication patterns
- Optimize user placement
- Respect current system architecture

Architecture of email service

Architecture of email service

➤ Hermes Agent: Monitors email activity

➤ Hermes Engine: Collects logs and computes "optimal" user placement

Uses standard partitioning algorithms: Metis [Karypis et al.]

Research

Architecture of email service

Hermes Agent:
Monitors email activity

➤ Hermes Engine:
Collects logs and
computes optimal
user placement

Uses standard partitioning algorithms: Metis [Karypis et al.]

Partitioning

Goal:

- Identify groups of users
- ...efficiently

Partitioning

Assign users to partitions s.t.

- # users per partition is "roughly" balanced

Approach:

Multi-level partitioning

11

k-Metis & p-Metis

[Karypis et al., '98]

Evaluation

- Base performance
- Scalability: Can it scale to 100's millions of users?
- Capturing changing patterns: How often should we re-partition?
- Sensitivity to (# users) / (# servers)
 When should we partition?

Benefits of partitioning

~55 Tbytes of savings in storage (RAID) in 21 weeks

- √ 35-40% savings in storage compared to simple coalescence
- ✓ Similar savings in network traffic

Multilevel partitioning

Source: [Karypis & Kumar, '97]

- 2. Expensive partitioning step, but on small graph
- 1. Coarsening: each step "halves" graph size
- 3. Un-coarsening: map partitions to original nodes

Metis already efficient (2.66GHz Xeon):

- Available data: 15sec and 250MB in a for 128K nodes and 9-15M edges
- Synthetic model: 10min and 8GB for 4M nodes and 270M edges
 - Memory limited
- Q) Can we do better?
- Millions of users (e.g. hosted exchange)
- 100's millions (e.g. Hotmail)

Multilevel partitioning

- 2. Expensive partitioning step, but on small graph
- 1. Coarsening: each step "halves" graph size
- 3. Un-coarsening: map partitions to original nodes

Trade-off:
Efficiency of partitioning
(e.g. storage benefit)
reduces by < 3%
with 64-fold reduction in size

How often to re-partition?

- Communication patterns change
- Computing partitions is an efficient background process
- However, moving users (ie mailboxes) around is expensive
 - 40-70% of user migrations for each re-partition

Small loss (<5%) in storage benefits for infrequent re-partitions (eg every few months)

Sensitivity to #users / server

Some other observations

- Geography
 - Easy to incorporate geographical constraints
 - ... very similar results
- Flexibility in setting the optimization goal
 - This work: minimize storage and net
 - Can also use I/O load
- Sampling of messages
 - This work: collected & used all messages
 - Also, similar results when ignoring emails with large # recipients
 - Clever sampling techniques?

Related Work

- Spar [Pujol et al, SigComm 2010]
 - Partitioning for online social networks
 - Evaluation: Twitter, Facebook, and Orkut traces
 - Algorithm: Modularity Optimization (MO+)
- Volley [Agarwal etl al, NSDI 2010]
 - Data-Placement for Geo-Distributed Cloud Services
 - Evaluation: Live Mesh and Live Messenger traces
 - Algorithm: Use geo-information to place users & data, iteratively improve placement

Summary

- Goal: Explore social (graph) patterns to improve online services
 - Hermes: Optimize user placement based on email exchanges
 - 35-50% storage and network savings

- Partitioning has low overhead:
 - No need to do frequent repartitions