NetFPGA Summer Course

P
SNeltFPGH

Presented by:
Noa Zilberman
Yury Audzevich

Technion
August 2 — August 6, 2015

http://NetFPGA.org

A~
SNetFPGA I e T 1

Day 1 Outline

The NetFPGA platform

— Introduction

— Overview of the NetFPGA
Platform .

NetFPGA SUME .

— Hardware overview
Network Review
— Basic IP review
The Base Reference Switch
— Example I: Reference switch
running on the NetFPGA
The Life of a Packet Through
the NetFPGA
— Hardware Datapath

— Interface to software: Exceptions
and Host I/O

Infrastructure
— Tree
— Verification Infrastructure

Examples of Using NetFPGA

Example Project: Crypto
Switch

— Introduction to a Crypto Switch
— What is an IP core?

— Getting started with a new

project.

— Crypto FSM
Simulation and Debug

— Write and Run Simulations for
Crypto Switch

Concluding Remarks

A~
SNetFPGA I e T 2

Section |: The NetFPGA platform

A~
SNetFPGEA

NetFPGA = Networked FPGA

A line-rate, flexible, open networking
platform for teaching and research

E Network Interface Card

Hardware Accelerated
Linux Router

IPv4 Reference Router

Traffic Generator

Openflow Switch

More Projects

B E® Add Your Project

A~
SNetFPGA I e T

NetFPGA Family of Boards

i
P
.
k

¥ il’s "y

NetFPGA-1G (2006)

, rrcal .
ERSITY OF ® NetFPGA-SUME

BRIDGE

) NetFPGA SUME (2014)

NetFPGA-1G-CML (2014)

~
SNetFPGA I e T

NetFPGA consists of...

Four elements:
A NetFPGA GitHub Organization

The Interwebs http://www.netfpga.org

 NetFPGA board
 Tools + reference designs
e Contributed projects

« Community

‘@ e

. ST SOSOE e
= o B WEN nCr ©
oo TS s "k: CL\““\\\\) 2 -

. “© Kewren @
D o \
LU \\\\\‘\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

A~
SNetFPGEA

NetFPGA board

Networking
Software
running on a
standard PC

g =

PCI-Express

A hardware
accelerator |
built with Field |
Programmable
Gate Array |
driving 1/10/
100Gb/s i]
network links

~
SNetFPGA I e T

ools + Reference Designs

Tools:

« Compile designs

* Verify designs

* Interact with hardware

Reference designs:

 Router (HW)

Switch (HW)

 Network Interface Card (HW)
Router Kit (SW)

SCONE (SW)

A~
SNetFPGEA

Community

WiKi
« Documentation

— User’s Guide “so you just got your first NetFPGA”
— Developer’s Guide “so you want to build a ...”

 Encourage users to contribute

Forums
* Support by users for users
* Active community - 10s-100s of posts/week

A~
SNetFPGA I e T 9

International Community

Over 1,200 users, using over 3500 cards at
150 universities in 40 countries

Atlantic
Ocean

A~
SNetFPGA I e T

NetFPGA'’s Defining Characteristics

 Line-Rate
— Processes back-to-back packets

» Without dropping packets
« At full rate
— Operating on packet headers
« For switching, routing, and firewall rules
— And packet payloads
» For content processing and intrusion prevention

 Open-source Hardware

— Similar to open-source software
 Full source code available
« BSD-Style License for SUME, LGPL 2.1 for 10G

— But harder, because
« Hardware modules must meet timing
* Verilog & VHDL Components have more complex interfaces
» Hardware designers need high confidence in specification of modules

A~
SNetFPGEA

Test-Driven Design

 Regression tests
— Have repeatable results
— Define the supported features
— Provide clear expectation on functionality

« Example: Internet Router
— Drops packets with bad IP checksum
— Performs Longest Prefix Matching on destination address
— Forwards IPv4 packets of length 64-1500 bytes
— Generates ICMP message for packets with TTL <=1

— Defines how to handle packets with IP options or non IPv4

... and dozens more ...
Every feature is defined by a regression test

A~
SNetFPGA I e T 12

wWho, How, Why

Who uses the NetFPGA?
— Researchers
— Teachers
— Students

How do they use the NetFPGA?
— To run the Router Kit

— To build modular reference designs
IPv4 router
4-port NIC
Ethernet switch, ...

Why do they use the NetFPGA?
— To measure performance of Internet systems
— To prototype new networking systems

A~
SNetFPGA I e T 13

Summer Course Objectives

* Overall picture of NetFPGA
« How reference designs work

« How you can work on a project
— NetFPGA Design Flow
— Directory Structure, library modules and projects
— How to utilize contributed projects
* Interface/Registers

— How to verify a design (Simulation and Hardware
Tests)

— Things to do when you get stuck

AND... You build your own projects!

A~
SNetFPGA I e T 14

Section Il: Hardware Overview

A~
SNetFPGEA

NetFPGA-1G-CML

 FPGA Xilinx Kintex7
e 4x 10/100/1000 Ports
 PCle Gen.2 x4 e
- QDRII+-SRAM, 4.5MB '\’
« DDR3, 512MB '
« SD Card

 Expansion Slot

A~
SNetFPGEA

NetFPGA-10G

FPGA Xilinx Virtex5

4 SFP+ Cages
— 10G Support
— 1G Support

PCle Gen.1 x8
QDRII-SRAM, 27MB
RLDRAM-II, 288MB
Expansion Slot

A~
SNetFPGEA

Time for a catch-up...

A
SNetFPGA T Technion, Haifa. IL 2015

NetFPGA-SUME

A major upgrade over the NetFPGA-10G
predecessor

« State-of-the-art technology

2 x SATA Micro-SD Expansion Interfaces Configuration

Virtex 7 FPGA

- 2xDDR3 PCle x8 Gen. 3
SoDIMM

A~
SNetFPGEA

NetFPGA-SUME

 High Level Block Diagram

- -
2]
=

JTAG

lﬁ - QTH 12V

FMC-HPC 2x cmen
FLASH A o ONLY
3xPUSH
JTAG =« _I-:un'ous ATX

CPLD
LEDs XC2C512

I 2 X POWER

MANAGER &

LEDs

FANS

SFP+ (10G/s) <= SENSORS

POWER
REGULATORS =

SFP+ (10G/s) <—| <» XILINX

VIRTEX-7
XCTVX690T-3FFG1761E m
<> CLOCK
RECOVERY x

% SYNTH SMA

SFP+ (10G/s) <—|

2x DDR3 SODIMM

SFP+ (10G/s) <« r>
I_I_I{lizﬁ Express Gen 3.0

A~
SNetFPGA I e T

1

Xilinx Virtex 7 690T

« Optimized for high-
performance
applications

690K Logic Cells

« 52Mb RAM

e 3PCle Gen. 3
Hard cores

A~
SNetFPGA I e T

Memory Interfaces

* DRAM:
2 Xx DPDR3 SoDIMM
1866MT/s, 4GB

e SRAM:
3 X 9MB QDRI+,
500MHz

A~
SNetFPGA I e T

Host Interface

e PCle Gen. 3
« X8 (only)
e Hardcore IP

%1% UNIVERSITY OF =2
“AMBRIDGE &

Pcio xs]

A~
SNetFPGA I e T

Front Panel Ports

4 SFP+ Cages
* Directly connected to

the FPGA
* Supports 10GBase-R _ o =M
transceivers (default) N ="
» Also Supports RRRh |l |
1000Base-X

transceivers and
direct attach cables '

A~
SNetFPGA I e T

Expansion Interfaces

 FMC HPC connector
— VITA-57 Standard

— Supports Fabric
Mezzanine Cards (FMC)

— 10 x 12.5Gbps serial &8
links

e QTH-DP g

— 8 x 12.5Gbps serial links f::%:":

aTRngaRer BRNIEERANY

A~
SNetFPGA I e T

Storage

128MB FLASH

2 X SATA connectors

Micro-SD slot

Enable standalone
operation

A~
SNetFPGEA

NetFPGA Board Comparison

NetFPGA SUME

NetFPGA 106G

Virtex 7 690T -3

Virtex 5 TX240T

8 GB DDR3 SoDIMM 1800MT/s

288 MB RLDRAM-I11 800MT/s

27 MB QDRI+ SRAM, 500MHz

27 MB QDRII-SRAM, 300MHz

x8 PCI Express Gen. 3

x8 PCI Express Gen. 1

4 x 10Gbps Ethernet Ports

4 x 10Gbps Ethernet Ports

18 x 13.1Gb/s additional serial links

20 x 6.25Gb/s additional serial links

A~
SNetFPGEA

Beyond Hardware

[GitHub, User Community] °

[MicroBlaze SW] [PC SW]

[

Xilinx Vivado }

Reference Designs AXIl4 IPs

SNetFPGA

Summer Course Technion, Haifa, IL 2015

NetFPGA Board
Xilinx Vivado based IDE

Reference designs using
AXl4

Software (embedded
and PC)

Public Repository
Public Wiki

Section Il: Network review

A~
SNetFPGEA

Internet Protocol (IP)

Data to be
. Data
transmitted:
. P P . P
IP packets: Hgr| Data Hgr| Data Hgr| Data
Ethernet Ethl P | Ethl P | Ethl P
Frames: Hdr | Hdr Data Hdr | Hdr Data Hdr | Hdr Data

A~
SNetFPGA B AT T 30

Internet Protocol (IP)

Data
----------------- P/
o=
————————————————— | Hdr bata
————————————— 16 32
Ver |fiLen| T.Service | Total Packet Length
ent ID Flags

salAq 0

Source Address

Destination Address

Options (if any)

A~
SNetFPGA B AT T

Basic operation of an IP router

R3
R1 —
N hay
& =
s
:. e
RZ ~

Destination | Next Hop R5

R GO
E R3
F R5

A~
SNetFPGEA

Basic operation of an IP router

A~
SNetFPGA B AT T

Forwarding tables

IPaddress | }-32 bits wide — ~ 4 billion unique address

Naive approach:
One entry per address

Entry Destination Port
1 0.0.0.0 1

2 0.0.0.1 2 L .
) : : = ~ 4 billion entries

232 255.255.255.255 12

Improved approach:
Group entries to reduce table size

Entry Destination Port
1 0.0.0.0 — 127.255.255.255 1
2 128.0.0.1 — 128.255.255.255 2
50 248.0.0.0 — 255.255.255.255 12

A~
SNetFPGEA

|IP addresses as a line

Your computer My computer

232.1

.Cambridge / : Oxford :
Asia Europe
0
\ J
|
All IP addresses
Entry Destination Port
1 Cambridge 1
2 Oxford 2
3 Europe 3
4 Asia 4
5 Everywhere (default) 5

A~
SNetFPGEA

Longest Prefix Match (LPM)

Entry Destination Port
1 ambridge 1 . .
5 Oxford 5 } Universities
3 Europe 3 } Continents
4 Asia 4
5 AEyerywhere (default) 5 Planet

« Everywhere

To:

Cambridge bata

A~
SNetFPGEA

Longest Prefix Match (LPM)

Entry Destination Port
1 Cambridge 1 . ..
5 Oxford 5 } Universities
3 Europe 3 } Continents
4 Asia 4
5 //— Everywhere (default) 5 Planet

Most specific

To:

Data
Germany

A~
SNetFPGEA

Implementing Longest Prefix Match

Destination
Cambridge 1 Searching Most specific
4 Asia 4 FOUND l
verywhere (default Least specific

~
SNetFPGEA

Basic components of an IP router

|
Management
n
& CLI 4
Routing =
Protocols > z Control Plane
Routing)
Table
J
N
T
. Q Data Plane
Forwarding Switching | Queuin S
Table J J = = per-packet
= processing
J

~
SNetFPGA I e T

IP router components in NetFPGA

: A
Linux
SCONE
Management
Management & CLI N
& CLI : ©)
Routing > =
Routing Protocols é
Protocols Routing T
Routing Table
Table
J
A
Output Port Input Output T
Lookup Arbiter Queues > %"_
For_rv;etl)rlgmg Switching || Queuing %
J

A~
SNetFPGA I e T

Section lll: Example |

A~
SNetFPGEA

Operational IPv4 router

0
%
& CLI = Control Plane
Routing @
Protocols
Routing
Table
L
Q Data Plane
Q.
Forwarding | . ., .. . < per-packet
Switching | Queuing — _
-- = processing

~
SNetFPGA B AT T

Streaming video

A~
SNetFPGA B AT T

Streaming video

NetFPGA running
reference router

PC & NetFPGA

(NetFPGA in PC)

A~
SNetFPGEA

Streaming video

Video streaming
over shortest path

Video Video
server client

e

A~
SNetFPGEA

Streaming video

Video Video
server client

e

A~
SNetFPGEA

Observing the routing tables

| [&] Router Control Panel E]@E]

File Window

Router Quickstart

Configuration rStatislil:s rDetaiIs |

Router Configuration

Interface Configuration Load From File

Port Mumber MAC Address IP Address
00 0000:00:01:01 16821
Q0000000102 168.2.2
QOo000:00:01:03 166.1.2

Q000 00:00:01:04 168.15.2

Routing Table

Modified | Index |Destination IP A .| Subnet Mask |MextHop [P A .
192.168.15.0 [255.255.2... [0.0.0.0
192.168.14.0 [255.255.2... |192.168.3.2
192.168.13.0 2552552, |1%2.168.3.2
192.168.12.0 2552552, |192.188.3.2
192.168.11.0 [255.255.2... [192.168.3.2
192.168.10.0 [255.255.2... |192.168.3.2
192.168.5.0 255.255.2... [192.168.3.2
192 168.8.0 2552552, |192.168.3.2
192.168.7.0 2552552, |192.188.3.2
192 168.6.0 255255 182 168.3.2
192, 168.5.0 255,255 192, 168.2.2

=1
L=l
-
R
=
fuad
el
e

1

OO s,
rJ

COOOCEeE

OO,

NEEEEEEEEECE

o e e o 5

g (=g R R R N P L e E=]

=

Modified IP Address Mext Hop MaAC Address
L] 192.168.2.2 Q0000000 04:04
152.1658.15.1 QRO000:00:0d:01
0.0.0.0 QO0000:00:00:00
0.0.0.0 QO0000:00:00:00
0.0.0.0 Q00000000000
0.0.0.0 QOO0 00000000
0.0.0.0 000000 00:00:00
0.0.0.0 Q00000000000
0.0.0.0 QO0000:00:00:00
0.0.0.0 Q00000000000
0.0.0.0 QOO0 00000000
0.0.0.0 Q00000000000
0.0.0.0 QRO00000:00:00
0.0.0.0 QO0000:00:00:00
0.0.0.0 QO0000:00:00:00

Columns:
 Subnet address
« Subnet mask

* Next hop IP
 Output ports

[R L e =]

w

-
f=

-
[

=
ra

=
wl

~
eNE':FF'EII:l ummer Course Technion, Haifa, IL 20

Example 1

EJ Acclicalions Places System U 4

Router Control Panel
e Windew

&4 Ge Tupal 3IN

| Rowtes Quachvtant
ConNguration = Statmticy Datass

Router Configuration

wiertace Canfiguration Laad Frem Sile

Fon NumGer 3 P Adaress

Lowng Table

HodNed! ndey Dentrgten ¥ Sutinat Magk N

Next Hep NAC Addrass
e 4

)1 01

oY)

Raset Enuy

T T TSR TN RN NS VC WO GIaN 7 =5
Mods Playback Audo Video Bols \View el

I wimw Mmoo -
PMIp-A192.168.10. 2 mdeased hd as! 100x 03:0310:51

Streaming video

[Somnerca¥ped-tes Rewter Contrel Pares MIpUIL92.168.10. 0N

- -

& &

suUMEsercamy

P
SNetFPGEA

Review

NetFPGA as IPv4 router:
‘Reference hardware + SCONE software
*Routing protocol discovers topology

Demo:
‘Ring topology
*Traffic flows over shortest path

Broken link: automatically route around
faillure

A~
SNetFPGEA

Section lll: Life of a Packet

A~
SNetFPGEA

Reference Switch Pipeline

* Flve stages

nput port
nput arbitration

~orwarding decision
and packet
modification

Output queuing
Output port

« Packet-based
module interface

* Pluggable design

P
SNetFPGEA

10GE
RxQ

Summer Course Technion, Haifa, IL 2015

Input Arbiter

{

Output Port Lookup

!
5 E B B E

Output Queues

DMA

DMA

Full System Components

Driver
nf0 nf1 nf2 nf3 ioctl |

RxQ | TxQ

[T |
I, T T 1T |

Software

NetFPGA

10GE | 10GE
Tx Rx

~
CONT=I S = B 3 B Summer Course Technion. Haifa, IL 2015

Life of a Packet through the Hardware

00:0a:..:.0Y

Port 1

~
SNetFPGEA

10GE Rx Queue

10GE
RX
Queue

A~
SNetFPGA I e T 54

10GE Rx Queue

Length, Src
port, Dst port,

Eth Hdr:
Dst MAC, Src MAC

TUSER TDATA

~
SNetFPGEA

Input Arbiter

Input
= Arbiter
RX

0

A~
SNetFPGA I e T

Output Port Lookup

Output
Port
Lookup

A~
SNetFPGA I e T 57

Output Port Lookup

1- Parse 4- Update output

header: Src / port in TUSER

MAC, Dst
MAC, Src port

2 - Lookup e
next hop Length, Src Eth Hdr: Dst MAC=

port, Dst port, nextHop , Src MAC =
MACSLO?,:JtPUt User defined ort4

3- Learn Src

MAC & Src TUSER TDATA
port

A~
SNetFPGEA

Output Queues

) 0w

Output - >
Queues > °

D

A~
SNetFPGA I e T

10GE Port Tx

10GE
Port Tx

A~
SNetFPGA B AT T 60

MAC Tx Queue

Length, Src
port, Dst port,
User defined

Eth Hdr: Dst MAC , Src
MAC

~
SNetFPGEA

NetFPGA-Host Interaction

e Linux driver interfaces with hardware

— Packet interface via standard Linux network
stack

— Register reads/writes via ioctl system call

with wrapper functions:
« rwaxi(int address, unsigned *data);

eg.
rwaxi(0x7d4000000, &val);

A~
SNetFPGA B AT T 62

NetFPGA-Host Interaction

NetFPGA to host packet transfer

1. Packet arrives —
forwarding table
sends to DMA queue

A
2. Interrupt
notifies 3. Driver sets up
driver of and initiates
packet DMA transfer
arrival
v

A~
SNetFPGA I e T

NetFPGA-Host Interaction

NetFPGA to host packet transfer (cont.)

< I B - Follllttle ® :[LR B».:.
a JB i L L[5 i - .

o. Interrupt
4. NetFPGA signals
transfers completion
packet via of DMA
DMA

L te' 6. Driver passes packet to
in Ide ‘l network stack
AMD

A~
SNetFPGA B AT T

NetFPGA-Host Interaction

Host to NetFPGA p

- Y

acket transfers

3 T Tt (A DT

It e

B
i

Zzzzam
.....
.

e o o o NEEEEH

|
A

2. Driver sets up 3. Interrupt

and initiates signals |

DMA transfer completion
of DMA

1. Software sends packet

via network sockets
lﬂtelide ‘l

Packet delivered to driver |n5
AMD

A~
SNetFPGA I e T

NetFPGA-Host Interaction

Register access

iR T Follligs TGk D e
N - E-‘ Eﬂﬂ.:’zn ® .. £ X
TRy i
‘A
ooooo gm
-

00000
.

e o o o NEEEEH

2. Driver
performs
PCle
memory
read/write

1. Software makes ioctl
call on network socket

loctl passed to driver

A~
SNetFPGA B AT T

Section V: Infrastructure

A~
SNetFPGEA

Infrastructure

e Tree structure

 NetFPGA package contents
— Reusable Verilog modules
— Verification infrastructure
— Build infrastructure
— Utilities
— Software libraries

A~
SNetFPGA B AT T 68

NetFPGA package contents

* Projects:
— HW: router, switch, NIC
— SW: router kit, SCONE
 Reusable Verilog modules
« Verification infrastructure:
— simulate designs (from AXI interface)
— run tests against hardware
— test data generation libraries (eg. packets)
« Build infrastructure
« Utilities:
— register 1/O
« Software libraries

A~
SNetFPGA I e T 69

Tree Structure (1)

NetFPGA-SUME

E—— projects (including reference designs)

contrib-projects (contributed user projects)

lID (custom and reference IP Cores
and software libraries)

tools (scripts for running simulations etc.)

—— docs (design documentations and user-guides)

https://github.com/NetFPGA/NetFPGA-SUME-alpha
A~
SNetFPGEA

Tree Structure (2)

lib

hw (hardware logic as IP cores)
std (reference cores)

contrib (contributed cores)

SW (core specific software drivers/libraries)

std (reference libraries)
contrib (contributed libraries)

A~
SNetFPGEA

Tree Structure (3)

projects/reference switch
— Dbitfiles (FPGA executables)

hw (Vivado based project)

constraints (contains user constraint files)
create_Ip (contains files used to configure IP cores)

hdl (contains project-specific hdl code)

tcl (contains scripts used to run various tools)

SW

embedded (contains code for microblaze)
host (contains code for host communication etc.)

test (contains code for project verification)

A~
SNetFPGEA

Reusable logic (IP cores)

Category IP Core(s)

I/O interfaces Ethernet 10G Port
PCI Express
UART
GPIO

Output queues BRAM based

Output port lookup NIC
CAM based Learning switch

Memory interfaces SRAM
DRAM
FLASH

Miscellaneous FIFOs
AXIS width converter

A~
SNetFPGA I e T 73

Verification Infrastructure (1)

« Simulation and Debugging

— built on industry standard Xilinx “xSim” simulator
and “Scapy”

— Python scripts for stimuli construction and
verification

A~
SNetFPGA I e T 74

Verification Infrastructure (2)

¢ XSIm
— a High Level Description (HDL) simulator
— performs functional and timing simulations for
embedded, VHDL, Verilog and mixed designs
* Scapy

— a powerful interactive packet manipulation library
for creating “test data”

— provides primitives for many standard packet
formats

— allows addition of custom formats

A~
SNetFPGA I e T 75

Build Infrastructure (2)

* Build/Synthesis (using Xilinx Vivado)
— collection of shared hardware peripherals cores

stitched together with AXI4: Lite and Stream
buses

— bitfile generation and verification using Xilinx
synthesis and implementation tools

A~
SNetFPGA I e T 76

Build Infrastructure (3)

* Register system

— collates and generates addresses for all the
registers and memories in a project

— uses integrated python and tcl scripts to generate
HDL code (for hw) and header files (for sw)

A~
SNetFPGA I e T 77

Section VI: Examples of using NetFPGA

A~
SNetFPGEA

Running the Reference Router

User-space development, 4x10GE line-rate forwarding

Routing

PCI-Express Table

@ “

« “Mirror”

Fwding § Packet
Table Buffer

IPv4
Router

~
SNetFPGA I e T

% Enhancing Modular Reference Necinne
1.Design

Verilog,

___________________________________ 2.SImulate
3.Synthesize
4 .Download

~
SNetFPGA I e T

Q Creating new system< |
v 1.Design

erilog,

2.SImulate
3.Synthesize
4 .Download

My Design

(10GE MAC is soft/replaceable)

~
SNetFPGA I e T

Contributed Projects

Platform Project Contributor

1G OpenFlow switch Stanford University
Packet generator Stanford University
NetFlow Probe Brno University
NetThreads University of Toronto
zFilter (Sp)router Ericsson
Traffic Monitor University of Catania
DFA UMass Lowell

10G Bluespec switch UCAM/SRI International
Traffic Monitor University of Pisa
NF1G legacy on NF10G Uni Pisa & Uni Cambridge
High perf. DMA core University of Cambridge
BERI/CHERI UCAM/SRI International
OSNT UCAM/Stanford/GTech/CNRS

A~
SNetFPGEA

OpenFlow

 The most prominent NetFPGA success

* Has reignited the Software Defined
Networking movement
 NetFPGA enabled OpenFlow

— A widely available open-source development
platform

— Capable of line-rate and

* was, until its commercial uptake, the
reference platform for OpenFlow.

A~
SNetFPGA I e T 83

Soft Processors in FPGAs

QQQQQ

' Processor(s)

m Soft processors: processors in the FPGA fabric

m User uploads program to soft processor

m Easier to program software than hardware in the FPGA
m Could be customized at the instruction level

m CHERI — 64bit MIPS soft processor, BSD OS

Ethernet MAC

DDR controller

A~
SNetFPGEA

100Gb/s Aggregation

A development platform that can
aggregate 100Gb/s for:

Non-Blocking
_ Operating Systems 300Gb/s Switch
. " 196
— Protocols Testing '
— Measurements

e NetFPGA SUME can:

— Aggregate 100Gb/s
as Host Bus Adapter

— Be used to create large scale switches

A~
SNetFPGA I e T

Physical Interface Design

A deployment and interoperability test
platform
— Permits replacement of physical-layer

— Provides high-speed expansion interfaces with
standardised interfaces

* Allows researchers to design
custom daughterboards

« Permits closer integration

©71°A3 SONT-t5 -0
Y

. . L] .
Y

A~
SNetFPGA I e T

Power Efficient MAC

« A Platform for 100Gb/s power-saving MAC
design (e.g. lights-out MAC)
« Porting MAC design to SUME permits:
— Power measurements
— Testing protocol’s response
— Reconsideration of power-saving mechanisms

— Evaluating suitability for complex architectures
and systems S L4

SNetFPGA I e T

Interconnect

* Novel Architectures with line-rate
performance

— A lot of networking equipment =
— Extremely complex

i
il

i
i
i
iil

 NetFPGA SUME allows
prototyping a complete
solution

N X N xN Hyper-cube

A~
SNetFPGEA

How might we use NetFPGA?

o \ME)!]D'}I*?W‘PI&T'§'lifg%'5@§]t‘%ﬁeb°ﬁt‘1ﬂ'ere iS a IISt | crea.t.ed.Hardware channel bonding reference implementation

. A e home-grown monitoring ca *TCP sanitizer

. Evaluate new packet classifiers Other protocol sanitizer (applications... UDP DCCP, etc.)
- (and application classifiers, and other neat network apps....) . Full and complete Crypto NIC

. Prototype a full line-rate next-generation Ethernet-type . IPSec endpoint/ VPN appliance

o Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example) o VLAN reference implementation

o Demonstrate the wonders of Metarouting in a different implementation (dedicated hardwgare) meta outing implementation

- envdBuddan@ccuratepfast, inevratedeBummy)/ n |stnetrﬂjemantething>

o Hardware supporting Virtual Routers . intelligent proxy

o Check that some brave new idea actually works . application embargo-er

%o B-flegibte fiditiegfown monitoring card + Layer-4 gateway

. toolki
. h/w gateway for VolP/SIP/skype
. MOOSE implementation /wg y /SIP/skyp

P ad zati o h/w gateway for video conference spaces
. a ss aponymization e . . .
. o df&ﬂgué inﬁ‘MrpaCket CIaSS|f|erS seCL.mty pattern/rule§ matching .
. .. . o Anti-spoof traceback implementations (e.g. BBN stuff)
. Xen spesialis{aid application classifiers, and other neat network apps....) . IPtv multicast controller
* cc?mr?utatlonal co-pro.cessor o Intelligent IP-enabled device controller (e.g. IP cameras or IP powert
o Distributed computational co-processor . . ES breaker
- e Prototype a full line-rate next-generation Ethernet-1YDEe ‘o fexible Nic API evaluations
o IPv6 — IPv4 gateway (6in4, 4in6, 6over4, 4overs,) . snmp statistics reference implementation
o Netflow v9 reference

sflow (hp) r;ierence implementatjon

: ‘I’:g)':’:lzmﬂgeany of Jon Crowcrofts’ ideas (Sourceless iP rauding ion.eparplay)ementation)

iff dri buffer i . . implementation of zeroconf/netconf configuration language for rou
* D: ﬂzrent ”V?,r/ utrer |.nterr aces (e.fg. PFRING) .] h/w openflow and (simple) NOX controller in one...
T ISt dte tHE o ktet s B Metarouting in a different invplementations(dedicated

lhaid)h' . inline compression

* G?S WNSEH@ fhings . . . hardware accelorator for TOR
. High-Speed Host Bus Adapter reference implementations . load-balancer

- Infiniband . pflow with (getflQqw

* - Pf@vable hardware (using a C# implementation andkiwt withNetFPGA as target

- h B/ dhannel . active measurement kit
. Smart Disk adapter (presuming a direct-disk interface) . nEtV‘_’Ol'k discovery tool
. Software Defined Radio (SDR) directly on the FPGA (probably UWB only) ° passive performance measurement
o Routi mF : H . active sender control (e.g. performance feedback fed to endpoints f

_ HHardware g,{s,eﬁgteport' ng VI rtual ROUters . Prototype platform for NON-Ethernet or near-Ethernet MACs

- Internet exchange route accelerator - Optical LAN (no buffers)

ﬁNetF!FEI_ﬂ, Summer Course Technion. Haita, 1L 2

How might YOU use NetFPGA?

. Build an accurate, fast, line-rate NetDummy/nistnet element
o A flexible home-grown monitoring card
o Evaluate new packet classifiers
- (and application classifiers, and other neat network apps....)
o Prototype a full line-rate next-generation Ethernet-type
o Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
o Demonstrate the wonders of Metarouting in a different implementation (dedicated hardwgre)
o Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
. Hardware supporting Virtual Routers
o Check that some brave new idea actually works
e.g. Rate Control Protocol (RCP), Multipath TCP,
o toolkit for hardware hashing
. MOOSE implementation
o IP address anonymization
o SSL decoding “bump in the wire”
o Xen specialist nic
o computational co-processor
o Distributed computational co-processor
o IPv6 anything
. IPv6 — IPv4 gateway (6in4, 4in6, 6over4, 4overs,)
o Netflow v9 reference
. PSAMP reference
o IPFIX reference
o Different driver/buffer interfaces (e.g. PFRING)
o or “escalators” (from gridprobe) for faster network monitors
o Firewall reference
o GPS packet-timestamp things
o High-Speed Host Bus Adapter reference implementations
- Infiniband
- iSCSI
- Myranet
- Fiber Channel
o Smart Disk adapter (presuming a direct-disk interface)

o Software Defined Radio (SDR) directly on the FPGA (probably UWB only)

o Routing accelerator
- Hardware route-reflector
- Internet exchange route accelerator

Hardware channel bonding reference implementation

TCP sanitizer

Other protocol sanitizer (applications... UDP DCCP, etc.)

Full and complete Crypto NIC

IPSec endpoint/ VPN appliance

VLAN reference implementation

metarouting implementation

virtual <pick-something>

intelligent proxy

application embargo-er

Layer-4 gateway

h/w gateway for VoIP/SIP/skype

h/w gateway for video conference spaces

security pattern/rules matching

Anti-spoof traceback implementations (e.g. BBN stuff)

IPtv multicast controller

Intelligent IP-enabled device controller (e.g. IP cameras or IP powerr

DES breaker

platform for flexible NIC API evaluations

snmp statistics reference implementation

sflow (hp) reference implementation

trajectory sampling (reference implementation)

implementation of zeroconf/netconf configuration language for rou

h/w openflow and (simple) NOX controller in one...

Network RAID (multicast TCP with redundancy)

inline compression

hardware accelorator for TOR

load-balancer

openflow with (netflow, ACL,)

reference NAT device

active measurement kit

network discovery tool

passive performance measurement

active sender control (e.g. performance feedback fed to endpoints f

Prototype platform for NON-Ethernet or near-Ethernet MACs
- Optical LAN (no buffers)

A~
SNetFPGA I e T 90

Section VII: Example Project:
Crypto Switch

A~
SNetFPGEA

Project: Cryptographic Switch

Implement a learning switch that encrypts
upon transmission and decrypts upon
reception

A~
SNetFPGA I e T 92

Cryptography

XOR function

A B A"NB
0 0 0 \
XORINg a
0 1 1 value with
itself always
1 0 1 / yields O
1 1 0

XOR written as: " Y @
XOR Is commutative: A*B)*"C=A" (B " C)

A~
SNetFPGA I e T 03

Cryptography (cont.)

Simple cryptography:
— Generate a secret key
— Encrypt the message by XORIing the message and key
— Decrypt the ciphertext by XORIing with the key

Explanation:

(M7 K) " K5 MA(KAK)M
M7O <

M

A~
SNetFPGEA

Cryptography (cont.)

Example:

Message: 00111011

Key: 10110001

Message * Key: 10001010

Key: 10110001

Message * Key N Key: 00111011

A~
SNetFPGA I e T 95

Cryptography (cont.)

ldea: Implement simple cryptography using XOR
— 32-bit key
— Encrypt every word in payload with key

Header Payload

D

Key Key Key Key Key

Note: XORing with a one-time pad of the same length of the message is
secure/uncrackable. See: http://en.wikipedia.org/wiki/One-time_pad

A~
SNetFPGA I e T 96

Implementation goes
wild...

A~
SNetFPGA B AT T

What’s a core?

*“IP Core” in Vivado
— Standalone Module
— Configurable and reuseable

*HDL (Verilog/VHDL) + TCL files

Examples:
—10G Port
—SRAM Controller
—NIC Output port lookup

A~
SNetFPGA I e T 08

HDL (Verilog)

* NetFPGA cores
— AXI-compliant

 AXIl = Advanced eXtensible Interface
— Used in ARM-based embedded systems
— Standard interface
— AXI4/AXI14-Lite: Control and status interface
— AXI4-Stream: Data path interface

« Xilinx IPs and tool chains
— Mostly AXI-compliant

A~
SNetFPGA B AT T 99

Scripts (TCL)

* |ntegrated into Vivado toolchain
— Supports Vivado-specific commands
— Allows to interactively query Vivado

 Has a large number of uses:
— Create projects
— Set properties
— Generate cores
— Define connectivity
— Etc.

A~
SNetFPGA I e T 100

Inter-Module Communication

— Using AXI-4 Stream (Packets are moved as Stream)

TDATA

TUSER

Module Module
: TKEEP :

| 1+]1
TLAST 8

. TVALID y

y TREADY .

A~
SNetFPGA B AT T 101

AXI4-Stream

AX14-Stream

TDATA Data Stream

TKEEP Marks NULL bytes (i.e. byte enable)
TVALID Valid Indication

TREADY Flow control indication

TLAST End of packet/burst indication
TUSER Out of band metadata

A~
SNetFPGA I e T 102

Packet Format

0 OxFF.. Eth Hdr

0 X OxFF...F IP Hdr

0 X OxFF...F

1 X 0x0...1F Last word

A~
SNetFPGA I e T 103

TUSER

15:0] length of the packet in bytes
23:16] source port: one-hot encoded
31:24] destination port: one-hot encoded
127:32] 6 user defined slots, 16bit each

A~
SNetFPGA I e T 104

TVALID/TREADY Signal timing

— No waiting!

— Assert TREADY/TVALID whenever
appropriate

— TVALID should not depend on TREADY

TVALID
TREADY

A~
SNetFPGEA

Byte ordering

* In compliance to AXI, NetFPGA has a
specific byte ordering
— 1st byte of the packet @ TDATA[7:0]
— 2nd byte of the packet @ TDATA[15:8]

A~
SNetFPGA I e T 106

Getting started with a new project:

A~
SNetFPGA I e T

Embedded Development Kit

« Xilinx integrated design environment
contains:

— Vivado, a top level integrated design tool for
“hardware” synthesis , implementation and
bitstream generation

— Software Development Kit (SDK), a
development environment for “software

application” running on embedded processors
like Microblaze

— Additional tools (e.g. Vivado HLS)

A~
SNetFPGA I e T 108

Xilinx Vivado

* A Vivado project consists of following:
— <project_name>.xpr
* top level Vivado project file
— Tcl and HDL files that define the project

— system.xdc
e user constraint file

« defines constraints such as timing, area, IO placement
etc.

A~
SNetFPGA I e T 109

Xilinx Vivado (2)

* To invoke Vivado design tool, run:

vivado <project root>/hw/project/<project name>.xpr

* This will open the project in the Vivado
graphical user interface

e open a new terminal

* cd <project root>/projects/ <project name>/

* source /opt/Xilinx/Vivado/2014.4/settings64.sh
« vivado hw/project/<project name>.xpr

A~
SNetFPGEA

Vivado Design Tool (1)

File Edit Flow Tools window Layout Wiew Help Search commands |
gR aoeR X PP EBHBHE X Q}|§ Default Layout - | e % © Ready
Flow Navigator « Project Manager - reference_nic X
Q= Sources _Owe X L Project Summary x | e
Q. 5 e | =k | 3 el
4 Project Manager A &= == Project Settings
@@ top_sim - top_sim (top_sim.v [+]| =5)
3 Project Settings axi_clocking_i - axi_clocking (=x Project name: reference_nic
& Add Sources nf_datapath_0 - nf_datapath (nf datapath V) Project location: froot/MNetFPGA-SUME-dev/projects/crypto_solutionshwiproject
@ Language Templates »ﬂ.ln#entlﬂer identifier_ip (identifier | Product family: irter-7
o~} axis_sim_stim_0 - axis_sim_stim_ip is_sif Proisct part IKEQOHQL 761 -3
— N N N . A N H g -
1k Ip catalog o~ FI7 axis_sim_stim_L - axis_sim_stim_ipl _sil roject pa HETVHO 2
o~} axis_sim_stim_2 - axis_sim_stim_ip2 (axis_si| Top module name: top_sim
4 |P Integrator o~} axis_sim_stim_3 - axis_sim_stim_ip3 (axis_si
Iﬁ_?: Create Elock Design o~} axis_sim_stim_4 - axis_sim_stim_ipd (axis_siy Synthesis % Implements
o~k axis_sim_record_0 - axis_sim_record_ip0 (=
5% Open Block Dasign - L} axis_sim_record 1 - axis_sim record ipl Status: = Mot started Status:
33‘,) Generate Block Design s~{Faxis_sim_record_2 - axis_sim_record_ip2 (Messages: Mo errors or warnings Messages:
st =L F[axis_sim_record_3 - axis_sim_| record_ip3 Part: HC TG00l 7613 Part:
4 Simulation
P | Strategy: Vivado Synthesis Defaults Strategy:
Simulation Settings
p)) 9 Constraints: constrs_1 Constraints:
(I, Run Simulation Hier| raries Compile Order Ineremantal
+ RTL Analysis & Sources ¥ Templates
3 - - DRC Violations % Timing
> [@¥ Open Elaborated Design Source File Properties —Owe X
= wp DRC information is not available because it hasn't been run Timing infori
9 Byl @ nf_datapath.v
% synthesis Settings Utilization X Power
Run Synthesis Location: /root/NetFPGA-SUME-dev/projectsicrypto solul
? b — e il Utilization information is not available because it hasn't been run Fower inforr
> ¥ Open Synthesized Design Type: - [~
4 Implementation Library: «il_defaultlib | [-
#5 Implementation Settings Size: 23.6 KB .
D Run Implementation Modified: vesterday at 21:30:50 PM ProJ ect Summ ary
. @ Open Implemented Design| | | Read-onk: Mo
Encrypted: Mo
4 Program and Debug DT R
4
@ Eitstream Settings ‘ GI e -
eneral Properties]
¥ Generate Bitstream & Kl I D
> @¥ Open Hardware Manager Degign Runs — O =
Q MName | constraints | wnS | TNS | wHS | THS | TPWS | Failed Routes | LUT | FF | BRAM | DSF |
| =P synth_1 constrs_1
s Loy impl_1 constrs_1
==
F -
4
»
<l
I_\}
a1 |
2 Tel Console © Messages B Log 2 Reports 3 Design Runs

SNetFPGA

Vivado Design Tool (2)

* |P Catalog: contains categorized list of all
available peripheral cores

* |P Integrator: shows connectivity of various
modules over AXI bus

* Project manager: provides a complete view
of instantiated cores

A~
SNetFPGEA

Vivado Design Tool (3)

File Edit Flow Tools MWindow Layout Wiew Help

Pl | éa TP DY HEX @ |% Default Layout '|) Ready
Flow Mavigator «“ Block Design - control_sub X
Q= Des.. — O & % &= Diagram x [Address Editor x O
. Q= E—n Q, Cell | Slave Interface| Base Mame | Offset Address | Range | High Address
4 Project Manager & control sub = P[0 External Masters
! — i 27 addraece hite 1=
3 Project Settings > External interf| % $8 S00_AXI (32 address bits : 4G
% ndd S &= Interface Conr| =2 == MO0_AX] MOO_AX] Reg 0x4400_0000 aK ~ 0x4400_OFFF
q. A ources T Ports = MOL_AXI MO1_AX] Reg Ox4401_0000 4K = Oud401_OFFF
.’\:,- Language Templates 5) Mets i1 = MO2_AX] MO2_AX Reg Ox4402_0000 AK ~ 0x4402_OFFF
o = MO3_AXI MO3_AX Reg Ox4403_0000 4K + Ox4403_OFFF
1F IP catalog w-LF awi_clock_com = - - -
o-[F axi_interconne = Dﬂﬂ‘l_ﬁw e ; MO4_AX] Reg Ox4404_0000 4K ~ 0x4404_OFFF
4 IP Integrator) DINWETEEE Sianes s

2 = MO7_AXI MO7_AX| Reg -
/5 Create Block Design m@ MOS_AXI MOS AXI Reg ﬂ d d r VI W
5% Open Block Design m MOG_AXI MO6_AX| Reg eS S e

. Address Editor:
- Under IP Integrator

- Defines base and high address value for

peripherals connected to AXI4 or AXI-LITE
bus

e Not AXI-Stream!

 These values can be controlled manually, using
tcl

A~
SNetFPGA I e T 113

Getting started with a new project (1)

* Projects:
— Each design is represented by a project

— Location: NetFPGA-SUME-alpha/projects/<proj_name>

— Create a new project:

* Normally:
— COpYy an existing project as the starting point
« Today:
— pre-created project (crypto_switch)
— Consists of:
* Verilog source
« Simulation tests
« Hardware tests
« Optional software

A~
SNetFPGA I e T 114

Getting started with a new project (3)

Typically implement 106 106 106 106
. - - RxQ RxQ RxQ RxQ
functionality in one or e g
more modules under input Arbiter
the top wrapper J
Output Port Lookup
v

Crypto

Crypto module)
to encrypt and . EHEHEE

decrypt packets QuipubGNieies
i Ny
10G 10G 10G 10G
™xQ ™xQ T™xQ TxQ

A~
SNetFPGA I e T 115

Getting started with a new project (4)

— Shared modules included from netfpga/lib/hw
« Generic modules that are re-used in multiple projects
» Specify shared modules in project’s tcl file

— crypto_switch:

crypto Everything else

A~
SNetFPGEA

Getting started with a new project (5)

Create crypto core using core template:

1. cd $NF_DESIGN_DIR/hwl/local_ip
2. cp -rexample_ip crypto
3. Write and edit files under crypto Folder
4. cd $NF _DESIGN_DIR/hw/
5. vi Makefile
- Refer to Line 61
6. make core
Notes:

1. review ~/NetFPGA-SUME-alpha/tools/settings.sh
2. make sure NF_PROJECT_NAME=crypto_switch

3. If you make chages: source ~/NetFPGA-SUME-
alpha/tools/settings.sh

aNEl:FF'EII:I Summer Course Technion, Haifa, IL 2015

crypto.v

Module crypto

i
parameter C M AXIS DATA WIDTH
parameter C S AXIS DATA WIDTH

256,
256,

Module port declaration

e regs/wires ——-———------————————-——————-
[/==—mmmm e modules —-—------—-—-—————————————————-
[/==——mm e logic ——==—===———————————————————————
endmodule

A~
SNetFPGEA

crypto.v (2)

e Modules—-—-—---
Packet data dumped in
fallthrough small fifo #(a FIFO. Allows some
.WIDTH(...), “decoupling” between
.MAX DEPTH BITS (2) input and Output_

) input fifo (

.din ({fifo out tlast, fifo out tuser,..}), // Data in
.Wr_en (s_axis tvalid & s axis tready), // Write enable
.rd en (in fifo rd en), // Read the next word
.dout ({s axis tlast, s axis tuser, ..}),

.full (),

.nearly full(in fifo nearly full),

.prog full (),

.empty (in fifo empty),

.reset (!laxi aresetn),

.clk (axi aclk)

A~
SNetFPGEA

crypto.v (3)

e Logic-—————————————— - ——————————
assign s axis tready = !in fifo nearly full; Combinational |OgIC to
assign m axis tuser = fifo out tuser; read data from the FIFO.

(Data is output to
output ports.)
always @ (*) begin
// Default value You'll want to add your
tn_fifo_rd en =0; state in this section.

1f (m axis tready && !in fifo empty) begin
in fifo rd en = 1;
end
end

A~
SNetFPGA I e T

Project Design Flow

 There are several ways to design and
Integrate a project, e.g.

— Using Verilog files for connectivity and TCL
scripts for project definition

— Using Vivado's Block Design (IPI) flow

« We will use the first, but introduce the
second

A~
SNetFPGA I e T 121

Project Integration

* vi SNF_DESIGN_DIR/hw/nf_datapath.v

 Add the new module between the output
port lookup and output queues

 Connect S3_AXIto the AXI Lite interface of
the block

— Not mandatory now, but will help for tomorrow

A~
SNetFPGEA

Project Integration

« Edit the TCL file which generates the project:
* vi $NF_DESIGN_DIR/hw/tcl/

<project_name> sim.tcl
* Add the following lines:

create_ip -name <core_name> -vendor NetFPGA -library NetFPGA -module_name <core>_ip
set_property generate_synth_checkpoint false [get_files <core>_ip.xci]
reset_target all [get_ips <core> ip]

generate_target all [get_ips <core>_ip]

« Save time for later, add the same text also in:

$NF _DESIGN_DIR/tcl/<project_name>.tcl

A~
SNetFPGEA

Project Integration — Block Design

£ XILINX
ooooo E.Pm]act re{eremejmc”hag
Create a new project/ &
O R Xilinx Tcl Store
Open an existing project’ 2
O R Release Notes Guide

run a TCL script
(also through tools)

\/

A~
SNetFPGEA

Project Integration — Block Design (2)

[/local/scratch-2/jh896/SUME_DEV/SUME_DEV_FORK/NetFPGA-SUME-dev/projects/reference_nic/hw/project/reference_nic.xpr] - Vivado 2014.4
Eile Edit Flow Tools Wwindow Lavout View Help [Q- Search commands |

SRHBUERX|(FP DN S K| L @[Eocautiaon - |F &% |© Ready

Flow Navigator « Block Design - reference_nic

X

aQxzT= Sources —Ou = Z= Diagram x [Address Editor x 1rox
e — =

) QTS g #[] . reference_nic »

4 Project Manager = - =]
~ Design Source! ar =]

£} Project Settings & @ top_tb_bd (1 d =

¥ add Sources &~ top_sim_bd_wrapper - reference_nic_wrap | <

o Constraints al D

Q ! I I I

v/ LEMEREER VoS | Simulation Sources (1) ot I a‘ ra‘

ERS

IP Integrator

#E Create Block Design

Open
b I O C k 5¥ Open Block Design

. 3 Generate Block Desigy
d es I g n 4 Simulation

4% Sirmulation Settings
(i} Run Simulation

4 RTL Analysis
» ¥ Open Elaborated Desig

K1 |

Hierarchy IP Sources Libraries Compile Order

e RS Mg EHE

4 Synthesis & Sources | H Design Signals
ﬁ Synthesis Settings Froperties O x
Run synthesis ' [

> [@¥ Open Synthesized Desid

4 |mplementation
ﬁ Implementation Setting
[» Run Implementation
> [@% Open Implemanted Deg

4 Program and Debug
ﬁ Bitstream Settings

¥ Gernerate Bitstream [{] ¥
=1
@® Open Hardware Manag o prm—— O E
= component instance block -- xilinx.com:ip:proc_sys_reset:5.0 - proc_sys_reset 0 -
iy component instance block -- NetFPGA:NetFPGA:barrier:1.00 - barrier_ip
= component instance block -- NetFPGA:NetFPGA:barrier_gluelogic:1.00 - activity_stim_glogic
i component instance block -- NetFPGA:NetFPGA:barrier_gluelogic:1.00 - activity_rec_glogic D
5l component instance block -- NetFPGA:NetFPGA:barrier_gluelogic:1.00 - barrier_rec_glogic
& component instance block -- xilinx.com:ip:axi_crossbar:2.1 - xbar
5 component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip
: PICI Mo ACDCL A A COE L i o ni e T 3 o
x] EE

@ Td Console | © Messages [Log 2 Reports 3 DesignRuns

P
SNetFPGEA

Project Integration — Block Design (3)

Edit Flow Tools

Window Layout View Help

APEwOBRX 3> 56X/ E BErmine - JF 8% O

Flow Navigator «

o

i i
e

4 Project Manager

5 Project Settings
% add Sources

Language Templates
4F IF catalog

S

IP Integrator
JF Create Elock Design
5% open Block Design
&3 Generate Block Design

N

Simulation
@ Simulation Settings
(Il Run Simulation

N

RTL Analysis
;= Open Elaborated Desig

N

Synthesis
#5 synthesis Settings
& Run Synthesis
> @ Open synthesized Desig

N

Implementation
ﬁ Implementation Setting
[» Run Implementation

> @ Open Implemanted Des

N

Program and Debug
@ Bitstream Settings
%1 Generate Bitstream
> @® Open Hardware Managt

Block Design - reference_nic *
Sources P) 3
A
- Design Sources (1)
& top_th_bd (tof
&@atop_sim_bd_wrapper - reference_r
i Constraints
1 Simulation Sources (1)

= et B

[T
Hierarchy |P Sources Libraries Compile Order

& Sources El Design @ Signals

Sub-block Properties — O =

[nf_sim_datapath

nf_sim_datapath

reference_nic

Name:

Parent name:

reference_nic - [/local/scratch-2/jh896/SUME_DEV/SUME_DEV_FORK/NetFPGA-SUME-dev/projects/reference_nic/hw/project/reference_|

P @9 b %8 K £ 3 [Eodu o

¥ Language Teplstas
i P cataing
< 1P nkegratar

D

* apen slock Desgn

) Serarate Biack Dasige

+ Sirulsian

@ s

Z=Diagram x [Address Editor X

[4 reference_nic »

2R

@ sunsim

P ——
S rprntatien Settirg

* O Harzvers Feansg

R ¥R R =R PEPElaR

=l

ME_DEV_FORK/NetFPGA-SUME-devfprojects/refersnce._nic/hw/project/referen. lcxpr] - Vivada 2014.4

e @

Block Design rafsren

Sources — 02 % | blagran x B Address Fitor X b Diagram - nf_sim_datapath x
QAW @t BE #] dhreference_me b [f_sim_detapoth

s Y
-

o= Car
G St Ssurees

s Compla o

= signais

os

e

Pareit rame: rataren

General Progeties 2
el ozl
[#ading covparent inatance Block
= tance block
&= tance black -
m s blox
Lo
l o

G aaing cawpnent natacs biack -

G - 1

7l concola

Mazeages iog

LS mopens % bemgn R

1l =

General Properties [I
Tcl Console —Oe =
= component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axls_sim_stim_ip E
= component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
= component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip
1] component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
- component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip [E
& component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
EE component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip

4 1ol Mt Do etk ET b e "
x] EVE‘

2 Td Console © Messages ElLog (2 Reports 3» Design Runs

A~
SNetFPGEA

Project Integration — Block Design (4)

ic/hw/project/reference_|

Eile Edit Flow Tools wWindow Layout View Help Search commands
APRPER BB X 3PP & K I 5EDefaul Layout K B Ready
Flow Navigator &« Block Design - reference_nic # X
Q== Sources — O x Z=-Diagram X M Address Editor X 44 =
AaZ= et R 3] 4 ref ic »
4+ Project Manager =i [] # reference_nic i
> Design Source O [~
3 Project Settings &-w@top_tb_bd (to (t)\
% Add Sources @@ top_sim_bd_wrapper - reference r | 5
o 1 Constraints syl
(]
) LEMTVEER T 1 Simulation Sources (1) L\
1F IP Catalog [
(8]

4 IP Integrator

S Connectivity

5% open Block Design
&5 Generate Block Design

4 Sirnulation
&% Simulation Settings
(i) Fun simulation

o[]_ it conewe 0

4 RILanalysis £ —

> 3
&% Open Elaborated Desig Hierarchy IP Sources Libraries Compile Order

4 Synthesis £ Sources | El Design @ Signals

T

ECRPQEWSG[THA

5 Synthesis Settings System Wet Properties — 0O x
P Run Syrithesis

B Open Synthesized Desid | = proc_sys_reset_0_peripheral_aresetn

seaee

4 Implementation Mame: [proc_sys_reset_o_peripheral_ares H H _—
@ Implementation Setting Parent name: reference_nic :Lﬁ B !
! — =
P> Run Implementation Driver: |€E proc_sys_reset_O/peripheral_s L - L .l
> [@F Open Implemented Des| Pp——]

4 Program and Debug — j ?

% Bitstream Settings [« | ‘ =
m Generate Bitstream General Properties Pins E‘ ! I
. =%
@” Open Hardware Managt Tol conscle e =
B Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip -
e Adding component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
= Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip
1] Adding component instance block -- NetFPGA:NetFPGA:ax1s_sim_record:1.00 - axis_sim_record_ip
7 Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip D
& Adding component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
I Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip
o ; blacl PO, ; o i a4 s
®L_[d] IIVE‘

S Tc Console | © Messages [dLlog & Reports 3> Design Runs

P
SNetFPGEA

Project Integration — Block Design (5)

Setting module parameters

input_arbiter (1.00) '

i Documentation [IP Location

[ghow disabled ports B Component Name [input_arbiter_0
[=]
C_ARD MUM_CE_ARRAY (00000001 |
C_BASEADDR [0x00000000 |
C_DPHASE_TIMEQUT [0 |
. C_HIGHADDR | O0xD0OOFFFF |
0 gpS_mX
e s 0 C_M_AXIS DATA WIDTH [258 |
= aus amis 1 C_M_AXIS TUSER_WIDTH [L123 |
B s_ais_2 L C_NUM_ADDRESS_RANGES [1 |
= ops axis 3 rn_aMisqp =
= o mis 4 pkEfw L C_S_A¥IS DATA WIDTH [258 |
- axis_aclk C_S_AXIS TUSER_WIDTH [L23 |
= axis_resetn C_S_A¥|_ADDR_WIDTH [32 |
=S A% ACLK
ot - C_S_AX|_DATA_WIDTH [32 |
={S ¥ ARESETN -
C_S_m¥|_MIN_SIZE | O0xD0OOFFFF |
C_TOTAL_NUM_CE [1 |
C_S_A¥|_ADDR_WIDTH [0 |
MUM_QUEUES [5 |

|~

[r]~]

OK l | Cancel

A~
SNetFPGA I e T

Project Integration — Block Design (6)

reference_nic - [/localfscratch-2/jh896/SUME_DEV/NOA_SUME_01/NetFPGA-SUME-dev/projects/reference_nic/hw/project/reference_|

File Edit Flow Tools

window Layout

Wiew Help

xpr] - Vivado 2014.4

[C- Search commands |

AR @k X|FP D> B|H K| T G [g0efaut Layout & 3N write_bitstream Out-of-date more info
Flow Mavigator «© Block Design - reference_nic e
QzHE Cesign — O % Z= Diagram x B Address Editor x

Q= Za Q, Cell | Slave Interface| Base Name Address

4 Project Manager & reference nic]| == | §-IF mbsys/microblaze_0

5 Project Settings)= External Interfaces B z PE Datab-"-sza-EI jr%t?ls tit; :|4'3:|| ; M
=1 —== mbsys/microblaze_0_local_memory/... SLME em) |
Oﬁ Add Sources t ' ::;ir:ace tennections = = mbsys/microblaze_0_axi_intc s_axi Reg) | 0x4120_FFFF
:\,J Language Templates D : Nets LS —=a axi_iic_0 S_AXI Reg Ox4080_0000 0x4080_FFFF
B Gl e 0 (Al 1Cs.0) —== axi_uartlite_0 S_axI Reg 0x4050_0800 0x4080_FFFF
¥ P catalog)_@35 e roreomnect O == inpUt_arbiter 0 5 AXI regd 0x4401_0800 0x4401_OFFF

4 IP Integrator L g axi uartlite 0 (23] Uart! {—== nic_output_port_loockup_0 5_AXI reg Ox4403_ 0000 0x4403 OFFF
= 9 L o inp_ut TG 0 (\‘n;-:ut == output_gueues 0 S_AXI regd Ox4402_0000 4K ~ 0x4402 OFFF
/35 Create Block Design - - - I-== nf 10g_interface_0 S_AXI rego Ox4404_0000 4K ~ Ox4404_OFFF
5% open Block Design HED :fbfffg interface 0 (nf | Len n]t_log_mtegace_l 5_AXI rego Ox4405_0000 4K ~ Ox4405_OFFF

I —== nf_10g_interface_2 5_AXI reg Gx4406_0000 4K ~ Ox4406_OFFF
&% Generate Black Design | ¢ QD 2; igg :EE:::E: ; (nf | Lea nf 10 interface 3 5 AxI rego Gx4407_6600 aK ~ 0x4407_OFFF
- I+ nf 10 interface_3 (nf Ld >ffl Instruction (32 & 55 bits : 4G)
simulation L& nf sume_dma -0k nf_sume_dma/nf_riffa_dma_0
5 Simulation Settings L& nic output port | |00ku|: &M m_axi_lite (32 address bits : 4G)
@ Run Simulation [oufput queues 0 |-e= ani_iic_0 5_AXI Reg 0x4080_0000 64k W ~ Ox4080_FFFF
b1 proc_sys_rese = faxLuartllteJ S_AXI Reg Ox4060_0c0e 64K ~ Ox4060_FFFF

P . T |-== input_arbiter_0 5_AXI rego Ox4401_0000 4K ~ Ox4401_OFFF

Y K1 — == nic_output_port_lookup_0 s AXI rego Gx4403_0000 aK ~ Ox4403 OFFF
=% Open Elaborated Desig & so. H pe.. Si. == putput_gueues_0 5_AXI rego Ox4402_6000 aK 0x4402_OFFF
= : = nf_10g_interface_0 S_AXI regl Ox4404_0000 4K 0x4404_OFFF

4 Synthesis Block Properties — O 12 * (== nf_10g_interface_1 5_AXI reg0 0x4405_0000 aK 0x4405_0FFF
4% Synthesis Settings : == nf_10g_interface_2 S_AXI reg0 Gx4405_000f 4K 0x4406_OFFF,
b e — ittt @ —== nf_10g_interface_3 5_AXI regl (% 4407_000, 4K
% Open Synthesized Desig m r—

arme: input_arbiter,

< |Implementation Parent name: reference_nic I a
ﬁ e | S et an g
[» Run Implementation Ad d ress Ed Ito r
% open Implemented Des D

[E]

4 Program and Debug General Properties P [«]
?Bltstream Settings Tel Console oG &
fi] Generate Bitstream = dding component instance block -- xilinx.com:ip:util_vector logic:2.@ - pcie_inverter @ -

y EY} Open Hardware Managr | ., dding component instance block -- xilinx.com:ip:util_vector_logic:2.0 - user_pcie_inverter_0
= dding component instance block -- x1linx.com:ip:pcled 7x:3.0 - pcled 7x_1
11| dding component instance block -- NetFPGA:NetFPGA:nf_riffa_dma:1.0 - nf_riffa_dma_0
gl dding component instance block -- xilinx.com:ip:axis_data_fifo:1.1 - axis_data_fifo_0
& dding component instance block -- xilinx.com:ip:axis_data_fifo:1.1 - axis_data_fife_1
e dding component instance block -- xilinx.com: ip axis_dwidth_converter:1.1 - axis_i dwidth _converter O
X dding component instance block -- xilinx.com:ip:axis_dwidth_converter:1.1 - axis_dwidth_converter_1

uccessfully read diagram
“ open_bd_design:

<reference_nic> from BD file </local/scratch-2/jh896/SUME_DEV/NOA_SUME_G1 /NetFPGA- SUME- dev/pr'n]ec‘tsfre‘ferenc

Time (s): cpu = 00:00:13 ; elapsed = G0:00:09 . Memory (MB): peak = 5897.762 ; gain = 17.516 ; free physical = 20373 ;

Z Tcl Console © Messages [Log

A~
SNetFPGEA

5 Reports | 3 Design Runs

Project Integration — Block Design (7)

ic/hw/project/reference_| pr] - Vivado 2014.4

File Edit Flow Tools Window Layout Wiew Help [OsSearch commands |
APl o2 X Id>rE S XK E'aﬁa*& 9] Ready
Flow Navigator &« Block Design - reference_nic # X
AZTE Sources -0 x &= Diagram X [B Address Editor x 48 &

== me R

. 3] 4 reference_nic »
4 Project Manager 1 =

Q
> Design Source
3 Project Settings ;@-{;‘-tgp_tb_bd (i

% Add Sources @@ top_sim_bd_wrapper - reference_r -
¥ Language Templates) Constraints : a I at e
u | Simulation Sources (1)

’ -

+ W integrator desi gn

D

1F IP Catalog

7% create Black Design
5% open Block Design

&5 Generate Block Design

4 Sirnulation
&% Simulation Settings
(i) Fun simulation

o[]_ it conewe 0

4 RILanalysis £ — -

> 3
&% Open Elaborated Desig Hierarchy IP Sources Libraries Compile Order

4 Syrthesis 4 Sources | Ef Design m Signals o—
5 Synthesis Settings System Wet Properties — 0O x

P Run Syrithesis

B Open Synthesized Desid | = proc_sys_reset_0_peripheral_aresetn

seaee

4 Implementation Mame: [proc_sys_reset_o_peripheral_ares H H _—
@ Implementation Setting Parent name: reference_nic :Lﬁ B !
! — =
P> Run Implementation Driver: |€E proc_sys_reset_O/peripheral_s L - L .l
> [@F Open Implemented Des| Pp——]

4 Program and Debug — j ?

% Bitstream Settings [« | ‘ =
m Generate Bitstream General Properties Pins E‘ ! I
. =%
@” Open Hardware Managt Tol conscle e =
B Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip -
e Adding component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
= Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip
1] Adding component instance block -- NetFPGA:NetFPGA:ax1s_sim_record:1.00 - axis_sim_record_ip
7 Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip D
& Adding component instance block -- NetFPGA:NetFPGA:axis_sim_record:1.00 - axis_sim_record_ip
I Adding component instance block -- NetFPGA:NetFPGA:axis_sim_stim:1.00 - axis_sim_stim_ip
o ; blacl PO, ; o i a4 s
®L_[d] IIVE‘

S Tc Console | © Messages [dLlog & Reports 3> Design Runs

A~
SNetFPGEA

Summary to this Point

 Created a new project
* Created a new core named crypto

 Wired the new core into the pipline
— After output_port_lookup
— Before output_queues

* Next we will write the Verilog code!

A~
SNetFPGEA

Implementing the Crypto Module (1)

 What do we want to encrypt?

— IP payload only
 Plaintext IP header allows routing
« Content is hidden

— Encrypt bytes 35 onward
» Bytes 1-14 — Ethernet header
» Bytes 15-34 — IPv4 header (assume no options)
« Remember AXI byte ordering

— For simplicity, assume all packets are IPv4
without options

A~
SNetFPGA I e T 132

Implementing the Crypto Module (2)

« State machine (shown next):
— Module headers on each packet

— Datapath 256-bits wide
« 34 /32 is not an integer! ®

* Inside the crypto module

Registers

in_fifo_empty 1 valid N M_AXI S

in_fifo_rd_en

S _AXIS

read
p y

data/ctrl

data/ctrl >

A~
SNetFPGA I e T

Crypto Module State Diagram

Hint: We suggest 3 states

A~
SNetFPGA B AT T

Implementing the Crypto Module (3)

Implement your state machine inside crypto.v

Suggested sequence of steps:
1. Setthe key value
set the key = 32'hffffffff;

2. Write your state machine to modify the packet by
XORIing the key and the payload

Use eight copies of the key to create a 256-bit value to XOR
with data words

3. Do not pay attention to the register infrastructure that
will be explained later.

A~
SNetFPGA B AT T 135

More Verilog: Assignments 1

« Continuous assignments
— appear outside processes (always @ blocks):

assign foo = baz & bar;

— targets must be declared as wires
— always “happening” (ie, are concurrent)

A~
SNetFPGA B AT T 136

More Verilog: Assignments 2

 Non-blocking assignments
— appear inside processes (always @ blocks)

— use only in sequential (clocked) processes:

always @ (posedge clk) begin
a <= b;
b <= a;

end

— occur in next delta (‘moment’ in simulation time)
— targets must be declared as regs

— never clock any process other than with a clock!

A~
SNetFPGEA

More Verilog: Assignments 3

* Blocking assignments
— appear inside processes (always @ blocks)

— use only in combinatorial processes:
» (combinatorial processes are much like continuous assignments)

always @(*) begin

Q)
I
o

end

— occur one after the other (as in sequential langs like C)
— targets must be declared as regs — even though not a register

— never use In sequential (clocked) processes!

A~
SNetFPGEA

More Verilog: Assignments 3

» (combinatorial processes are much like continuous assignments)

always @(*) begin
tmp = a;

unlike non-blocking,
a = by have to use a
tmp; temporary signal

o
I

end

A~
SNetFPGEA

(hints)

 Never assign one signal from two processes:

A~
SNetFPGA B AT T 140

(hints)

* In combinatorial processes:
— take great care to assign in all possible cases

— (latches <as opposed to flip-flops> are bad for timing closure)

A~
SNetFPGA B AT T 141

(hints)

* In combinatorial processes:
— take great care to assign in all possible cases

always @(*) begin
if (cond) begin
foo = bar;
else
foo = quux;
end
end

A~
SNetFPGEA

(hints)

* In combinatorial processes:
— (or assign a default)

always @(*) begin
foo = quux;

if (cond) begin
foo = bar;
end
end

A~
SNetFPGEA

Section VIII: Simulation and Debug

A~
SNetFPGEA

Testing: Simulation

« Simulation allows testing without requiring
lengthy synthesis process

* NetFPGA simulation environment allows:

— Send/recelve packets
* Physical ports and CPU
— Read/write registers

— Verify results

e Simulations run in XSim

 We provides an unified infrastructure for
both HW and simulation tests

SNetFPGEA

Testing: Simulation

—%‘-j
e We will simulate the “crypto_switch” design under
the “simulation framework”
e We will show you how to

— create simple packets using scapy

— transmit and reconcile packets sent over 10G
Ethernet and PCle interfaces

— the code can be found in the “test” directory inside
the crypto_switch project

A~
SNetFPGA I e T 146

Testing: Simulation(2)

Run a simulation to verify changes:

1. make sure “NF_DESIGN _ DIR” variable in the tools/settings.sh
file located in ~/NetFPGA-SUME-alpha points to the
crypto_switch project.

2. source ~/NetFPGA-SUME-alpha/tools/settings.sh
(export NF_DESIGN_DIR=~/NetFPGA-SUME-
alpha/projects/crypto_switch)

3. make —C $NF _DESIGN_DIR/hw reg
4. cd ~/NetFPGA-SUME-alpha/tools/scripts

5. .Inf _test.py sim --major crypto —minor test
Or ./nf_test.py sim --major crypto —major test --gui (if you want to run the
qui

Now we can simulate the crypto functionality
P
SNetFPGEA

Crypto Switch simulation

cd $NF DESIGN DIR/test/both crypto test
vim run.py

« The “isHW” statement enables the HW test (we will look into it
tomorrow)

e Let’ sfocus onthe “else” part of the statement

* make_IP_pkt fuction creates the IP packet that will be used as stimuli
* pkt.tuser_sport is used to set up the correct source port of the packet
* encrypt_pkt encrypts the packet

* pkt.time selects the time the packet is supposed to be sent

* nftest_send_phy/dma are used to send a packet to a given interface

* nftest_expected phy/dma are used to expect a packet in a given
interface

* nftest_barrier is used to block the simulation till the previous statement
has been completed (e g., send _pkts -> barrier -> send_more_pkts)
eNE'tFF'ElFl

The results are 1in..

Jroot/NetFPGA-SUME-dev/projects/reference_switch/test/dma & stim.axi: end of stimuli @ 2862 ns.
2862 ns.Info: barrier complete transactor

Jroot/NetFPGA-SUME-dev/projects/reference_switch/test/reg_stim.axi: end of stimuli @ 2960 ns.
INFO: [Common 17-206] Exiting Vivado at Tue Jul 28 16:22:52 2015...
Jroot/NetFPGA-SUME-dev/tools/scripts/nf_sim_reconcile_axi_logs.py
WARNING: No route found for IPv6é destination :: (no default route?)
loading libsume..
Reconciliation of nf_interface 2 log.axl with nf_interface 2 expected.axi

PASS (20 packets expected, 20 packets received)

Reconciliation of nf_interface_3_log.axi1 with nf_interface_3_expected.axi
PASS (20 packets expected, 20 packets received)

Reconciliation of nf_interface @ log.axil with nf_interface 0 expected.axi
PASS (@ packets expected, ® packets received)

Reconciliation of dma_0 log.axi with dma_0 expected.axi
PASS (@ packets expected, ® packets received)

Reconciliation of nf_interface_1 log.axi with nf_interface 1 expected.axi
PASS (20 packets expected, 20 packets received)

Jroot/NetFPGA-SUME-dev/tools/scripts/nf_sim_registers_axi_logs.py
Check registers

* As expected, total of 20 packets are received on each interface

A
SNetFPGA T Technion, Haifa. IL 2015

Running simulation in xSim

File Edit Flow Tools Window Layout wiew Run Help [G-Search commands]
&= =) P P ¥ | & K| X 5[pefautt Layout - B | Kl R, b Q|® Ready
Flow Mawigator <« | Behavioral Simulation - Functional - sim_1 - top_tb X
AT = Scopes _oe x — O % || Buntitled1* x Ow x
S o T e @ <FEIELE]E [&[8]&] T, 6L, 2500 s
a
roje anager Name | Block Type | Design Unit | MName Value [Data Ty|*
% Project Settings ©-Gtop th o iVerilog M... top_tb (=] 1 Logic
&% Add Sources @-J top_sim Verilog M... tep_sim i Logic
E (@ axi_clockin... Verilog M... axi clocking 1 Logic
Language Templates p-@ nf_datapat... Verilog M... nf_datapath 0 Logic
4F IP catalog o=@ input_ar... Verilog M... input_arbit... 0 Logic
@ output_... Verilog M... output_port... (1% xphy_refclk_p 0 Logic
4 |P Integrator $ @ inst Verilog M... switch_lite (1% xphy_refclk_n 1 Logic
Creste Block Design . Verilog M... fallthrough ... % clk_ref il Logic
= ... Verilog M... eth_parser 15 clk_ref p 1 Logic
i~ Open Block Design @ ma... Verilog M... mac_cam_lut 1§ clk_ref n 0 Logic
&5 Generate Block Design o~ dst.. Verilog M... fallthrough_... 1% peie_7x mg... Z Logic
@ opl... Verilog M... output_port... 1 pcie_7x_mg... Z Logic G00000G0000000000000600 .
4 Simulation =@ bram_ou... Verilog M... output_que... 1% rxp z Logic
N N N ‘s 1% r=n z Logic
% Simulation Settings L VHDL Entity [o z Logic
(i} Run Simulation > 13 b z Logic
o= 1% i2c_clk z Logic
4 RTL Analysis ol 1% i2c_data z Logic
3 2=) axis_sim_st... VHDL Entity 1§ si5324 rst n Z Logic
&7 Open Elakorated Design =@ axis_sim_re... Verilog M... 1% led_0 0 Logic
4 Synth =@ axis_sim_re... Verilog M... 1% led_1 X Logic
yntnesis o=@ axis_sim_re... Verilog M... 1% pcie_7x_mg... Z Logic
% Synthesis Settings o=@ axis_sim_re... Verilog M... 1§ pcie_7x_mg... Z Logic
& Run Synthesis 2= @ axis_sim_re... Verilog M... =% PL_SIM_FAS, Array
> @ control_sub Verilog M... control_sub | o=dg C_DATA_WI Array
=) axi_sim_tra... VHDL Entity axi_sim_tra... o=@y KEEP_WIDT... 8 Array
=@ barrier | Verilog M... barrier_ip iy USER_CLK2... 4 Array
2 IR e % Scope | & Sources 45 REF_CLK FR... Array
&% Implementation Settings o~ AXISTEN_IF_... FALSE Array
Sirmulation Scope Froperties — 0O = o=y AXISTEN_IF_... FALSE Array W f d
[> o it \L S ASTEN . faSE amay averorm winaow
- 54 AXISTEN IF_... FALSE Array
@ top_th 5m %5 AXISTEN_IF_... O Array
4 Program and Debug =g AXISTEN_IF_... O Array
3 Bitstream Settings REIE e 5 P % AXISTEN_IF_... 0 Array
31 Generate Bitstream D L [AXISTENIF_... 0 Array
a Block type: verilog Module e _‘)AX‘STENJE 0 Array
@® Open Hardware Manager om g AXISTEN_IF_... 10111111... Array
File: [root/NetFPGA-SUME-dev/projectsirefert| | & % PCIE_PERIC... 10 Array
('@ XPHY_PERIOD 6.4 Float T.|
>~ CORE_PERL... 4 Array
03]
G BARSAXI[BI..‘QJIIODOOH. Arrar
% BARSAXI[31... 01010000... Array
% BAROSIZE[.. 11111111... Array
[| D] F i =
Tcl Console —Ow x
<, | Info: barrier complete
ol
= | | /root/NetFPGA-SUME-dev/projects/reference_switch/test/dna_0_stim.axi: end of stimuli @ 2882 ns. T I I
[l | 2862 ns.Info: barrier complete transactor C C O n S 0 e
<l i/root/NetFPGA-SUME-dEv.’pru]ects/referenceiwltch/test/reqisum.axl: end of stimuli @ 2980 ns.
El
x|_GI | o

Hexadecimal

& Tcl Console Messages [Log

Sim Time: 3 us

P
SNetFPGEA

Running simulation in xSim (2)

e Scopes panel: displays process and instance
hierarchy

e Objects panel: displays simulation objects
associated with the instance selected in the
instance panel

e Waveform window: displays wave configuration
consisting of signals and busses

e Tcl console: displays simulator generated messages
and can executes Tcl commands

A~
SNetFPGA I e T

Simulation gone wild

When “/nf_test.py sim”
1

source /opt/Xilinx/Vivado/2014.4/settings64.sh

2
Edit and source NetFPGA-SUME-alpha/tools/settings.sh

3
Run “make core” under projects/crypto_switch/hw/

4

Check that crypto_switch.tcl, crypto _switch_sim.tcl, export_registers.tcl are all up to date
with your changes

5

If sim finishes but complains that each test passes 10 packets but all tests FAIL — this
means your static key is different between your code and your run.py file

check the log

A~
SNetFPGA I e T

Crypto Module State Diagram: Solution

change state =m_axis_tvalid && m_axis_tready

change_state

Second
word

change_state && m_axis_tlast

change_state && m\ axis_tlast change_state

A~
SNetFPGA I e T

It Is time for the first synthesis!!!

A~
SNetFPGEA

Synthesis

* To synthesize your project:

cd ~/$NF DESIGN DIR/
make clean; make

A~
SNetFPGEA

Section IX: Conclusion

A~
SNetFPGA I e T

Acknowledgments (1)

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik
Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,
Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi,
Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

NetFPGA Team at Stanford University (Past and Present):

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,

G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul
Hartke, Neda Beheshti, Sara Bolouki, James Zeng,
Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,
Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller
Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque,
Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe
ﬁNetFF'EIFI

Acknowledgements (II)

UNIVERSITY OF
CAMBRIDGE

$XILINX® EPSRC

and skills

socon. AAICron &
HLL:EO-LOLGIL

ANCICIET® ool Aol g

‘o

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this
project.

This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

eNE':FF'EIH Summer Course Technion. Haifa, IL 2015

