
1

WWW Performance over GPRS
Rajiv Chakravorty and Ian Pratt�

rajiv.chakravorty, ian.pratt � @cl.cam.ac.uk
University of Cambridge Computer Laboratory,

JJ Thomson Avenue, Cambridge CB3 0FD, U.K.

Abstract— In this paper, we present investigative results of HTTP per-
formance over GPRS (General Packet Radio Service). Following on from
an earlier study of GPRS[2], in which we uncovered a number of perfor-
mance problems with TCP (e.g. sub-optimal start-up performance, excess
queueing, spurious timeouts etc.), we discuss how and to what extent these
limitations can impact HTTP. We also examine some other issues specifi-
cally linked to HTTP performance over GPRS.

Our experimental results show that aggressive behaviour on the part
of web browsers optimized for the wired-Internet does not work well over
GPRS. Instead, limiting the number of browser TCP connections, which
enables aggressive pipelining of requests, can give significant performance
benefits. We show that using a proxy located close to the wired-wireless
boundary that implements performance enhancements at both the trans-
port (TCP) and application layer can lead to substantial reduction in web
page download times over GPRS.

Index Terms—GPRS, wireless, WWW, HTTP, persistent, pipelining

I. INTRODUCTION AND BACKGROUND

The World Wide Web (WWW) is currently responsible for a signif-
icant fraction of Internet traffic. Key to its operation is the HyperText
Transfer Protocol (HTTP), which uses TCP (Transmission control pro-
tocol) - The Internet’s de facto reliable transport protocol, designed to
detect congestion and avoid overload.

Unfortunately, TCP performance is known to degrade over wireless
links where losses are mostly non-congestive, predominantly due to
external environmental factors such as fading, interference etc. Our
link characterization measurements reveal that GPRS links have very
high RTTs (� 1000ms), fluctuating bandwidths, and occasional link
outages. Thus TCP performance suffers in several ways:� A sluggish slow-start that takes many seconds (due to high RTTs)

for the window to ramp-up and allow full link utilization,� Excess queueing over the downlink can result in gross unfairness
to other TCP flows, and a high probability of timeouts during
initial connection request,� Spurious TCP timeouts due to occasional link ‘stalls’ and,� Slow recovery (many seconds) after timeouts.

Web browser behaviour also has a substantial effect on the page
download times over GPRS. In an effort to improve response times on
wired-Internet links, client browsers open many concurrent TCP con-
nections. We show that such a behaviour on the part of the clients may
result in saturation of the downlink buffers, and an increased control
overhead that can negatively impact page download times over GPRS.
We attempt to answer questions like:� How fair is TCP over GPRS? How does it impact Web perfor-

mace?� How does browser behaviour influence page download times?� What is the quantitative benefit achievable when requests are
pipelined?

This paper has been abridged to fit the conference requirements of 5 pages.
Download the full version from: http://www.cl.cam.ac.uk/ � rc277/gprs.html

To answer these questions, we perform a number of experiments
over Vodafone UK’s GPRS infrastructure.1 Through experiments con-
ducted over our GPRS test bed, we demonstrate that HTTP can under-
perform for a number of reasons. We go on to show that using a mo-
bile proxy can reap significant performance benefits to web browsing
over GPRS. Avoiding slow start and simultaneously limiting excess
TCP data over the downlink (using a TCP congestion window clamp-
ing technique in the proxy), combined with even a moderate support
from a web browser for request pipelining, can result in at least 15-
20% reduction in mean download times. Our approach improves web
performance is two ways - (a) optimizing web client (browser) perfor-
mance and (b) tuning HTTP and TCP in order to improve performance
over GPRS.

The paper is structured as follows: The next section will briefly
discuss the characteristics of the GPRS network. Section III describes
TCP problems over GPRS. Section IV gives the experimental set-up
while section V describes our scheme to improve web performance and
demonstrate its effectiveness. We end the paper with our conclusions
and plans for further work.

II. MEASUREMENTS FROM GPRS NETWORK

A. GPRS Link Characterization

GPRS [1], like other wide-area wireless networks, exhibits many
of the following characteristics: low bandwidth, high and variable la-
tency, ack compression, link blackouts and rapid bandwidth fluctu-
ations over time. To gain a clear insight into the characteristics of
the GPRS link, we conducted a series of link characterization exper-
iments. All the experiments were conducted using a Motorola T260
GPRS (3+1) (3 downlink, 1 uplink channels) phone over Vodafone
UK’s GPRS network. A comprehensive report on GPRS link charac-
terization is available in the form of a seperate technical report [4]. We
enunciate some key findings from the experiments:

High and Variable Latency:- We have observed typically high la-
tencies over GPRS, as high as 600ms-3000ms for the downlink and
400ms-1300ms on the uplink. Round-trip latencies are 1000ms or
more.

Link Outages:- Link outages are common while moving at speed
or, obviously, when passing through tunnels. Nevetheless, we have
also noticed outages during stationary conditions. The observed out-
age interval will typically vary between 5 and 40s. Sudden signal qual-
ity degradation, prolonged fades and intra-zone handovers can lead to
such link blackouts. When link outages are of small duration, packets
are justly delayed and are lost only in few cases. In contrast, when
outages are of higher duration there tend to be more loses.

Varying Bandwidths:- We observe that signal quality leads to sig-
nificant (often sudden) variations in bandwidth perceivable by the re-
ceiver. Sudden signal quality fluctuations (good or bad) commensu-
rately impacts GPRS link performance. Using a 3+1 GPRS phone,

�
We made similar but less thorough performance measurements on GPRS

networks throughout Europe, and found performance to be very similar.

2

we observed a maximum raw downlink throughput of about 4.15 KB/s
and an uplink throughput of 1.4 KB/s.

Packet Loss:- As mentioned earlier, GPRS uses an aggressive RLC-
ARQ technique whereby the link-layer tries hard to recover from any
radio losses. This refects in a very stable link condition where higher
layer protocols perceive few non-congestive losses.

III. INFORMAL DESCRIPTION OF TCP PROBLEMS OVER GPRS

In this section, we discuss TCP performance problems over GPRS.
The observations made here relate to the downlink, as it is most im-
portant for activities like web browsing. We provide a more complete
treatment on TCP problems over GPRS in [2].

TCP Start-up Performance:- Figure 1 (a) shows a close up of the
first few seconds of a connection, alongside another connection under
slightly worse radio conditions. An estimate of the link bandwidth
delay product (BDP) is also marked, approximately 10KB2. For a TCP
connection to fully utilize the link bandwidth, its congestion window
must be equal or exceed the BDP of the link. We can observe that in
the case of good radio conditions, it takes over 6 seconds to ramp the
congestion window up to a value of link BDP from when the intial
connect request (TCP’s SYN) was made. Hence, for transfers shorter
than about 10KB, TCP fails to exploit even the meagre bandwidth that
GPRS makes available to it. Since many HTTP objects are around (or
smaller) than this size, the effect on web browsing performance can be
dire.

link BDP (approx.)

(12 seg., 6+ sec)
(14 seg., 9+ sec)

Good Link Conditions

Poor Radio Conditions

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14
Time (sec)

O
u

ts
ta

n
d

in
g

 D
a

ta
 (

b
y

te
s)

Receiver Adv. Window

Congestion Avoidance

Slow Start

Data Segments (Pushed)

Receiver ACK trace

Consequence of ACK compression

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70 80 90

S
eq

u
en

ce
 O

ff
se

t

Time (sec)

Fig. 1. Plot (a) shows that slow-start takes 6+ seconds before the congestion
window is expanded sufficiently to enable the connection to utilise the full link
bandwidth. (b) shows the characteristic exponential congestion window growth
due to slow-start (SS).

A further point to note in figure 1(b) is that the sender releases pack-
ets in bursts in response to groups of four ACKs arriving in quick suc-
cession. Receiver-side traces show that the ACKs are generated in
a ‘smooth’ fashion, hence it is surmised that the compression occurs
as a result of the GPRS uplink (since the wired network is well provi-
sioned). This effect is not uncommon, and appears to be an unfortunate
interaction that can occur when the mobile terminal has data to send
and receive concurrently.

ACK Compression:- During data transfers, ACKs from the mobile
router to the mobile host can get closely spaced, resulting in a phe-
nomemon well known as ACK compression. ACK compresssion in
GPRS has its genesis in the link layer retransmission mechanism. The
radio link control (RLC) layer in GPRS uses an automatic repeat re-
quest (ARQ) scheme that works aggressively to recover from link layer
losses. As packets have to be delivered in order, the RLC waits be-
fore link level retransmissions are successful, and then hands over the
packets to the higher layer. This results in ACK bunching that not

�
The estimate is approximately correct under both good and bad radio con-

ditions, as although the link bandwidth drops under poor conditions the RTT
tends to rise.

only skews upwards TCP’s RTO measurement but also effects its self-
clocking strategy. Sender side packet bursts can further impair RTT
measurements.

Excess Queuing:- Due to its low bandwidth, the GPRS link is al-
most always the bottleneck, and packets destined for the downlink get
queued at the CGSN Node (the wired-wireless ‘router’). However, we
found that the existing GPRS infrastructure offers substantial buffer-
ing: initial UDP burst tests indicate over 120KB of buffering is avail-
able in the downlink direction. Therefore for a long session, TCP’s
congestion control algorithm could fill the entire router buffer before
incurring packet loss and reducing its window. Typically, however,
the window is not allowed to become quite so excessive due to the re-
ceiver’s flow control window, which in most TCP implementation is
limited to 64KB unless window scaling is explicitly enabled. Even so,
this still amounts to several times the BDP of unnecessary buffering,
leading to grossly inflated RTTs due to queueing delay. Figure 2 (b)
shows a TCP connection in such a state, where there is 40KB of out-
standing data leading to a measured RTT of around 30 seconds. Excess
queueing exacerbates other issues: it inflates RTT and retransmit timer
values, results in higher drain times for leftover (stale) data, and slows
recovery from timeouts.

Retransmit (after 3rd dupack)

24 dupacks from pkts inflight

Receiver Adv. Window

(Drain Time = 30 secs)

Segment and Ack Trace

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

S
e
q

u
e
n

c
e
 O

ff
se

t

Time(min)

Link Drain Time = 30 secs

link BDP (approx.)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

O
u
ts

ta
n
d
in

g
 D

a
ta

 (
b
y
te

s)

Time(min)

Fig. 2. Case of timeout due to a dupack(sack). Plot (a) shows the sender
sequence trace and plot (b) shows corresponding outstanding data.

TCP loss recovery over GPRS:- Figure 2(a)-(b) depicts TCP’s per-
formance during recovery due to reception of a dupack (in this case
a SACK). Note the long time (30 seconds) it takes TCP to recover
from the loss, on account of the excess quantity of outstanding data.
Also of note is the link condition, which improved significantly after
the packet loss, resulting in higher available bandwidth. Fortunately,
use of SACKs ensures that packets transferred during the recovery pe-
riod are not discarded, and the effect on throughput is minimal. This
emphasises the importance of SACKs in the GPRS environment.

0

20000

40000

60000

80000

100000

120000

00:0000:00 01:0001:00 02:0002:00

S
e
q

u
e
n

c
e
 O

ff
se

t

Time

f1
f2

Receiver Adv. Window

Ack Trace

Data Segments Pushed
Initial Connection Timeout

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

S
e
q

u
e
n

c
e
 O

ff
se

t

Time (min)

Fig. 3. Close-up of time sequence plots for two concurrent file transfers over
GPRS, where f2 was initiated 10 seconds after f1.

Fairness between flows:- Excess queueing can lead to gross unfair-
ness between competing flows. Figure 3 shows a file transfer (f2) initi-
ated 10 seconds after transfer (f1). When TCP transfer (f2) is initiated,

3

it struggles to get going. In fact it times out twice on initial connection
setup (SYN) before being able to send data. Even after establishing the
connection, the few initial data packets of f2 are queued at the CGSN
node behind a large number of f1 packets. As a result, packets of f2
perceive very high RTTs (16-20 seconds) and bear the full brunt of
excess queueing delays due to f1. Flow f2 continues to badly under-
perform until f1 terminates. Flow fairness turns out to be an important
issue for web browsing performance, since most browsers open multi-
ple concurrent HTTP connections [6]. The implicit favouring of long-
lived flows often has the effect of delaying the “important” objects that
the browser needs to be able to start displaying the partially down-
loaded page, leading to decreased user perception of performance.

A. Experimental Test Bed Setup
As shown in figure 4, we used a laptop connected to a Motorola

T260 ‘3+1’ GPRS phone (3 downlink, 1 uplink channels) through
a serial PPP (point-to-point) link to act as a GPRS mobile terminal.
Vodafone UK’s GPRS network was used as the infrastructure.

The base stations (BSs) are linked to the SGSN (Serving GPRS Sup-
port Node) which is then connected to a GGSN (Gateway GPRS Sup-
port node). Both SGSN and GGSN node is co-located in a CGSN
(Combined GPRS Support Node) in the current Vodafone configura-
tion. A well provisioned virtual private network (VPN) connects the
lab network to that of the Vodafone’s backbone via an IPSec tunnel
over the public Internet. A RADIUS server is used to authenticate
mobile terminals and assign IP addresses.

BACKBONE NETWORK
SERVICE PROVIDER’s

����������
PUBLIC

INTERNET

BSC

BS

BS

SGSN

CGSN

ROUTER
GPRS Edge

Gb

GGSN

Gn

Gi

Router
Edge

Mobile Proxy
Radius Server

Cambridge Computer Laboratory
Firewall

PPP−over−bluetooth
PPP−over−serial

Application Server

Sufficiently Provisioned
IPSec VPN

	
		
		
	�
��
��
�

�
�
��
�
�
�����
�
�����
�

Fig. 4. Experimental Test Bed set-up

We have configured routeing within the lab such that all traffic go-
ing to and from mobile clients will pass through a Linux-based soft-
ware router. This enables us to perform traffic monitoring as well as
providing a location to run a mobile proxy that aims improve web per-
formance over GPRS. The test bed also consist of another machine: a
web server, which is located in the same network close to the proxy.
The mobile proxy runs a modified version of the squid v2.4 [8] caching
proxy, while the web server runs Apache 1.3.22 [9]. As shown in the
setup of figure 4, a web client (browser) in the laptop uses the GPRS
phone and connects to the mobile proxy, which then forwards the re-
quest to the co-located web server. The squid proxy has been modified
to enable it to accept and respond to pipelined requests.

IV. IMPROVING WEB PERFORMANCE OVER GPRS
An important goal with pipelining is to minimize the total number of

connections over GPRS. In this section, we show that request pipelin-
ing combined with an interposed performance enhancing mobile proxy
can improve web download performance over GPRS.

The proxy operates at both the transport and application layers:

A. Transport Level Enhancement (TL-E) using TCP cwnd clamping

A major cause of poor performance with TCP over GPRS is link
under utilization during the first 10 seconds of a connection due to
the pessimistic nature of the slow start algorithm. Slow start is cer-
tainly an appropriate mechanism for the Internet in general, but for the
GPRS link, the proxy can make a better informed decision as to the
congestion window size. Hence, our proxy makes use of a fixed size
congestion window (cwnd), for all connections passing through the
proxy. The size is fixed to a relatively static estimate of the Bandwidth
Delay Product (BDP) of the link. Thus, slow start is eliminated, and
further unnecessary growth of the congestion window beyond the BDP
is avoided. We call this TCP cwnd clamping.

The underlying GPRS network is ensuring that bandwidth is shared
fairly amongst different users (or according to some other QoS policy),
and hence there is no need for TCP to be trying to do the same based on
less accurate information. Ideally, the CGSN could provide feedback
to the proxy about current radio conditions and time slot contention,
enabling it to adjust the ‘fixed’ size congestion window, but in practice
this is currently unnecessary.

Once the mobile proxy is successful in sending ����� ����� amount of
data it goes into a self-clocking state in which it clocks out one segment
each time its receives an ACK for an equivalent amount of data from
the receiver. With an ideal value of ����� ����� , the link should never be
under utilised if there is data to send, and there should only ever be
minimal queueing at the CGSN gateway. Typically, the ideal ����� �����
ends up being slightly higher than the value calculated by multiplying
the maximum link bandwidth by the typical link RTT. This excess is
required due to link jitter, use of delayed ACKs by the TCP receiver in
the mobile host, and ACK compression occurring due to the link layer.

While starting with a fixed value of cwnd, the mobile proxy needs
to ensure that any initial packet burst does not overrun CGSN buffers.
Since the BDP of current GPRS links is small (� 10KB), this is not a
significant problem at this time. For future GPRS devices supporting
more downlink channels (e.g. 8+1), the proxy may need to use traffic
shaping to smooth the initial burst of packets to a conservative estimate
of the link bandwidth.

In the case of a packet loss, we preserve the cwnd value, clocking
out further packets when ACKs are received. RTO triggered retrans-
missions operate in the normal manner. Our transport level enhance-
ment offers several benefits that include faster startup for short flows,
reduced queuing at the proxies and quick recovery from losses.

B. Application Level Enhancements (AL-E)

Apart from its traditional functionality of acting as a data caching
proxy, our application level enhancement offers a minor modification
to the current squid caching proxy. The modification allows squid to
accept HTTP/1.1 pipelined connections from pipelined capable web
clients (browsers). Other application level optimization schemes (e.g.
delta compression, prefetching schemes etc.) can be used to further
improve web performance over GPRS.

C. Quantifying the Benefits of our scheme

To evaluate the performance benefits of our scheme we perform ex-
perimental downloads over GPRS using both static and dynamic web
content.

For the static web content, we composed a number of objects from
a number of web-sites. We justify use of such a test web site purely
for reasons of simplicity, which we actually shown to assist in evalu-
ating pipelining effectiveness [3]. Simple web sites typically have a

4

TCP FIN
DATA SEGMENTS

TCP SYN

109 TCP Connections

0

20

40

60

80

100

120

00 11 22 3
Time (min)

of

 C
on

ne
ct

io
ns

download time
Connections still open

0

5

10

15

20

25

30

35

40

45

50

11 22 33 44

of

 C
on

ne
ct

io
ns

Time (min)

Request

Pipelined Requests

TCP Retransmission

1:45 1:50 1:55 2:00 2:05 2:10 2:15

Pipelined Connections

0

5

10

15

20

25

00 11 12 3

of

 C
on

ne
ct

io
ns

Time (min)

Fig. 5. Mozilla Connnection Timelines for our CNN web-site, using (top-
bottom) (a) non-persistent connection mode, (b) persistent connection mode
and (c) pipelined connection mode.

base HTML documents along with many embedded or inlined objects
(gif’s, CSS, scripts etc). We have observed that popular news sites
(e.g CNN, BBC) can easily have an index page (index.html) of about
40-50KB with over 50 embedded objects. To offer better control over
content presentation, these web sites also make use of cascading style
sheets (CSS) and scripts. Hence is our static web site, we collectively
synthesize about 45 gifs and jpegs images of various sizes from popu-
lar news sites such CNN and BBC. The file and object size distribution
for our test web-site is shown in table I.

Resource Type Size Range (approx.) # of files
index.html 40K 1
jpegs/gifs 200B-2KB 20
gifs 2KB-5KB 20
gifs 5KB-10KB 4
gifs � 10KB 1

TABLE I
COMPOSITION OF OUR STATIC REFERENCE TEST WEB-SITE

For dynamic web-content, we pick a popular news web-site, CNN
www.cnn.com3. To obviate the ill-effects of fast changing web-
content in news web-sites such as CNN, we make a local copy of part
of the site in a locally provisioned web server. Moreover, having a
web server close to the border of wireline-wireless network removes
‘noise’ from our measurements by avoiding network performance ef-
fects of the Internet.

1) Browser Selection: To compare download performance of our
scheme, we chose mozilla [10]. The latest release from mozilla 5.2
(developer build version) also supports pipelining. However, after
analysing browser traces we found few instances where it actually
pipelined requests. In fact, we observed that connections in which re-
quests were pipelined would start in a persistent mode and later switch

CNN Timestamped: 22 !#" April, Updated: 0910 GMT

to pipelining. In persistent connection mode, which is the default set-
ting, it seems that mozilla can make use of a maximum of 6 simultane-
ous connections to an intermediate proxy. While in the non-persistent
mode, it can use a maximum of 8 parallel connections via a proxy.

2) Difficulty in Measuring Browser Download Times: Measuring
download times with a browser is not as trivial as it at first appears:
Many browsers keep connections open even after the complete web-
site is downloaded. While this makes little difference to a user surfing
for some information, it impedes accurate measurements of web site
download times. To overcome this problem, we make use of browser
timelines. Browser timelines are plots that indicate connection time-
lines made by a browser i.e the number of connections, connection
start and end points (if a end point exists), number of requests made,
and data received on each request-reponse exchange. We have written
a script (timeline [7]) that uses tcpdump and tcptrace information
to plot browser connection timelines.

Figure 5 shows the sample browser timelines for CNN web-site us-
ing mozilla. The connection timelines are shown for download of
CNN web-site using browser’s non-persistent connection mode (fig-
ure 5(a)), persistent connection mode (figure 5(b)) and pipelined con-
nection mode (figure 5(c)). The figure (b)-(c) show steps in connec-
tion timelines indicating requests sent over an existing connection to
be reused in persistent and pipelined connection mode for multiple
request-response exchanges. As shown in figure 5(b), some browser
connections are kept open even after the complete download4 . For
all such cases, we simply measured the download time with respect
to connections that finished successfully prior to the one’s that were
kept open. This is shown in figure 5(b) with a dotted vertical line.
Also, shown in figure 5(c) is the close-up of a connection in which
requests were pipelined. The connection starts with a persistent mode
and then switches to make use of pipelining. It is evident here that
mozilla pipelined requests only occasionally, giving a relatively poor
pipelining efficiency.

3) Measurements: We performed experimental downloads with
mozilla using three different modes: non-persistent mode, persistent
connection mode and pipelined connection mode. All experiments
were conducted for the static test web site as well as for our locally
available CNN web site offering dynamic content. For CNN, we found
out that almost all the data was cacheable except for a few objects for
which the requests had to be forwarded to our web server.

We averaged download times from 20 sucessful runs and plot mean
value of the download time and corresponding standard deviation.
Figure 6 shows that mean download time using mozilla for our test
web-site. With non-persistent connections, we found only a small ad-
vantage in using the proposed transport level enhancement (TL-E). It
seems that for non-persistent connections, the overall gains made by
eliminating slow-start are negated by the overhead due to large number
of connections. Nevertheless, there is still some modest improvement
in download times when using TL-E with persistent connections. The
average improvement in download times when switching from non-
persistent to persistent mode and using TCP cwnd clamping was more
than 10%. As far as the number of connections are concerned (see fig-
ure 7) the reduction was more than 80%. For pipelined connections,
as evident from figure 6, we find that using TL-E can reduce mean
download time by about 20%.

However, browser traces indicate only few intances of connec-
tions over which requests were pipelined. We believe that since the
pipelining efficiency of the browser was low (as indicated earlier from
browser timelines in figure 5(c)), only meagre benefit could be ex-

$
Persistent connections are kept open for re-use, but are typically timed out if

idle for 60 seconds [6]. In some cases they are kept ‘live’ by scripts periodically
refetching objects e.g. news tickers.

5

50

55

60

65

70

75

80

D
ow

nl
oa

d
T

im
e

(s
ec

)

Test Web−site Download over GPRS

Persistent
Persistent with TL−E

Pipelined
Pipelined with TL−E

Non−Persistent with TL−E
Non−Persistent

Fig. 6. Test Web Page download time over GPRS using Mozilla

%&%&%&%%&%&%&%'&'&'&''&'&'&' (&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&((&(&(&(

)&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&))&)&)&)

&&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&**&*&*&*

+&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&++&+&+&+

,&,&,,&,&,-&-&--&-&-

.&..&./&//&/0&00&01&11&12&22&23&33&34&44&45&55&5

Pipelined with TL−E

Pipelined

Persistent

Non−Persistent with TL−E

Non−Persistent

Persistent with TL−E

0

10

20

30

40

50

60
Browser (Mozilla) Performance for Test Web site download over GPRS

A
vg

 #
 o

f T
C

P
C

on
ne

ct
io

ns

Fig. 7. Avg. Connections made to download the Test web site using Mozilla

tracted using pipelined connections.
On the contrary, observations valid for the CNN web site are some-

what different from those above. The use of TL-E with non-persistent
connections show very little performance gains. The same is true for
persistent connections that show only slight performance improvement
in mean download times when compared to non-persistent connec-
tions. We believe that since the number of connections made is rel-
atively high for the browser even with persistent mode (an average of
more than 40 connections, see figure 9), the gain offered by eliminat-
ing slow-start is again negated by a high connection overhead.

However, using the browser’s pipelined mode with CNN lowers
the number of connections utilized and also indicates (using browser
traces) a somewhat better pipelining efficiency when compared to the
web site having static web content. Figure 8 shows that an improve-
ment with pipelined mode was more evident when using the transport
level enhancement (TL-E). We found an average reduction of more
than 15% in mean download times when using the pipelined mode
with TL-E. The average number of TCP connections in non-persistent
mode was 109, reducing to an average of 24 when using pipelined
connections, an overall reduction of more than 75% (see figure 9).

An average 15-20% improvement in mean download times for both
static and dynamic content over GPRS with pipelined connections
is encouraging, taking into account the low pipelining efficiency in
mozilla. We believe that further benefit can be acheived if browsers
pipeline their requests more aggresively.

While we would like browsers to achieve a high pipelining effi-
ciency, there will be times when it cannot: data dependencies can be
strict and hence responses to particular requests cannot be re-ordered.
In such cases, browser clients will have to wait for a response before
further requests can be pipelined. Obviously, this will reduce the over-
all pipelining efficiency, at least for web sites containing dynamically
generated content.

Further, we find that a reduction in the number of connections is
advantageous not only due to the low-bandwidth nature of the GPRS
links but also because it mitigates the overall control and transactional
(3-way TCP handshake) cost associated with each additional connec-

120

125

130

135

140

145

150

155

160

165

170

175
Web Site (CNN) Download Times over GPRS

D
ow

nl
oa

d
T

im
e

(s
ec

)

Pipelined
Persistent with TL−E

Persistent
Non−Persistent with TL−E

Non−Persistent

Pipelined with TL−E

Fig. 8. CNN download time over GPRS using Mozilla.

676766767667676676766767667676676766767667676676766767667676676766767667676

878788787887878878788787887878878788787887878878788787887878878788787887878
979979:7::7:;7;;7;<7<<7<=7==7=>7>>7> ?7?7?7??7?7?7??7?7?7??7?7?7??7?7?7??7?7?7?

@7@7@7@@7@7@7@@7@7@7@@7@7@7@@7@7@7@@7@7@7@ A7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7AA7A7A

B7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7BB7B7B

C7C7C7CC7C7C7CC7C7C7CC7C7C7CC7C7C7CC7C7C7C
D7D7D7DD7D7D7DD7D7D7DD7D7D7DD7D7D7DD7D7D7D

E7EE7EF7FF7F
Pipelined with TL−E

Pipelined

Persistent with TL−E

Non−Persistent with TL−E

Non−Persistent

Persistent

0

20

40

60

80

100

120

A
vg

. #
 o

f T
C

P
C

on
ne

ct
io

ns

Browser (Mozilla) Performance for CNN download over GPRS

Fig. 9. Avg. Connections made to download CNN using Mozilla

tion. We infer that aggressive pipelining of requests over browser con-
nections reduces overall connection (control and transactional) over-
head, and combined with the transport level enhancement (TL-E) can
result in substantial improvement in web download times.

V. CONCLUSION AND FUTURE WORK

In this paper, we have experimentally evaluated web-performance
over a GPRS test bed. We have shown that pipelining over high RTT
links such as GPRS can result in significant performance improvement
in web page download times. We reported initial evaluations of our
transport level enhancement (TCP cwnd clamping technique) and ap-
plication level enhancement (pipelining) in our mobile proxy. Finally,
we have shown that using a performance enhanced mobile proxy along
with a browser capable of aggressive pipelining can reduce web down-
load times over GPRS.

REFERENCES

[1] G. Brasche and B. Walke, “Concepts, Services and Protocols of the New
GSM Phase 2+ General Packet Radio Service”, IEEE Communications
Magazine, August 1997.

[2] R. Chakravorty, J. Cartwright, I. Pratt, “Practical Experience With TCP
over GPRS”, in IEEE GLOBECOM 2002, Taipei, Taiwan
source: http://www.cl.cam.ac.uk/users/rc277/gprs.html

[3] R. Chakravorty and I. Pratt, “WWW performance over GPRS” (complete
paper), source: http://www.cl.cam.ac.uk/users/rc277/gprs.html

[4] J. Cartwright, “GPRS Link Characterization”,
http://www.cl.cam.ac.uk/users/rc277/linkchar.html

[5] “An Introduction to the Vodafone GPRS Environment and Supported Ser-
vices”, Issue 1.1/1200, December 2000, Vodafone Ltd., 2000.

[6] Z. Wang and P. Cao, “Persistent Connection Behaviour of Popular
Browsers”, http://www.cs.wisc.edu/cao/papers/persistent-connection.html

[7] timeline (http://www.cl.cam.ac.uk/ G rc277/gprs.html,
tcpdump(http://www.tcpdump.org), tcptrace(http://www.tcptrace.org),
ttcp+(http://www.cl.cam.ac.uk/Research/SRG/netos/netx/)

[8] The squid proxy cache Homepage, http://www.squid-cache.org
[9] The Apache Software Foundation, http://www.apache.org
[10] Mozilla web browser, http://www.mozilla.org

