
1

WWW Performance over GPRS
Rajiv Chakravorty and Ian Pratt�

rajiv.chakravorty,ian.pratt � @cl.cam.ac.uk
University of Cambridge Computer Laboratory,

JJ Thomson Avenue, Cambridge CB3 0FD, U.K.

Abstract— In this paper, we present investigative results of HTTP per-
formance over GPRS (General Packet Radio Service). Following on from
an earlier study of GPRS[3], in which we uncovered a number of perfor-
mance problems with TCP (e.g. sub-optimal start-up performance, excess
queueing, spurious timeouts etc.), we discuss how and to what extent these
limitations can impact HTTP. We also examine some other issues specifi-
cally linked to HTTP performance over GPRS.

Our experimental results show that aggressive behaviour on the part of
web browsers designed to perform over the wired-Internet, does not work
well over GPRS. Instead, by limiting the number of browser connections,
which also enables aggressive pipelining of requests, can give significant
performance benefits. We show that by using a proxy located close to the
wired-wireless boundary that implements performance enhancements at
both the transport (TCP) and the application layer, can lead to substantial
reduction in web download times over GPRS.

I. INTRODUCTION AND BACKGROUND

The World Wide Web (WWW) is currently responsible for a
significant fraction of Internet traffic. Key to its operation is the
HyperText Transfer Protocol (HTTP), the means through which
web documents are requested and delivered. HTTP uses TCP
(Transmission control protocol) - The Internet’s de facto reli-
able transport protocol, designed to detect congestion and avoid
overload.

Unfortunately, TCP performance is known to degrade over
wireless links where losses are mostly non-congestive, predom-
inantly due to external environmental factors such as fading, in-
terference etc. Wireless networks also suffer from a number of
other discrepancies. Our link characterization measurements re-
veal that GPRS links have very high RTTs (� 1000ms), fluctuat-
ing bandwidths, and occasional link outages. Thus TCP perfor-
mance suffers in many ways:� A sluggish slow-start that takes many seconds (due to high
RTTs) for the window to ramp-up and allow full link utilization,� Excess queueing over the downlink can result in gross un-
fairness to other TCP flows, and a high probability of timeouts
during initial connection request,� Spurious TCP timeouts due to occasional link ‘stalls’ and,� Slow recovery (many seconds) after timeouts.

A number of such pressing performance issues, aside from
those discussed above needs to be solved to improve HTTP per-
formance over GPRS. As we show later, large HTTP transfers
can lead to excess queueing over the downlink. This can harm
other existing or new flows, with potential to cause unfairness.
Web browser behaviour also has a substantial effect on page
download times over GPRS. In an effort to improve response
times on wired-Internet links, client browsers open many con-
current TCP connections. We show that such a behaviour on the
part of the web clients may result in saturation of the downlink
buffers, and an increased control overhead that can negatively
impact page download times over GPRS. We attempt to answer

a number of questions:� How fair is TCP over GPRS? Can unfairness in TCP impact
Web performace?� How does browser behaviour influence page download times?� What is the quantitative benefit achievable when requests are
pipelined?

To answer these questions, we perform a number of experi-
ments over Vodafone UK’s GPRS infrastructure.1 Through ex-
periments conducted over our test bed, we show that HTTP can
underperform for a number of reasons. Also, based on the re-
search conducted earlier, we discuss limitations in TCP that can
deleteriously impact HTTP performance. We identify potential
performance problems in HTTP (including those in TCP) and
find simple yet effective ways to overcome them. In particular,
using a mobile proxy can reap significant performance benefits
to web browsing over GPRS. We also show that by avoiding
slow start and simultaneously limiting excess TCP data over the
downlink (using a TCP congestion window clamping technique
in the proxy), combined with even a moderate support from a
web browser for request pipelining, can result in at least 15-
20% reduction in mean download times. Moreover, our tech-
nique optimizes the number of browser connections (and con-
trol overhead) and eliminates negative effects of normal TCP.
Our approach improves web performance is two ways - (a) opti-
mizing web client (browser) performance and (b) tuning HTTP
and TCP in order to improve performance over GPRS.

In this paper, we do not evaluate optimizations schemes such
as header compression, delta encoding or prefetching that can
also give performance benefits to low-bandwidth GPRS users.
We do, however, intend to do a quantitative evaluation of such
schemes over GPRS in the near future.

The paper is structured as follows: The next section will
briefly discuss the characteristics of the GPRS network. Section
III describes TCP problems over GPRS. Section IV presents a
discussion on TCP fairness, browser performance over GPRS
and pipelining incentives. In section V, we describe our scheme
to improve web performance and demonstrate its effectiveness.

II. CHARACTERISTICS OF THE GPRS NETWORK

GPRS[1][2], like other wide-area wireless networks, exhibits
many of the following characteristics: low bandwidth, high
and variable latency, ack compression, link blackouts and rapid
bandwidth fluctuations over time. To gain a clear insight into
the characteristics of the GPRS link, we conducted a series of
link characterization experiments. All the experiments were
conducted using a Motorola T260 GPRS (3+1) (3 downlink, 1�

We have made similar but less thorough performance measurements on
GPRS networks throughout Europe, and found performance to be very similar.

2

uplink channels) phone over Vodafone UK’s GPRS network. A
comprehensive report on GPRS link characterization is available
in the form of a seperate technical report[6]. We enunciate some
key findings from the experiments:

High and Variable Latency:- We have observed typically
high latencies over GPRS, as high as 600ms-3000ms for the
downlink and 400ms-1300ms on the uplink. Round-trip laten-
cies are 1000ms or more.

Ack Compression:- During data transfers, ACKs from the
mobile router to the mobile host can get closely spaced, resulting
in a phenomemon well known as ACK compression. ACK com-
presssion in GPRS has its genesis in the link layer retransmis-
sion mechanism. The radio link control (RLC) layer in GPRS
uses an automatic repeat request(ARQ) scheme that works ag-
gressively to recover from link layer losses. As packets have to
be delivered in order, the RLC waits before link level retrans-
missions are successful, and then hands over the packets to the
higher layer. This results in ACK bunching that not only skews
upwards the TCP’s RTO measurement but also effects its self-
clocking strategy. Sender side packet bursts can further impair
RTT measurements.

Downlink Delay Distribution

0

20

40

60

80

100

120

140

160

0 1 2 3 4 5 6

P
ac

k
et

 D
el

ay
 D

is
tr

ib
u
ti

o
n

Packet Delays(secs)

Uplink Delay Distribution

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
Packet Delays(secs)

P
ac

k
et

 D
el

ay
 D

is
tr

ib
u
ti

o
n

Fig. 1. Single packet time in flight delay distribution plots showing (a) down-
link delay (b) uplink delay distribution. Measurements involved transfer of
1000 packets with random intervals more than 4s between successive packet
transfers.

Link Outages:- Link outages are common while moving at
speed or, obviously, when passing through tunnels. Nevethe-
less, we have also noticed outages during stationary conditions.
The observed outage interval will typically vary between 5 and
40s. Sudden signal quality degradation, prolonged fades and
intra-zone handovers can lead to such link blackouts. When link
outages are of small duration, packets are justly delayed and are
lost only in few cases. In contrast, when outages are of higher
duration there tend to be more loses.

Varying Bandwidths:- We observe that signal quality leads to
significant (often sudden) variations in bandwidth perceivable
by the receiver. Sudden signal quality fluctuations (good or bad)
commensurately impacts GPRS link performance. Using a 3+1
GPRS phone, we observed a maximum raw downlink through-
put of about 4.15 KB/s and an uplink throughput of 1.4 KB/s.

Packet Loss:- As mentioned earlier, GPRS uses an aggres-
sive RLC-ARQ technique whereby the link-layer tries hard to
recover from any radio losses. This refects in a very stable link
condition where higher layer protocols perceive relatively rare
non-congestive losses.

III. INFORMAL DESCRIPTION OF TCP PROBLEMS OVER
GPRS

In this section, we discuss TCP performance problems over
GPRS. The observations made here relate to the downlink, as it
is most important for activities like web browsing. We provide
a more complete treatment on TCP problems over GPRS in [3].

TCP Start-up Performance:- Figure 2 (a) shows a close up
of the first few seconds of a connection, alongside another con-
nection under slightly worse radio conditions. An estimate of
the link bandwidth delay product (BDP) is also marked, approx-
imately 10KB2. For a TCP connection to fully utilize the link
bandwidth, its congestion window must be equal or exceed the
BDP of the link. We can observe that in the case of good radio
conditions, it takes about 6 seconds to ramp the congestion win-
dow up to a value of link BDP from when the intial connect re-
quest (TCP’s SYN) was made. Hence, for transfers shorter than
about 10KB, TCP fails to exploit even the meagre bandwidth
that GPRS makes available to it. Since many HTTP objects are
around (or smaller) than this size, the effect on web browsing
performance can be dire.

link BDP (approx.)

(12 seg., 6+ sec)
(14 seg., 9+ sec)

Good Link Conditions

Poor Radio Conditions

r1i
r2i

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14
Time(sec)

O
u

ts
ta

n
d

in
g

 D
a
ta

 (
b

y
te

s)
Receiver Adv. Window

Congestion Avoidance

Slow Start

Data Segments (Pushed)

Receiver ACK trace

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70 80 90

S
e
q
u
e
n
c
e
 O

ff
se

t

Time(sec)

Fig. 2. Plot (a) shows that slow-start takes 6+ seconds before the congestion
window is expanded sufficiently to enable the connection to utilise the full
link bandwidth. (b) shows the characteristic exponential congestion window
growth due to slow-start (SS).

A further point to note in figure 2(b) is that the sender releases
packets in bursts in response to groups of four ACKs arriving in
quick succession. Receiver-side traces show that the ACKs are
generated in a ‘smooth’ fashion, hence it is surmised that the
compression occurs as a result of the GPRS uplink (since the
wired network is well provisioned). This effect is not uncom-
mon, and appears to be an unfortunate interaction that can occur
when the mobile terminal has data to send and receive concur-
rently.

Excess Queuing:- Due to its low bandwidth, the GPRS link
is almost always the bottleneck, and packets destined for the
downlink get queued at the CGSN Node. However, we found
that the existing GPRS infrastructure offers substantial buffer-
ing: initial UDP burst tests indicate over 120KB of buffering is
available in the downlink direction. Therefore for a long ses-
sion, TCP’s congestion control algorithm could fill the entire
router buffer before incurring packet loss and reducing its win-
dow. Typically, however, the window is not allowed to become
quite so excessive due to the receiver’s flow control window,
which in most TCP implementation is limited to 64KB unless�

The estimate is approximately correct under both good and bad radio condi-
tions, as although the link bandwidth drops under poor conditions the RTT tends
to rise.

3

window scaling is explicitly enabled. Even so, this still amounts
to several times the BDP of unnecessary buffering, leading to
grossly inflated RTTs due to queueing delay. Figure 3 (b) shows
a TCP connection in such a state, where there is 40KB of out-
standing data leading to a measured RTT of around 30 seconds.
Excess queueing exacerbates other issues:� RTT Inflation:- Higher queueing delays can severely degrade
TCP performance[5]. A second TCP connection established
over the same link is likely to have its initial connection request
time-out [11].� Inflated Retransmit Timer Value:- RTT inflation results
in an inflated retransmit timer value that impacts TCP per-
formance, for instance, in cases of multiple loss of the same
packet[11].� Problems of Leftover (Stale) Data:- For downlink chan-
nels, the data in the pipe may become obsolete when a user
aborts a web download and abnormally terminates the connec-
tion. Draining leftover data from such a link may take on the
order of several seconds.� Higher Recovery Time:- Recovery from timeouts due to du-
packs (or sacks) or coarse timeouts in TCP over a saturated
GPRS link takes many seconds. This is depicted in figure 3(a)
where the drain time is about 30s.

Retransmit (after 3rd dupack)

24 dupacks from pkts inflight

Receiver Adv. Window

(Drain Time = 30 secs)

Segment and Ack Trace

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

S
e
q

u
e
n

c
e
 O

ff
se

t

Time(min)

Link Drain Time = 30 secs

link BDP (approx.)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

O
u
ts

ta
n
d
in

g
 D

a
ta

 (
b
y
te

s)

Time(min)

Fig. 3. Case of timeout due to a dupack(sack). Plot (a) shows the sender se-
quence trace and plot (b) shows corresponding outstanding data.

TCP loss recovery over GPRS:- Figure 3(a)-(b) depicts
TCP’s performance during recovery due to reception of a dupack
(in this case a SACK). The point to note here is the large amount
of time (30 seconds) it takes TCP to recover from the loss, on ac-
count of the excess quantity of outstanding data. Also of note is
the link condition, which improved significantly around the time
of the packet loss, resulting in higher available bandwidth. For-
tunately, use of SACKs ensures that packets transferred during
the recovery period are not discarded, and the effect on through-
put is minimal. This emphasises the importance of SACKs in
the GPRS environment.

IV. TCP FAIRNESS EVALUATION OVER GPRS

To analyse TCP fairness, we emulate a common web browser
behaviour by opening two HTTP (TCP) connections and inves-
tigate its performance. A simple case of only two TCP connec-
tions is examined, though current web browsers exacerbate the
problem by opening multiple TCP connections[4]. We consider
two long connections (600KB transfers). With no easy way to
uncover temporal dependencies for connection start up times,
we consider two distinct possibilities - (1) both connections are

initiated at nearly the same time or (2) when one is initiated af-
ter the other achieved steady state. We have noticed that web
browsers often start making requests even before the root re-
source (often a HTML file) is fully available. Also, other than
its significance to connection start-up times, this experiment es-
sentially investigates the impact of a long flow vis-a-vis other
flows over GPRS.

f1
f2

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

22000

0 1 2 3 4 5 6

R
T

T
 (m

s)

Time(min)

Fig. 4. Plots shows sender perceived RTTs for two (f1 and f2) 600KB file
transfers. Transfer (f2) was initiated after the first (f1) achieved steady
state.

0

20000

40000

60000

80000

100000

120000

00:0000:00 01:0001:00 02:0002:00

S
eq

u
en

ce
 O

ff
se

t

Time

f1
f2

Receiver Adv. Window

Ack Trace

Data Segments Pushed
Initial Connection Timeout

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

S
eq

u
en

ce
 O

ff
se

t

Time (min)

Fig. 5. Time sequence plots for two simultaneous file transfers over GPRS.
Close-up plot shows f2 for the duration of f1 started only after f1 reached
steady state.

Figure 5 shows a file transfer (f2) initiated after the first trans-
fer (f1) has achieved a steady state. This is shown in figure
4 where packets of f1 saturate the downlink leading to excess
queuing delays (15-20s). When a second TCP transfer (f2) is
initiated, it struggles to get going, in fact it times out twice on
initial connection (SYN), before being able to send data. Even
while this happens, the few initial data packets of f2 are queued
at the CGSN node behind a large number of f1 packets. As a re-
sult, packets of f2 perceive very high RTTs (similar to f1 pack-
ets, shown in figure 4) and bear the full brunt of excess queuing
delays due to f1. Flow f2 continues to underperform due to ex-
cess RTTs for the complete duration of the life-time of f1.

A second case is shown in figure 6, where two flows begin at
nearly the same time. In this case, both flows utilize the down-
link queue proportionately, resulting in near fairness to both the
transfers. This motivates us to another set of questions:� How often can we expect large responses? Large responses
here would mean responses that are of multiple order of the BDP
of the GPRS downlink.� How do web servers schedule responses?

Insight on the former can be gained by considering the heavy-
tailed distributions in web server workloads, where majority of

4

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

19:00 20:00 21:00 22:00 23:00 24:00 25:00

R
T

T
(m

s)

Time (min)

f2
f1

Fig. 6. Sender RTTs for two (f1 and f2) 600KB file transfer over GPRS. Both
transfers (f1 and f2) were initiated almost at the same time.

the connections are small, but most server load is due to few
large connections. It has been shown through relatively recent
empirical measurements by F. D. Smith et. al. [13] that at
least 15% of HTTP responses have a size larger than 10KB.
This brings us closer to a particular problem known as head of
line (HOL) blocking[22]. HOL blocking problems in HTTP can
adversely impact user-perceived latency, when a slow response
holds up all subsequent responses. This has largely to do with
the way web servers (or proxies) perform response scheduling.
Traditionally, web servers rely on the operating system to sched-
ule responses, where emphasis is typically on fairness and on
response times. This gives a simple first-come-first-serve re-
sponse order over incoming requests. Hence, a large response
over GPRS will easily the saturate GPRS downlink resulting in
unfairness to other exisiting flows or new flows.

Web server scheduling schemes have interesting implications
to reducing mean download times. Mark Crovella et. al. [8]
show that a shortest connection first (scf) approach by a web
server can improve mean response times by a factor of 4-5. For
persistent connections, an analogous scheme called shortest re-
sponse processing time (srpt) [9] scheduling can be advanta-
geous. Both schemes claim meagre penalty for long sessions.
Unfortunately, neither is strictly applicable when response sizes
are not known in advance e.g. when responses are generated
dynamically. With ever increasing popularity of dynamic web
content, it is questionable if scf and srpt can offer substantial
benefits to dynamic responses. Hence further work is required
to extend such schemes and improve response times for down-
loads that involve dynamic data. Response re-ordering can also
become complicated when requests have strict resource depen-
dencies and it may not be possible to have their responses re-
ordered[22].

A. Why Browser Performance matters?

The inherent nature of TCP’s congestion control algorithm
implies that � persistent connections will be � times more ag-
gressive as compared to a single TCP connection. By open-
ing more persistent connections browsers not only improve re-
sponse times, but can also avoid head-of-line (HOL) blocking
problem. Therefore browsers often open more concurrent con-
nections with a server (or proxy). For example, Netscape seems
to use a maximum (non-frame based) of 6 connections per web
server while Internet Explorer uses 2[4]. Such browser action
results in high pay-off over limited bandwidth-delay product

links such as GPRS. Multiple connections keep the link busy
resulting in efficient link utilization.

However, there remains potential drawbacks in using multi-
ple connections over low banwidth GPRS. First, there is a con-
trol overhead associated with higher numbers of connections.
Second, transaction (3-way TCP handshake) cost for a given
connection is high, and more connections can increase response
times. However, the main problem is that it can take only a few
RTTs for multiple concurrent connections to exceed the GPRS
CGSN router downlink BDP value. The exponential nature of
the slow-start phase combined with packets from multiple flows
leads to excess queuing over the downlink. As a result, any
subsequent new TCP connection will have a high chance of tim-
ing out during its initial connection request. Worse, this new
connection will endure very high RTTs, which can cause it to
severely underperform, with an additional probability of spuri-
ous timeouts.

B. Pipelining Incentives over GPRS

Persistent connections allow multiple requests to be issued
on the same TCP connection. However, a new request can only
be issued after receiving a complete response from the server.
HTTP/1.1 pipelined connections allow multiple requests to be
kept outstanding before a response is received. Previous stud-
ies have demonstrated substantial improvement of page down-
load times using pipelined connections [14][15]. However, none
of the earlier literatures appear to quantify benefits associated
with the degree of pipelining i.e. pipelining effectiveness. If we
assume that a client would pipeline its request as aggressively
as possible over a given connection, then how do we measure
pipelining effectiveness? We introduce a new term Pipeline Fac-
tor (�
). �
	 typically represents pipelining aggressiveness of
a web-client. A high �
	 indicates that a client is able to keep
more requests outstanding during its connection lifetime.�
	 for a single connection is defined here as:

�
	������������ �������� (1)

where � corresponds to the total number of requests sched-
uled during a connection’s lifetime. Here � ������� is the pipeline
index calculated separately for each request as the total num-
ber of requests (including the request ‘ � ’) minus the responses
received before request ‘ � ’ was made. The maximum possible�
	 for a connection is (�
	� "!$# = &%'�(�) ��), which happens when
all the requests are pipelined before a response can be received.�
	 can achieve a minimum value of 1, when a connection is
effectively persistent with no pipelining3. When �
	 is 1, a
single request is always outstanding during the connection life-
time. Notice equation 1 gives greater weight to connections that
can keep more requests outstanding. Having more requests out-
standing (high �
) gives the server (or proxy) more opportunity
to keep the downlink busy and achieve a high link utilization. A
link with a high RTT benefits from employing a high �
	 factor.

Figure 7 shows a sample �
	 calculation for a pipelined con-
nection. As shown, the pipeline index for the the *�+-, and the .0/21
request is the same for both: 2 each. The index value for the .3/214

we refer to 1 request pipeline as persistent

5

Time

Requests
Responses

Pipeline Index 1 1 2 2 3

5
1+1+2+2+3 = 1.8PF =

Fig. 7. PF calculation of a pipelined connection

request is 2 because its index gain is negated4 by the reception
of two responses. The 5
6 value comes out to about 1.8 from a
maximum possible 5
6 of 3 for this connection.

Likewise, we introduce another term pipelining efficiency (7).
Since browsers might pipeline requests on more than one con-
nection - the pipelining efficiency in this case will be determined
by how effectively requests are pipelined across all connections.
The overall pipelining efficiency for ‘ 8 ’ connections can be
given by:

7:9 ;=<>@?BA 5
6 >;&<>@?BA 5
6 <"C$D> 9 ;=<>@?BA 5
6 >
;=<>@?BA ;&EFHG3IKJL (2)

It is typically not possible for such browsers that support
pipelining to achieve 100% pipelining efficiency (7), as it would
mean they would then have to be cognizant about all the re-
quests over given connections. Browsers typically need atleast
one response (for non-frame based static web-pages) to parse
and make subsequent requests for other inlined objects. For
web sites offering dynamic content, strict resource dependen-
cies can limit number of pipelined requests that eventually low-
ers 5
6 over a given connection. The easiest case is for a web-
site with static content, where after receiving the first response,
all other requests can be easily pipelined. To show how 5
6
relates to web download performance, we perform further ex-
periments over GPRS. The results presented here consider only
one TCP connection used to issue pipeline requests with differ-
ent 5
6 values. We later generalize the results for any number
of connections.

The majority of current web browsers have yet to offer any
support for pipelining. Notable exceptions are mozilla [20] and
opera [21] where support for pipelining exists, but the option
needs to be explicitly enabled by the user. We believe software
designers implementing pipelining in web browsers should aim
to maintain a high 5
6 5.

B.1 Experimental Test Bed Setup

Our experimental set-up was that used during the link chara-
terization measurements. As shown in figure 8, we used a laptop
connected to a Motorola T260 GPRS phone (3+1) (3 downlink,
1 uplink channels) through a serial PPP (point-to-point) link to
act as a GPRS mobile terminal. Vodafone UK’s GPRS network
was used as the infrastructure.

The base stations (BSs) are linked to the SGSN (Serving
GPRS Support Node) which is then connected to a GGSN
(Gateway GPRS Support node). Both SGSN and GGSN nodeM

obtained as: 4 (requests) - 2 (response) = 2N
we show later that mozilla starts with persistent mode and then switches to

pipelined mode. Moreover, it seems to pipeline request over few connections,
giving a poor pipelining efficiency.

is co-located in a CGSN (Combined GPRS Support Node) in
the current Vodafone configuration. A well provisioned virtual
private network (VPN) connects the lab network to that of the
Vodafone’s backbone via an IPSec tunnel over the public Inter-
net. A RADIUS server is used to authenticate mobile terminals
and assign IP addresses.

BACKBONE NETWORK
SERVICE PROVIDER’s

OOOOPPP
P

PPP−over−bluetooth
PPP−over−serial PUBLIC

INTERNET

BSC

BS

BS

SGSN

CGSN

ROUTER

Gb

GGSN

Gn

Gi

Router
Firewall

IPSec VPN

Cambridge Computer Laboratory

EDGE

Web Server RADIUS Server

Mobile Proxy

Edge

QBQQBQRBRRBRSBSTBTUBUBUVBVBVWWWWWW
W
XXXXXX
X

Fig. 8. Experimental Test Bed set-up

We have configured routeing within the lab such that all traf-
fic going to and from mobile clients will pass through a Linux-
based software router. This enables us to perform traffic moni-
toring as well as providing a location to run a mobile proxy that
aims improve web performance over GPRS. The test bed also
consist of an other machine: a web server, which is located in
the same network close to the proxy. The mobile proxy runs
a modified version of the squid v2.4 [17] caching proxy, while
the web server runs Apache 1.3.22[18]. As shown in the setup
of figure 8, a web client (browser) in the laptop uses the GPRS
phone and connects to the mobile proxy, which then forwards
the request to the co-located web server. The squid proxy has
been modified to enable it to accept and respond to pipelined
requests.

B.2 Test Web Site

For the test web-site, we composed a number of objects from
other web-sites. We justify use of such a test web site purely
for reasons of simplicity, which we show later, assists in evalu-
ating pipelining effectiveness. Simple web sites typically have
a base HTML documents along with many embedded or inlined
objects (gif’s, CSS, scripts etc). We have observed that popu-
lar news sites (e.g CNN, BBC) can easily have an index page
(index.html) of about 40-50KB with over 50 embedded objects.
To offer better control over content presentation, these web sites
also make use of cascading style sheets (CSS) and scripts.

In our test web-site, we avoid using dynamic content, how-
ever, we do recognize the importance of dynamic content and
address this case later. For the static test web-page, we have col-
lectively synthesized about 45 gifs and jpegs images of various
sizes from popular news sites such CNN and BBC. The file and
object size distribution for our test web-site is shown in table I.

6

Resource Type Size Range # of files
index.html 40K 1
jpegs/gifs 200B-2KB 20
gifs 2KB-5KB 20
gifs 5KB-10KB 4
gifs Y 10KB 1

TABLE I
COMPOSITION OF OUR STATIC REFERENCE TEST WEB-SITE

B.3 Evaluating Pipelining Effectiveness over GPRS with PFs

In this section we show how pipelining effectiveness (usingZ
[]\
) can influence web download times. We intend to quantify

the improvement a client can achieve by aggressively pipelining
requests on a single connection over GPRS. To demonstrate this,
we wrote a program that emulates a web browser and which
makes pipelined HTTP GET requests over a single connection
to retrive objects used in our test web-site. Using this client
program, we perform a number of experimental downloads with
different values of

Z
[
i.e. with different number of outstanding

requests. Our test web-site has a total of 46 objects (including
index.html), which bounds the

Z
[
value to a maximum of 23.

We have arranged the test web site such that all the inlined
objects in the web-page are arranged in the increasing order of
their sizes. We also record the download times (using tcp-
dump[24]) of our test web-site over GPRS, first with a sim-
ple persistent connection (

Z
[
=1, ^ = _`ba) and later pipelining 3

(
Z
[

=1.97, ^ = _-c d�e`�a), 5 (
Z
[

=2.95, ^ =
` c dbf`ba), 7(

Z
[
=4.08, ^ = ghc i-j`ba)

and 9 (
Z
[

=4.95, ^ = ghc dbf`�a) outstanding requests respectively, re-
ceiving all the responses, and so on in a send-receive fashion be-
fore all the web objects could be retrieved. We believe a client
browser may or may-not have such send-receive behaviour, de-
pending upon if certain pipelined requests have strict resource
dependencies.

60

70

80

90

100

110

120

130

140

150
Test Web−Site Download Time over GPRS

D
ow

nl
oa

d
T

im
e

(s
ec

) PAF=4.08
PAF=2.95
PAF=1.97

PAF=1

PAF=4.91

Fig. 9. Test web-page download times over GPRS. Increasing the Pipelining
Factor(PF) drastically reduces the overall test web-site download times.

Corresponding to each
Z
[

, we averaged the download times
for 20 successful runs. All the runs were conducted with the
reponse objects in the proxy cache’s main memory (after cache
warm-up). Figure 9 shows the mean download times and its
standard deviation for our web-site over GPRS using a single
pipelined connection. One can observe from figure 9 that in-
creasing the pipelined factor (

Z
[
) improves overall response

times. It is evident from figure 9 that increasing
Z
[

from 1
(persistent) to 1.97 (3 outstanding requests) can improve down-
load times by about 35%. Elevating

Z
[
to 4.95 (with 9 out-

standing request) can result in a further reduction of response
times by about 50%. We verified whether increasing

Z
[
any

further could reduce download times: We found that increas-
ing

Z
[
to 23 (with all 45 requests outstanding) only resulted in

a marginal improvement the download times. Note here that a
single TCP connection uses slow-start and so the start-up per-
formance suffers. In the next section, we propose a TCP en-
hancement that overcomes startup performance bottleneck by
avoiding slow-start mechanism.

Despite the reduction in download achieved through aggres-
sive use of pipelining, we have still observed that the downlink
is sometimes underutilized for certain periods of the connection.
This is because our client program makes pipelined requests for
all the small responses first, and then for the big ones. So, whenZ
[

is kept low (less number of oustanding requests) and their
corresponding response sizes initially small (responses are ar-
ranged in their increasing order of sizes), the proxy is unable
to fully utilize the downlink while its still expecting some more
requests. Due to the idempotent nature of HTTP/1.1, responses
re-ordering at the proxy is not possible and so our client program
inadvertently coerces the squid proxy to perform a shortest re-
sponse size scheduling over all the responses.

The downlink also remains underutilized whenever
Z
[

is low
or when a client has to wait to receive its responses to pipelined
requests. To circumvent this problem, browsers can make use
of some additional connections while still allowing the proxy to
re-order responses to the pipelined request. Smartly re-ordering
the response order at the proxy can possibly improve link uti-
lization and also avoid the HOL blocking problem. This can be
shown with application-level re-ordering6 of inlined objects. In
this case, we have randomly arranged inlined objects (randomly
mixing inlined objects) in our test web site and performed the
download tests. Figure 10 shows the improvement - a simple
application level re-ordering gives modest improvements in web
download times.

60

80

100

120

140

D
ow

nl
oa

d
T

im
e

(s
ec

)

Test Web−Site Download over GPRS

PAF=4.91
PAF=4.08 (Reordered)

PAF=4.08
PAF=2.95 (Reordered)

PAF=2.95

PAF=1.97
PAF=1 (Reordered)

PAF=1

PAF=4.91 (Reordered)

PAF=1.97 (Reordered)

Fig. 10. Downloading Test Web-Site with application level re-ordering. An in-
telligent re-ordering by the server (or proxy) can further improve download
times.

Existing web clients make use of multiple connections whenk
While we currently suffice to show the benefits with an application level re-

ordering, a smart re-ordering of responses by a proxy can also be implemented as
an extention to the squid proxy. We plan to modify squid for intelligent response
re-ordering in the future.

7

requesting multiple objects. So, resultant l
m will be dependent
upon how effectively requests are pipelined across all connec-
tions. A high degree of connection parrallelism helps to utilize
the downlink better, but it also lowers the performance benefits
achieved with an increased control and transactional overhead
associated with each extra connection.

V. IMPROVING WEB PERFORMANCE OVER GPRS

We have shown that request pipelining in browsers can im-
prove web performance over GPRS. The other important goal
with pipelining is to minimize the total number of connections
over GPRS. Not reusing exiting connections and instead open-
ing redundant ones can needlessly lower l
m and reduce pipelin-
ing efficiency(n). In this section, we show that request pipelin-
ing combined with an interposed performance enhancing mobile
proxy can improve web download performance over GPRS.

The proxy operates at both the transport and application lay-
ers:

A. Transport Level Enhancement (TL-E) using TCP cwnd
clamping

A major bottleneck with TCP over GPRS is its sub-optimal
performance at connection start-up due to the slow-start mech-
anism. Hence we can infer that a substantial benefit can be of-
fered to usually short and bursty web sessions by avoiding slow-
start and instead, making use of the full capacity of the down-
link. We propose a modification to TCP to be used over GPRS
by the mobile proxy, which we refer to as TCP cwnd clamping.
The proxy transparently splits TCP connections [10] into two
legs: the ‘wired’ section and the ‘wireless’ section. Over the
wireless section, the proxy uses a modified TCP sender (with
TCP cwnd clamping) that uses a fixed size congestion window,
the size picked to be the current estimate of the BDP of the link.
Thus, slow start is eliminated, and further unnecessary growth of
the congestion window is avoided. As a further optimisation we
re-write the receiver window advertised in ACKs heading back
to the sender to control the amount of data it causes to be queued
at the proxy. A big advantage using such a modified proxy is that
no changes are required to existing TCP implementation of mo-
bile or fixed hosts. A similar modification will not be required
to the mobile host, since web transfers are primarily downlink
for which wireless links such as the asymmetric nature of such
wireless links.

Attempting to apply our scheme to the Internet as a whole
would certainly be disastrous; slow start and congestion avoid-
ance normally serve essential roles. However, in the GPRS case
congestion avoidance is largely redundant. It is possible for the
proxy to maintain state about all of the TCP connections head-
ing to a particular mobile terminal and share the BDPs worth of
buffering out amongst the connections appropriately. The un-
derlying GPRS network is ensuring that bandwidth is shared
fairly amongst users (or according to some other QoS policy),
and hence there is no need for TCP to be trying to do the same
based on less accurate information. Ideally, the CGSN could
provide feedback to the proxy about current radio conditions and
time slot contention, enabling it to rapidly adjust its fixed size
congestion window, but in practise this is currently unnecessary.

TCP cwnd clamping avoids slow start and offers full use of
the link bandwidth during connection startup. It uses a clamped
value (oqpsrut$vxw) of congestion window (cwnd) and maintains it
for the full duration of the connection. Once the mobile proxy
is successful in sending o psrut$vxw amount of data it goes into a
self-clocking state in which it clocks out one segment each time
its receives an ACK from the receiver. This approach maintains
the amount of outstanding data to an optimistic value of the link
BDP, neither overrunning the link, nor under utilizing it.

The cwnd remains clamped even during times of poor link
performance i.e. during handoff’s, interference or fading. While
starting with a fixed value of cwnd, the mobile proxy needs
to ensure that any initial packet burst does not overrun link
buffers. Since the bandwidth-delay product (BDP) of current
GPRS links is small (e.g. y 10KB), this is not a significant
problem at this time. For future GPRS devices supporting more
downlink channels (e.g. 8+1), the proxy may need to use traffic
shaping to smooth the initial burst of packets to a conservative
estimate of the link bandwidth.

In absence of any queuing or packet loss, the window size
necessary to keep a link busy without any idle times should cor-
respond to the BDP of the link. A reasonable value for the clamp
window value i.e. o"psrut$vxw can be made from the maximum
values of GPRS link delay (z r|{@}�~) and bandwidth (� r|{@}�~) i.e.z v"t$� and � v"t$� . These values can be obtained through appro-
priate link characterization measurements. In such a case, the
clamp value (oqpsr@t$vxw) for the congestion window will be given
by o psrut�v�w�� z v"t$��� � v"t$� . This value should avoid the link
going idle and hence suffering from under-utilization.

If the estimate of the BDP is good, packets arriving at CGSN
router will experience minimal queueing before being sent over
the air. As radio conditions vary the amount of queueing may
increase, but will be bounded, and is likely to be significantly
less than the excesses of normal TCP.

In the case of a packet loss, we preserve the cwnd value,
clocking out further packets when ACKs are received. RTO trig-
gered retransmissions operate in the normal manner.

Our transport level enhancement offer the following benefits:� Faster Startup:- It avoids slow-start and instead makes full
use of the downlink capacity. This improves start-up perfor-
mance of a short connections and reduces overall transfer times.� Reduced Queuing Delays:- Excessive queuing is reduced by
limiting TCP data over the link. As a consequence, RTT in-
flation and its impact on retransmit timer values are also mini-
mized.� Quick Recovery from Losses:- TCP cwnd clamping reduces
drain time during losses leading to quick TCP recovery. By lim-
iting data over the link, spurious retransmission cycles due to
sudden delay fluctuations can be avoided. This also reconciles
with other negative effects such as stale (or leftover) TCP data
due to abnormal disconnections.

B. Application Level Enhancements (AL-E)

Apart from its traditional functionality of acting as a data
caching proxy, our application level enhancement offers a mi-
nor modification to the current squid caching proxy. The modi-
fication allows squid to accept HTTP/1.1 pipelined connections
from pipelined capable web clients (browsers). Other applica-

8

tion level optimization schemes can be used to further improve
web performance over GPRS. We are currently exploring a num-
ber of such optimization schemes (e.g. delta compression[23],
prefetching schemes [4] etc.) for use over GPRS in the future.

C. Quantifying the Benefits of our scheme

To evaluate the performance benefits of our scheme we per-
form experimental downloads over GPRS using both static and
dynamic web content. For static web content we make use of the
same test web-site that we used earlier. For the dynamic web-
page, we pick a popular news web-site, CNN www.cnn.com7.
To obviate the ill-effects of fast changing web-content in news
web-sites such as CNN, we make a local copy of part of the
site in a locally provisioned web server. Moreover, having a
web server close to the border of wireline-wireless network re-
moves ‘noise’ from our measurements by avoiding network per-
formance effects of the Internet.

C.1 Browser Selection

To compare download performance of our scheme, we chose
mozilla[20]. The latest release from mozilla 5.2 (devel-
oper build version) also supports pipelining. However, after
analysing browser traces we found few instances where it ac-
tually pipelined requests. In fact, we observed that connections
in which requests were pipelined would first start in a persistent
mode and later switch to pipelining. In persistent connection
mode, which is the default setting, it seems that mozilla can
make use of a maximum of 6 simultaneous connections to an
intermediate proxy. While in the non-persistent mode, it can use
a maximum of 8 parallel connections via a proxy.

C.2 Difficulty in Measuring Browser Download Times

Measuring download times with a browser is not as trivial as
it at first appears: Many browsers keep connections open even
after the complete web-site is downloaded. While this makes lit-
tle difference to a user surfing for some information, it impedes
accurate measurements of web site download times. To over-
come this problem, we make use of browser timelines. Browser
timelines are plots that indicate connection timelines made by
a browser i.e the number of connections, connection start and
end points (if a end point exists), number of requests made, and
data received on each request-reponse exchange. We have writ-
ten a script (timeline[3]) that uses tcpdump and tcptrace
information to plot browser connection timelines.

Figure 11 shows the sample browser timelines for CNN web-
site using mozilla. The connection timelines are shown for
download of CNN web-site using browser’s non-persistent con-
nection mode (figure 11(a)), persistent connection mode (fig-
ure 11(b)) and pipelined connection mode(figure 11(c)). The
figure (b)-(c) show steps in connection timelines indicating re-
quests sent over an existing connection to be reused in persistent
and pipelined connection mode for multiple request-response
exchanges. As shown in figure 11(b), some browser connec-
tions are kept open even after the complete download8. For all�

CNN Timestamped: 22 ��� April, Updated: 0910 GMT�
persistent connections are kept open for re-use. Browsers like netscape idle

out persistent connections, while Internet Explorer uses some form of timeout
(usually 60 seconds)[4]. We suspect and in this case, it seems to be the handi-

TCP FIN
DATA SEGMENTS

TCP SYN

109 TCP Connections

0

20

40

60

80

100

120

00 11 22 3
Time (min)

of

 C
on

ne
ct

io
ns

download time
Connections still open

0

5

10

15

20

25

30

35

40

45

50

11 22 33 44

of

 C
on

ne
ct

io
ns

Time (min)

Request

Pipelined Requests

TCP Retransmission

1:45 1:50 1:55 2:00 2:05 2:10 2:15

Pipelined Connections

0

5

10

15

20

25

00 11 12 3

of

 C
on

ne
ct

io
ns

Time (min)

Fig. 11. Mozilla Connnection Timelines for our CNN web-site, using (top-
bottom) (a) non-persistent connection mode, (b) persistent connection mode
and (c) pipelined connection mode.

such cases, we simply measured the download time with respect
to connections that finished successfully prior to the one’s that
were kept open. This is shown in figure 11(b) with a dotted
vertical line. Also, shown in figure 11(c) is the close-up of a
connection in which requests were pipelined. The connection
starts with a persistent mode and then switches to pipeline re-
quests over the given connection. It is evident here that mozilla
pipelined requests only over selected connections out of the
whole connection pool, giving a relatively poor pipelining ef-
ficiency.

C.3 Measurements

We performed experimental downloads with mozilla using
three different modes: non-persistent mode, persistent connec-
tion mode and pipelined connection mode. All experiments
were conducted for the static test web site as well as for our
locally available CNN web site offering dynamic content. For
CNN, we found out that almost all the data was cacheable ex-
cept for a few objects for which the requests had to be forwarded
to our web server.

As again, we averaged download times from 20 sucessful runs

work of scripts that sometimes keep connections open.

9

50

55

60

65

70

75

80
D

ow
nl

oa
d

T
im

e
(s

ec
)

Test Web−site Download over GPRS

Persistent
Persistent with TL−E

Pipelined
Pipelined with TL−E

Non−Persistent with TL−E
Non−Persistent

Fig. 12. Test Web Page download time over GPRS using Mozilla

���

���

���

���
������������������������

Pipelined with TL−E

Pipelined

Persistent

Non−Persistent with TL−E

Non−Persistent

Persistent with TL−E

0

10

20

30

40

50

60
Browser (Mozilla) Performance for Test Web site download over GPRS

A
vg

 #
 o

f T
C

P
C

on
ne

ct
io

ns

Fig. 13. Avg. Connections made to download the Test web site using Mozilla

and plot mean value of download time and corresponding stan-
dard deviation. Figure 12 shows that mean download time using
mozilla for our test web-site. With non-persistent connections,
we found only a small advantage in using the proposed transport
level enhancement (TL-E). It seems that for non-persistent con-
nections, overall gains made by eliminating slow-start is negated
by the overhead due to large number of connections. Nev-
ertheless, there is still some modest improvement in downoad
times when using TL-E with persistent connections. The aver-
age improvement in download times when switching from non-
persistent to persistent mode and using TCP cwnd clamping was
more than 10%. As far as the number of connections are con-
cerned (see figure 13) the reduction was more than 80%. For
pipelined connections, as evident from figure 12, we find that
using TL-E can reduce mean download time by about 20%.

However, browser traces indicate only few intances of con-
nections over which requests were pipelined. We believe that
since the pipelining efficiency of the browser was low (as indi-
cated earlier from browser timelines in figure 11(c)), only mea-
gre benefit could be extracted using pipelined connections.

On the contrary, observations valid for the CNN web site are
somewhat different from those above. The use of TL-E with
non-persistent connections show very little performance gains.
The same is true for persistent connections that show only slight
performance improvement in mean download times when com-
pared to non-persistent connections. We believe that since the
number of connections made is relatively high for the browser
even with persistent mode (an average of more than 40 connec-
tions, see figure 15), gain offered by eliminating slow-start is
again negated by a high connection overhead.

However, using the browser’s pipelined mode with CNN low-
ers the number of connections utilized and also indicates (using
browser traces) a somewhat better pipelining efficiency when

120

125

130

135

140

145

150

155

160

165

170

175
Web Site (CNN) Download Times over GPRS

D
ow

nl
oa

d
T

im
e

(s
ec

)

Pipelined
Persistent with TL−E

Persistent
Non−Persistent with TL−E

Non−Persistent

Pipelined with TL−E

Fig. 14. CNN download time over GPRS using Mozilla.

���

���

���

���
������������������������

Pipelined with TL−E

Pipelined

Persistent with TL−E

Non−Persistent with TL−E

Non−Persistent

Persistent

0

20

40

60

80

100

120

A
vg

. #
 o

f T
C

P
C

on
ne

ct
io

ns

Browser (Mozilla) Performance for CNN download over GPRS

Fig. 15. Avg. Connections made to download CNN using Mozilla

compared to the web site having static web content. Figure 14
shows that an improvement with pipelined mode was more ev-
ident when using the transport level enhancement (TL-E). We
found an average reduction of more than 15% in mean down-
load times of the web browser when using the pipelined mode
with TL-E. The average connection numbers from 109 in non-
persistent mode, reduced to an average of 24 (see figure 15),
an overall reduction of more than 75% in the total number of
connections when using pipelined connections.

An average 15-20% improvement in mean download times
for both static and dynamic content over GPRS with pipelined
connections is encouraging, taking into account the low pipelin-
ing efficiency in mozilla. We believe that further benefit can be
acheived if browsers pipeline their requests more aggresively.

While we would like browsers to achieve a high pipelining ef-
ficiency, there will be times when it cannot: data dependencies
can be strict and hence responses to particular requests cannot
be re-ordered. In such cases, browser clients will have to wait
for a response before further requests could be pipelined. Ob-
viously, this will reduce the �
� factor for the connection and
lower overall pipelining efficiency. This need not be essentially
true for web-sites that are wholly static, but more probable for
web-sites that generate dynamic data.

Further, we find that a reduction in the number of connec-
tions is advantageous not only due to low-bandwidth nature of
the GPRS links but also because it mitigates the overall control
and associated transactional (3-way TCP handshake) cost with
each additional connection. We infer that aggressive pipelining
of requests over browser connections reduces overall connec-
tion (control and transactional) overhead, and combined with
the transport level enhancement (TL-E) can result in substantial
improvement in web download times.

10

VI. CONCLUSION AND FUTURE WORK

In this paper, we have experimentally evaluated web-
performance over GPRS. We have shown that use of normal
TCP can result in a number of performance problems over
GPRS. Apart from its sub-optimal performance at connection
start-up, a large response over a given HTTP (TCP) connection
can lead to a saturation of the downlink buffer (at the CGSN),
resulting in severe unfairness to other flows. We discussed how
intelligent re-ordering by a smart proxy might help to elimi-
nate such unfairness and improve download performance over
GPRS, also simultaneously reducing the chances of head of
line blocking. We showed that pipelining over high RTT links
such as GPRS can result in significant performance improve-
ment of web download times. We derived a performance met-
ric (
¡) for measuring pipelining effectiveness, and showed
that a browser can benefit by aiming for a high PF. We also
reported initial evaluations of our transport level enhancement
(TCP cwnd clamping technique) and application level enhance-
ment (pipelining) in our mobile proxy. Finally, we have shown
that by using a performance enhanced mobile proxy along with
a browser capable of aggressive pipelining over its connections
can reduce web download times over GPRS.

In the future, we intend to evaluate several other optimization
techniques such as the use of delta encoding and deterministic
prefetching that can also benefit web performance over GPRS.
We also wish to devise an appropriate scheme to enable intelli-
gent response re-ordering in our mobile proxy.

REFERENCES

[1] G. Brasche and B. Walke, “Concepts, Services and Protocols of the New
GSM Phase 2+ General Packet Radio Service”, IEEE Communications
Magazine, August 1997.

[2] C. Bettssetter, H. Vogel, J. Eberspacher, “GSM Phase 2+ General Packet
Radio Service GPRS: Architecture, Protocols, and Air Interface”, IEEE
Communication surveys Third Quater 1999, Vol.2 no.3.

[3] Rajiv Chakravorty, Joel Cartwright, Ian Pratt, “Practical Experience With
TCP over GPRS”, submitted to IEEE GLOBECOM 2002, Taipei, Taiwan
source: http://www.cl.cam.ac.uk/users/rc277/pub new.html

[4] Li Fan, Pei Cao, Wei Lin and Quinn Jocobson “Web Prefetching Between
Low-Bandwidth Clients and Proxies: Potential and Performance”, In Pro-
ceedings of ACM SIGMETRICS 1999.

[5] D. Dutta and Y. Zhang, ”An Active Proxy Based Architecture for TCP
in Heterogeneous Variable Bandwidth Networks”, IEEE GLOBECOM,
November 2001.

[6] Joel Cartwright, ”GPRS Link Characterization”,
http://www.fitz.cam.ac.uk/ ¢ jjc36/gprs/linkchar.html

[7] “An Introduction to the Vodafone GPRS Environment and Supported Ser-
vices”, Issue 1.1/1200, December 2000, Vodafone Ltd., 2000.

[8] M. E. Crovella, R. Frangioso, and M. Harchol-Balter, ”Connection Schedul-
ing in Web Servers”, In Proceedings of the 1999 USENIX Symposium on
Internet Technologies and Systems (USITS ’99), Boulder, Colorado, Octo-
ber 1999.

[9] Nikhil Bansal and Mor Harchol-Balter, “Analysis of SRPT Scheduling: In-
vestigating Unfairness”, In Proceedings of ACM SIGMETRICS 2001.

[10] Oliver Spatscheck et. al., “Optimizing TCP Forwarder Performance”,
IEEE/ACM Transactions on Networking, Vol. 8, No. 2., April 2000

[11] Reiner Ludwig et. al, “Multi-Layer Tracing of TCP over a Reliable Wire-
less Link”, In Proceedings of ACM SIGMETRICS 1999.

[12] Hari Balakrishnan et. al., “A Comparison of Mechanisms for Improving
TCP Performance over Wireless Links”, IEEE/ACM Transactions on Net-
working, Vol. 5, No.6, December 1997.

[13] F Donelson Smith et. al., “What TCP/IP Protocol Headers can tell us about
the Web”, In Proceedings of ACM SIGMETRICS 1999.

[14] Venkata N. Padmanabhan and Jeffrey C. Mogul, “Improving HTTP La-
tency”, Computer Networks and ISDN Systems,28:25-35, 1995

[15] H. Nielsen, J. Gettys, A Baird-Smith, E. Prud’hommeaux, H. Lie and C.
Lilley, “Network Performance Effects of HTTP/1.1 CSS1, and PNG”, In
Procedings of SIGCOMM 1997, Cannes, France, Sept. 1997

[16] The Linux NetFilter Homepage, http://www.netfilter.org
[17] The squid proxy cache Homepage, http://www.squid-cache.org
[18] The Apache Software Foundation, http://www.apache.org
[19] The wget utility, http://www.wget.org
[20] Mozilla web browser, http://www.mozilla.org
[21] Opera web browser, http://www.opera.com
[22] Jeffrey C. Mogul, “Support for out-of-order responses in HTTP”, Internet

Draft, Network Working Group, 6 April 2001.
[23] Jeffrey C. Mogul, Fred Douglis, Anja Feldmann, and Balachander Krish-

namurthy. “Potential benefits of delta encoding and data compression for
HTTP”, In Proceedings of SIGCOMM 1997, pages 181-194. ACM SIG-
COMM, Cannes, France, September, 1997.
[4] Zhe Wang and Pei Cao, “Persistent Connection Behaviour of Popular
Browsers”,
http://www.cs.wisc.edu/ cao/papers/persistent-connection.html

[24] tcpdump(http://www.tcpdump.org), tcptrace(http://www.tcptrace.org),
ttcp+(http://www.cl.cam.ac.uk/Research/SRG/netos/netx/)

