ARCHITECTURE AND IMPLEMENTATION OF A REMOTE MANAGEMENT
FRAMEWORK FOR DYNAMICALLY RECONFIGURABLE DEVICES

Rajiv Chakravorty

Cambridge Computer Laboratory,
Gates Building, University of Cambridge,
Cambridge CB3 OFD, England
Email: rajiv.chakravorty @cl.cam.ac.uk

ABSTRACT

This paper presents Smart Box Management (SBM) — an end-to-
end remote management framework for Internet enabled devices.
In SBM, client devices securely communicate over the public In-
ternet for device management specific services such as remote reg-
istration, remote configuration, dynamic updates (downloads) and
device diagnostic uploads with the SBM server. The SBM client
device is a smart box - a device that can easily adapt to dynamic
software updates constituting entirely new applications, bug fixes
or patches to latest updates of the existing code base. SBM uses
HTTP to leverage a web-based device management infrastructure
that offers several benefits: ubiquity, security, reliability and a high
degree of user friendliness. In this paper we delineate the SBM
framework, detail the SBM protocol and describe our experiences
in the implementation of a successful SBM prototype.

1. INTRODUCTION

Growth in ubiquitous and mobile computing systems coupled with
the anytime-anywhere phenomenon has led to an early introduc-
tion of wide variety of Internet capable devices. These devices
seek Internet access for information download (e.g. WAP/GPRS
phones), content download (e.g. Internet enabled mp3 players)
and/or content streaming (e.g. Internet Radio). It is expected that
the volume of such devices will soon outnumber conventional PCs
— the traditional way to access the Internet. However, with new de-
vices being introduced and a range of such devices to choose from,
customers are often confused as to when and what to look for that
can fit to their expectations. What is seemingly obvious is that cus-
tomers are now looking for - apart from various other features and
functionality - how long a device can serve useful purpose. Ap-
parently, they are looking for devices that can adapt to any future
customisation. SBM augments exactly this idea of “future ready”
devices with the concept of dynamically reconfigurable devices. It
builds up a framework that helps manage dynamically updateable
Internet devices.

The idea to extend software reconfigurability within embed-
ded devices is not new; in fact, several leading CE device (e.g.
DVDs, CDs) manufacturers allow internal firmware upgrades by
running system CDs made specifically for this purpose. These de-
vices make use of hard updates to enable download that eventu-
ally require devices to be rebooted, before the downloaded piece

Rajiv is currently a Phd student at Cambridge University. This work
was done when he was working with Philips ASA Labs., Eindhoven, The
Netherlands.

Hans Ottevanger

Philips ASA Labs,
Building SFJ, Philips Electronics N. V.,
5600 JB Eindhoven, The Netherlands
Email: hans.ottevanger @philips.com

of code takes effect. SBM extends this idea of software updates to
decouple human intervention or any reboot requirements to make
possible dynamic software re-configuration, which we term here
as a soft update.

A dynamically reconfigurable device is advantageous in many
ways: (i) Remote Bug Fixes:- An immensely profitable proposition
— while customer help desks are free to attend problems of individ-
ual customers, device vendors can avoid huge losses due to mas-
sive product recalls, an occurrence that is more than common in
high volume electronic businesses, (ii) New Features/Applications:-
Software download enables addition of new features within a de-
vice. Applications can be updates or upgrades that add some new
feature or functionality within the device, and (iii) Customization:-
Customization allow users to attune devices according to their per-
sonal preferences. New ways of customising a device are possible;
for instance, downloading choice of display browsers for Interac-
tive TVs or mobile phones, plugins for digital audio/video players
etc..

SBM addresses these issues with a complete end-to-end device
management solution. It is a technology to service devices through
an external network connection. SBM offers services like remote
activation, remote reconfiguration, dynamic software updates and
diagnostics uploads to a SBM client device. We discuss several
issues related to SBM further.

2. SBM END-TO-END ARCHITECTURE

The SBM architecture encompasses a number of home domains
having range of Internet enabled devices. ISPs provide Internet ac-
cess through conventional dial-ups or broadband connections that
make use of cable/xDSL modems. An edge device in the form of
a residential gateway or a set-top box provides Internet access to
a home domain that includes a network address translator (NAT)
and a firewall facility. We envisage use of NATSs as they have out-
grown in popularity - mainly due to depleting IPv4 addresses and
introduction of IPv6 still seemingly distant. These NAT routers not
only provide isolation for an end user home domain, but also the
flexibility to switch service providers. We conjecture that all ex-
isting features of a NAT router and set-top-box will be eventually
combined in some form of a sophisticated edge (gateway) device.

All SBM clients and server hold a general notion of services
maintained by SBM. These services have to be quite independent,
allowing different parties to run different sets of services. SBM can
offer number of services to its client devices; in this article, how-
ever, the focus will be on providing the basic set of services like

remote activation, remote configuration, dynamic updates (down-
loads) and device diagnostic uploads.

2.1. Remote Registration (Activation) of the Device

Activation is a process by which a user (through his device) can
establish an account with its service provider. As a virgin box the
device for the first time connects to a server and using its unique
device identifier logs all user related data (user name, language,
country, area-code etc.), which is then passed on to an account
server. Internally, the account server creates a customer record and
returns an allocated account code as a response to the applicable
connection data. Finally, it also returns service specific informa-
tion that is stored as persistent data in some form of non-volatile
memory within the device.

2.2. Remote Configuration Service

Remote configuration service is typically used to manipulate set-
tings within the SBM client boxes. This type of service can be
useful for: (1) the consumer (e.g. during relocation), (2) the con-
figuration manager (e.g. configuration data changed), (3) a service
engineer (e.g. some regularly occurring problem, attributed to an
error in configuration data) and (4) a software engineer (e.g. a bug
is fixed that necessitates new values for service parameters).

2.3. Remote Software Updates (Download)

Software download service is central to device reconfiguration and
to remote device management. Possibilities include: (1) Updates
that improves the quality and/or reliability of the device, (b) Up-
grades or extensions that transform an existing CE device into
a new device with novel functionalities, (c) Dynamic data, usu-
ally the content that is downloaded by devices from the service
providers.

2.4. Upload Service (Diagnostics)

Remote diagnostic service deals with any problems within SBM
client devices and also of the network to which they are connected.
The approach to deal with remote diagnostics can be two pronged
- either reactive or proactive. In the reactive approach, for example
a situation wherein a customer calls the helpdesk with a particu-
lar problem and the diagnostics is carried out ad-hoc. A proactive
treatment can involve a service engineer, who collates diagnostic
reports uploaded by all the client devices on regular basis and anal-
yses the data collected for any problems within a device.

2.5. SBM Protocol

SBM uses HTTP [1] as a protocol of choice for enabling device
management specific services. We chose HTTP as it provides the
desired reliability and security for data upload and download func-
tionality in implementing SBM specific services. HTTP offers
easy service extensibility and can also be tailored for use in thin
HTTP compliant devices. Session layer security using SSL or TLS
with HTTP is provably the easiest option for security. Another
benefit using HTTP is the possibility of a web-based management
infrastructure that eases large scale management of vast variety of
Internet devices. Such features cannot be easily offered by other
device management protocols or paradigms. We further elaborate
on this in section 5.

SBM uses HTTP’s POST method and appends its own param-
eters to distinguish it from those of the HTTP header. Since no
standard parameter in HTTP/1.1 is mandatory in a generic way,
services can pick amongst standard parameters and enforce their
presence to create a specific protocol action between the client and
server. Parameter presence in SBM is not mandatory, which means
services cannot fail in its absence. Instead, it should generate an
error message and report it back to the client device. The order
and multiplicity of any SBM parameter also does not preclude the
action of the protocol.

2.6. Device Registration (Activation) Protocol

The activation service assumes that a device is Internet enabled,
has an IP address and is ready to send data into the network. The
device connects to the SBM server using the activationStart ser-
vice URL, which is preset within the device. If the device imple-
ments session layer security mechanisms like SSL or TLS, it goes
through a series of protocol handshakes for server-client authenti-
cation and establishes an encrypted communication channel with
the server. The device then starts by sending an ActivationStart
message to the server (figure 1(a)). This request includes unique
device ID (Product ID or Client ID) of the device. No further
steps are invoked if the server uses a response value (SBM Re-
sponseValue parameter) of “stop” in the response message. Server
can also postpone further steps using a response value of “try-
Later:delay” (for e.g. ResponseValue=tryLater:60) to postpone
the client request by in the response message by delay(60) seconds.
Usually, servers typically respond with “continue”, client prepares
and posts the next ActivationSelect message to the server that in-
cludes all user level details (e.g. UserName, Area Code, Phone
Number etc.). This message might optionally include certain pa-
rameters along with their values requested by the SBM server in
its response to the first request. When the device registers for the
first time, server allocates an account code to the new device. After
getting a valid response, the client prepares the final request Acti-
vationProcess and posts it to the server. If the server is satisfied,
it responds with all service and subscription related information
to the client, which is then stored in the persistent memory of the
device.

2.7. Configuration Protocol

Using configuration service, existing parameters of a service can
be modified or new service specific parameters added. Parame-
ters that can be manipulated are assumed to be present in some
sort of persistent memory within the device. The protocol starts
with a queryService message; every time the box establishes a
physical connection with the network and at regular intervals (e.g.
every 24 hrs). If the server responds with the action “settings”
(actions=settings), it acts as an indication to the client that it can
now proceed with the next steps, i.e. confirmConfig and writeCon-
fig. The confirmConfig step allows the server to either request read
some parameter value within the client, or to directly specify the
parameter that it wants to modify (along with its value). In write-
Config step, the client updates the server with the existing value
of requested parameters. If the server after reading the parameter
value decides to change it, it can do so in its response to writeCon-
fig. Figure 1(b) shows a three step process. A two-step process
allows only a write cycle with the device, while the use of the third
step permits a read-modify-write cycle with the client device.

Smart Box
Client

SBMActivationStart(Clientld)

SBM
Server

SBMResponse{ continue; Read Key 1(op~@a\)}

SBMActivati lientld, Key1=Valueil)

SBMResponse{ continue; Read Key 2(opt ié al)}

SBMActivationConfirm(Clientld, KeyZ:Valuéz)

SBMResponse{Ok, (service,

Smart Box
Client

SBMQuery|
Server

SBMResponse{ continue; actions = (setti E%))

SBMqueryService(Clientld)

SBMconfirmConfiig(Clientld

BMF continue; Read Key1, KeH

onfiig(Clientld, Key1=Value1, Kéy2=Valuez

SBMR Ok; Key1=Value2}

Fig. 1. (a) Activation Protocol and (b) Configuration Protocol

‘ Upload ‘ ‘
Server

Smart Box
Client

‘ SBMQuery|
Server

Smart Box
Client

DownLoad
Server2

‘ SBM Query|
Server

DownLoad
Server1

. SBMqueryService(Clientld)

SBMResponsef{ continue; actions = (uplo: J

Jpload(Clientld)

SBMResponse{ continue; upload URL} ‘ J
L

SBMDoUpload(Clientld), SBMBody=UpLoddData

Ok} ‘ J
L

SBMqueryService(Clientld)

1]

L]

SBMResponse{ continue; actions =

lientld)

SBMResponse{ continue; URL(s), ovferld!L
Y

SBMDoD: lientld, Offerld_1)
SBMDoD: lientld, Offerld_2) [1]

e —(|

BMResponse, y{ > 2)

Fig. 2. (a) Upload Protocol and (b) Download Protocol

2.8. Upload Protocol

The upload protocol offers a diagnostic service that enables up-
load of device diagnostic information to the service provider. Its
starts as usual with a queryService message request posted to the
SBM server. If the server is interested to read diagnostic reports
from the device, it can respond with an action “upload” (see figure
2(a)) The client issues the next request confirmUpload as an in-
dication to the server that it has diagnostic information to upload.
The server responds to the client along with the resource identifier
of the upload server to which it can upload the information. The
client then posts a doUpload message with device diagnostic data
appended. The server responds with success once all the data is
successfully uploaded.

2.9. Download Protocol

Download feature can enable data transfer from servers to the clients.
Typical samples for download include software modules (updates
or upgrades), new applications (e.g. micro-browser) or content
(e.g. mp3 audio or jpeg images). As shown in figure 2(b), when
the action to the response to queryService message from the SBM
server is “download”, the client prepares and sends a confirm-
Download message request to the server. The server replies with
a list of offers (along with their offer ID’s) for download by the
client device. The response also consists of the resource identi-
fier’s of the download servers corresponding to each offer avail-
able to the client. While some offers will be mandatory (e.g. bug
fixes, module updates etc.), others will be optional and might in-
volve some payment. The user is informed only when offers are

optional and necessitates user consent. The subsequent request
doDownload message is sent to the respective download server for
each offer accepted along with their offer ID’s. A response to each
doDownoad request message from the download servers will have
the packaged downloaded data appended as the body of the re-
sponse message.

3. PROTOTYPING SBM

The SBM client hardware for the system used an Algorithmics
P4032 board with RS MIPS (RM5231 from QED) running Vx-
Works OS at 133Mhz. SBM Server used Stronghold 2.4.2 run-
ning on solaris 2.7, which is a commercially supported version
of Apache 1.3.11. Servlet support was enabled using JServ 1.1,
JDK 1.2.104 and JSDK 2.2, coupled with mySQL as SQL server
that had a JDBC type 4 interface and compatible with JDBC 3.0.
Client software modules were coded in C++, excluding IPD and
the dynamic loader that were done in ‘C’. Native TCP/IP stack
available from VxWorks was used in the client. The client leased a
local static IP address and used a native DNS resolver library from
VxWorks.

3.1. SBM Server Side Components

A SBM server has two kinds of users - SBM clients and actors.
Both clients as well as actors can connect to the SBM server simul-
taneously. Figure 3(a) shows the SBM server side components.
SBM server side consists of a set of servlets, a SQL server and
one or more backend servers. It has two different and independent
interfaces: an actor-server interface that handles actor and server

communication and a client-server interface to handle messages
exchanged between the SBM clients and the server.

cure Socket Layer (Optional)
Communication Stack (TGP/IP)

Fig. 3. (a) SBM Server Components and (b) SBM Client Modules

3.2. SBM Client Design

Modularity was most important goal while designing the SBM
client. Figure 3(b) show the client side modules. We briefly de-
scribe the modules used in a client SBM:

Identifiable Persistent Data(IPD):- The IPD manages, stores
and provides access to the data (service specific parameters) along
with their values in some kind of persistent memory of the device,
e.g. a flash or NVRAM. After a virgin device goes through its
first activation, it retrieves service related information and stores it
within the IPD. Using this state, an end-user can resurrect a device
that had panicked due to an update failure.

Call Scheduling Block:- The call scheduling block processes
service calls. It accepts service calls and schedules them on first
come first serve or some pre-defined priority basis. It maintains a
timer to query the server (using queryService message) from time-
to-time and also to reschedule any service calls that was postponed
by the server.

Communication Handler:- It enables communication between
client and server, by execution of service-calls, according to the
SBM client-server protocol. Here, SBM service specific messages
are assembled and sent to the server using traditional socket level
APL It runs an independent task and communicates with various
other modules (call scheduling, Download and IPD) through spe-
cific IPC mechanisms.

Download Module:- The download component unpacks mod-
ules, stores them in a file-system and causes the dynamic loader
to integrate the software module(s) in the client’s software stack.
It ensures that the data which is downloaded finds its appropriate
place within the device. For this, it uses functions exported by the
loader for dynamically loading and unloading modules to and from
the memory.

Diagnostics Module:- The diagnostics module periodically re-
ports performance related data about the device to the server. It
collects diagnostics information from other modules within the de-
vice and depending upon the severity of the bug detected, diagnos-
tic data can be immediately uploaded to the SBM server.

4. SBM COMPONENTS AND TOOLS

To enable dynamic downloads, modules in SBM client should func-
tion very similar to a COM [5] object. This imposes certain re-
quirements in a SBM client device: (a) a modular code organiza-
tion (b) a dynamic loader that can enables run-time binding includ-
ing dynamic loading and unloading of modules in a client device,
(c) external to SBM, a compile and link time wrapper tool that
can proxy patch every software module for use by the dynamic

loader in the device and finally, (d) an externally available pack-
age builder software to package data (software modules) intended
for distribution among the clients. The following sections discuss
this in detail.

4.1. Dynamic Loader (DynRTL) Module

The dynamic loader (DynRTL) module offers run-time support for
resolving inter-module function references (binding) as well as for
dynamically loading and unloading of modules. DynRTL mod-
ule makes extensive use of the target’s system symbol table. The
symbol table contains externally accessible functions in the sys-
tem and its associated memory addresses. DynRTL is responsible
for relocation, registration of entry points for existing and any new
modules with the system symbol table and if needed, its removal
as well. It is used by the wrapper layer of wrapped modules, the
download module within SBM subsystem and part of the boot pro-
cedure (in VxWorks) that loads and starts the application software.

Figure 4(b) shows the functions exported by the DynRTL Mod-
ule. The entry point (“front door”) to DynRTL is the function
DnLd_Main, which is used by the download module in SBM client
to transfer downloaded data (essentially bag of bytes) to the dy-
namic loader. The DnLd_Main acts as an integration module that
combines certain functionality borrowed from the download mod-
ule. Operations that can be specified: (a) Loading, unloading and
soft replacement of modules, (b) Installing, deleting and replacing
files in the local file system (data files as well as application soft-
ware), (c) Creating or deleting directories in the local file system
and (d) Identifying modules that must be loaded and started when
system is booted.

The rest of the exported (“back-door”) functions in dynRTL
are used by other modules used in SBM, and also by the DnlLd_Main
function and any application software used in the client device.
Figure 4(a) shows two software modules - dynamic binding with
“Modulel.out” and dynamic update of “Module2.out”.

4.2, Wrapping Modules for dynamic binding

A wrapper tool generates wrapper layer to be externally compiled
and wrapped for each module. It has functions that implement dy-
namic binding, as well as functions to enable detach mechanism
for “soft” replacement. It intercepts unresolved references to ex-
ternal functions and invokes dynamic binding, announces a mod-
ule that is going to be replaced and provides necessary functions
that can enable those modules to be detached from the server (re-
treating) module. To intercept external function references, SBM
makes use of proxy functions. The proxy function makes use of
a jump instruction to redirect to a Bind function that eventually
resolves the reference.

All proxy functions transfer control to the Bind function. The
Bind function consists of code that is common to all proxies. The
machine code for Bind is patched to the wrapper layer using the
wrapper tool. Its purpose is to call the function dyl_Bind that is a
part of the Dynamic Loader (DynRTL) module, insert the address
obtained into the proxy and then re-execute the proxy function.
The function dy!/_Bind finally resolves the call.

The moduleName argument in dyn_Bind function is used in the
administration of client-server module relationship. It is needed
when a module (server) retreats and so must ask all other mod-
ules (clients) that are using it to detach. The use of a can_retreat
function is vital for modules that are active. Active modules run

VxWorks System
Loader |

VxWorks Target System

N3
8

dLib unldLib

Module1.out UnidByModulelD

iBind

DynRTL entry point function (front door):
extern "C" {
bool DnLd_Main(unsigned char *bagOfBytes);
I3
DynRTL external functions (back door):
extemn"C" {
struct MODULE * dyl_Load(char * filename);
bool dyl_Unload(const char * moduleName);
unsignedint dyl_Bind(const char * client_name, char * name);

(dyn_DetachFrom
Module2_Detach

< = Ld_M.
vice dyn_UnLoad)<t Mai
Module2.out File
[Resetal

Download_2

G Load
Bifd: % Download_t
Gy Bing ;
Dn

SBM Subsystem

bool dyl_DetachFrom(const char * module);
void dyl_DownloadinProgress(bool b);

inked List of InferModule|
Extemal References

can_Relreat DynRTL
@

Module2_Retreat

Fig. 4. (a) Dynamic Binding and Update in DynRTL (b) DynRTL Interface

independent tasks and are often difficult to replace. The difficulty
in updating an active module is related to its timing model. Poorly
timed models can lead to race conditions during state transforma-
tion. An active module to be replaced should first get an oppor-
tunity to transfer state information to its successor. Traditionally,
this has been possible by using user provided timing constraints [7]
(see p.g. 122-123). In SBM, we have made use of a can_retreat
function, implemented in all the active modules within the device.
The use of this function ensures that an active module first de-
activates itself, before being finally removed. The function in-
vestigates whether the internal state of the module allows a re-
treat, waits until ongoing function calls have returned and saves
pertinent state information in persistent memory to be picked up
later by the replaced module. While can_retreat can be externally
patched into 3" party or legacy software, it remains an open ques-
tion if can_retreat can make effective use of the internal state in-
formation of the software being patched.

4.3. Wrapper Generator Tool and Package Builder

The wrapper tool is a multi-function tool controlled by command
line options. The tool generates a wrapper layer from: (a) a file
“wrapper.s” containing MIPS assembly code for the proxy func-
tions corresponding to each unresolved external function symbols,
the Bind function and a proxy table data structure and, (b) a ‘C++’
source file “wrapper.cpp” containing functions (Defach and Re-
treat) used during dynamic replacement of the module.

The wrapper tool operates at various steps during the wrapping
process of an object module. The underlying technology with this
tool is its ability to read and interpret the ELF (Executable and
Linking format) files. The obvious choice to select ELF is its sup-
port towards the target platform, VxWorks. The centre of the pro-
gram is a class file Elf32File that can read, modify and write (parts
of) ELF files. The class reads the section headers, the symbol ta-
ble and the associated string table. The only thing it can modify
is the attributes of symbols. The file layout is not changed by this
operation, and only the modified symbol table is written back in its
original place. When generating the wrapper for an object module,
the program also generates a text file with hard-coded names of all
the unresolved external function symbols for that module. This is
later used to convert attributes of proxy functions from global to
local.

A PackageBuilder software was also developed to package
data intended for download by the client devices. It consists of
a user interface that provides options for packaging data. The gen-
eral structure of a package consists of two-level hierarchy that as-
sist in sequential as well as simultaneous replacement of software
modules in a device. At the highest level, groups are specified,
which are processed sequentially. Each group consists of one or
more entries that are conceptually processed simultaneously. An
entry specifies the operation to be performed (for e.g. remove,
force retreat, download etc.), the location of the new module within
the device file system and details of how to effectuate the down-
loaded data (e.g. reboot, load immediately, load at boot etc.).

5. SBM PROTOCOL ALTERNATIVES

In this section we evaluate a number of other possible protocol
alternatives for remote device management. SNMP (Simple Net-
work Management Protocol), SIP (Session Initiation Protocol), se-
rial consoles, telnet or any other proprietary network protocol can
be used as opposed to a HTTP based approach. SNMP offers a
standardized way for access and alert (event notification) methods
to devices. Abstract Syntax Notation (ASN) standard ensures in-
teroperability with different vendors and the use of UDP makes
it a lightweight protocol. However, network management (NMS)
platforms using SNMP are particularly costly, and not always user
friendly. SNMPv1 offers little security (use of plain text com-
munity names) and the fact that it uses UDP makes it an unreli-
able transport option for device upload and download functional-
ity. Also, devices making use of user interfaces (Uls) will require
extra developmental efforts on part of a vendor that targets a spe-
cific platform/OS. While efforts will be expended to create and
maintain such Uls, its integration into disparate devices may entail
a host of other problems.

SIP extends interoperability, mobility, security and scalability
essential for device-to-device communication paradigm. However,
SBM and SIP are mutually exclusive models; each address their
own problem space. While SBM is a client-server device manage-
ment framework; SIP, which advocates use of UDP is particularly
suited for query and asynchronous event notification schemes used
in device-to-device control. A possible extension in SIP might en-
able support for SBM in future.

Serial consoles provide cheap, easy to implement and a fairly
secure remote access method. They are good for local access, how-
ever, they cannot be easily used to manage devices located across
enterprise networks. In case of Telnet, network access is possible
by re-directing the console through a Telnet driven session. Again,
such simplistic schemes fail to offer the kind of advantages that
HTTP can offer for remote device management.

6. SECURITY ISSUES IN SBM

While security for client devices is crucial, server authentication is
imperative since an intruder can impersonate and pretend to act as
a server and usurp control of the device. In the jargon of security,
this is commonly known as “man-in-middle” attack. The implica-
tions of such attacks can range from exposition of device related
information to disruptive code injection or wrongful device con-
trol. SBM client devices and service protocol messages can also
be tampered with to violate integrity. As a priori remedy for all
such attacks, SBM targets a security policy model that is multi-
level. Device and server authentication using session-level digital
certificates and combinations of other forms of authentication (e.g.
HTTP digest) can be used. In addition, SBM recommends en-
cryption of all messages and data exchanged between the clients
and the server. This is possible by making use of security proto-
cols such as SSL/TLS that provides proper client-server authenti-
cation and encryption. Additional network level security available
in a trusted network (e.g. private network using IP security proto-
col) can provide implicit security between the SBM clients and the
server.

For those devices that implement session layer security mech-
anism, it is possible that these devices might decide to bypass
the proxy and establish a direct secure connection with the SBM
server. Alternatively, secure tunnelling through the edge proxy can
also be enabled for such devices.

7. RELATED WORK

Limited papers can be cited in the area remote device management.
An article by Sharon et. al. [2] elaborates on class 3 devices that
are smart; devices that interpret user behaviour and enable implicit
device reconfiguration to enhance user experience. Schmidt et. al.
[4] discuss approaches to build smart devices and clearly relate
context awareness to device smartness. SBM offers no specific
interpretation to device smartness (as context awareness is typi-
cally device dependent), however, like a class 3 device as in [2],
a SBM client device is smart enough to enable dynamic software
reconfiguration. Research in related area, but not directed towards
Internet devices, have focussed extensively on dynamic software
updates [7] and code instrumentation techniques such as Defours
[8]. SBM achieves dynamic reconfigurability using a function in-
terception technique very similar to the one found in Detours. But
unlike Detours that intercepts and patches proxy code to external
functions during execution time (in memory), patching in SBM is
possible using a special wrapper tool that wraps proxy patches to
external function references in software modules within a device.

8. SBM AND OSGI

The Open Services Gateway Initiative (OSGi) [6] is an impor-
tant step in the direction of remote management of Internet de-
vices. The goals in OSGi are: (i) building a common platform

for development of network applications, (ii) creating a bridge
between home network and the Internet and, (iii) incorporating
bridges among home devices that have heterogeneous physical-
layer and control-protocol standards.

In many ways, both SBM and OGSi synergize the concepts
of remote device management. OSGi (Release 2) seeks to create
an open specification for network delivery of managed services to
local networks and devices. It offers an execution environment
for electronically downloadable services. In OSGi terminology,
services are known as bundles that executes in a Java runtime en-
vironment by using an OSGi framework registry. Using such a
registry, bundles can also be made to inter-operate.

While SBM offers dynamic downloads using native code in a
device, OSGi benefits using Java to offer a generic platform for
all applications. In many other ways, SBM and OSGi share sim-
ilar goals. Hence implementation experiences from SBM can be
offered to augment the essential goals and objectives in OSGi.

9. SUMMARY AND CONCLUSION

The idea to remotely manage dynamically updateable devices is
fairly new that offers completely new opportunities, options and
challenges. An SBM client device can self-activate, (re)configure
and dynamically update or customize its internal software stack
with new standards, features and/or applications. The novelty in
SBM is that it extends dynamic reconfigurability applied to native
code within an embedded client device. Presence of a reconfig-
urable software stack makes it possible for the device to have a
dynamic update of any software module (e.g. a new release) that
are eventually bug-free.

SBM promises an enabling technology; however, a detailed
evaluation of the requirements for a range of such Internet capa-
ble devices would still be required. SBM is a only a step forward
towards realization of such efforts that will be involved in the man-
agement of the Internet-networked devices.

10. REFERENCES

[1] R. Fielding et. al., “Hypertext Transfer Protocol-HTTP/1.1”,
IETF RFC 2616, June 1999.

[2] Sharon Eisner Gillett et. al., “Do Appliances Threaten Inter-
net Innovation?”, IEEE Communications Magazine, pp.46-
51, October 2001.

[3] Janne Riihijarvi, et. al., “Providing Network Connectivity for
Small Appliances: A Functionally Mimnimized Embedded
Web Server”, IEEE Communications Magazine, pp.74-79,
October 2001.

[4] Albrecht Schmidt and Kristof Van Laerhoven, “How to build
smart appliances?” IEEE Personal Communications Maga-
zine, pp. 66-71, August 2001.

[5] Microsoft COM, http://www.microsoft.com/com/

[6] The Open Services Gateway Initiative,
http://www.osgi.org/

[7]1 Micheal Hicks, Dynamic Software Updating, PhD Thesis,
Department of Computer and Information Science, Univer-
sity of Pennsylvania, August 2001.

—

[8] G. Hunt and D. Brubascher, “Detours: Binary Interception
of Win32 Functions”, In Proc. of the 3rd USENIX Windows
NT Symposium, pp. 135-143. Seattle, WA, July, 1999

