
1

Practical Experience with TCP over GPRS
Rajiv Chakravorty, Joel Cartwright and Ian Pratt�

rajiv.chakravorty,joel.cartwright,ian.pratt � @cl.cam.ac.uk
University of Cambridge Computer Laboratory, Cambridge CB3 0FD, U.K.

Abstract— We present the results of a series of experiments used to characterise
the performance of a GPRS (General Packet Radio Service) wireless data network,
hence highlighting issues that software architects should consider when designing ap-
plications to run over this soon to be widely-deployed service. In summary, we show
that packet Round Trip Time (RTTs) are large (� 1000ms) and can be highly variable,
packet losses are relatively rare, and that available bandwidth can be quite variable.

These network characteristics do not interact well with current TCP implementa-
tions. We show how it takes many seconds before a new TCP connection can expand
its congestion window to make use of the full bandwidth available, leading to very
poor performance of protocols like HTTP. Beyond the point of full bandwidth utilisa-
tion, TCP continues to expand the window needlessly, resulting in excessive queueing
at the GPRS router. This leads to greatly inflated RTTs (10’s of seconds) and hence
poor interactive response and slow recovery should loss occur. We show how a sim-
ple transparent proxy interposed between the fixed and GPRS networks can be used
to significantly improve TCP connection performance, particularly for activities like
web browsing.

I. INTRODUCTION

The past few years have witnessed substantial growth in cellular tele-
phony, which has also lead to an increased demand for wireless data
services. Although now an agreed standard, so-called 3rd generation
(3G) UMTS (Universal Mobile Telecommunications System) mobile
networks are still some time away from wide-scale deployment. In
the meantime, the GPRS (General Packet Radio Service) extension to
current “2G” GSM networks looks set to provide a widely deployed
solution for wireless data access.

Surprisingly, there have been few published studies of the perfor-
mance of Internet protocols operating over GPRS links. Most work in
this direction has focused on simulated networks [1][4]. In contrast, the
measurements presented in this paper have been taken on a nationally
deployed commercial GPRS network.

In particular, we examine the behaviour of TCP, the dominant proto-
col in the wired Internet, and one that is likely to be similarly important
for mobile users too. Although TCP in wireless LAN environments has
been widely studied [9], the characteristics of GPRS lead to a different
set of pressing performance issues. We go on to show how interposition
of a transparent proxy can be used to mitigate some of these effects and
yield better TCP throughput over GPRS links without modification of
the hosts.

II. GPRS OVERVIEW

GPRS is a bearer service for GSM - a wireless extension to packet
data networks. It enables an “always-on” service where resources
(time-slots) are consumed only when data packets are actually trans-
mitted. GPRS can multiplex time slots between different users, and
can also allow multiple time slots to be used in parallel to increase
bandwidth to/from a particular mobile terminal.

A reliable RLC (radio link control) mode ensures that packets are
delivered in order, while the ARQ (automatic repeat request) in RLC
combined with FEC (forward error correction) helps to recover from
packets received in error. GPRS copes with a wide range of radio con-
ditions by making use of 4 different coding schemes (CS-1 TO CS-4)
[1][4] with varying levels of FEC. Most currently deployed GPRS net-
works support only CS-1 and CS-2 [6] – the other two are not used as
error rates would be typically too high to be useful. The CS-2 scheme
employs a coding rate of approximately 2:3, and obtains a transmission
rate as high as 13.4 kbit/s per GSM time slot [4]. The effective GPRS

data rate will be less, due to protocol header overhead and signalling
messages.

Radio resources of a cell are shared between all GPRS and GSM mo-
bile stations located in the cell. Most network operators typically con-
figure the network to give GSM (voice) calls strict priority over GPRS
for time slot allocation. The time slots available for GPRS use, known
as packet data channels (PDCHs), are then dynamically allocated be-
tween mobile terminals with data to send or receive.

Mobile terminals are classified according to the number of time slots
they are capable of operating on simultaneously. For example, most
current devices are classified as ‘3+1’ meaning that they can simultane-
ously listen to 3 downlink channels (from base station to mobile), but
only transmit on 1 uplink channel to the base station. Assuming CS-2
coding is in use, this corresponds to a maximum downlink bandwidth
of 40.2 Kbit/s and uplink bandwidth of 13.4 Kbit/s.

When there is contention for GPRS resources, individual PDCHs
may be multiplexed between different users. When this occurs, the
specification allows for packets to be prioritised according to various
Quality of Service levels. In practise, most operators only support a
single ‘best effort’ service.

Further information about GRPS operation can be found in [1].

III. MEASUREMENTS FOR LINK CHARACTERIZATION

A. Test Bed Setup

Our experimental test bed for characterizing GPRS links is shown in
figure 1. The measurements presented in this paper were all performed
over Vodafone UK’s GPRS network, though we have also observed
comparable results using BT Cellnet’s network. In the test set-up, a
laptop connects to a Motorola T260 GPRS (3+1) (3 downlink, 1 uplink
channels) phone through a serial PPP (point-to-point) link to act as a
GPRS mobile terminal. We have also used 3+1 channel phones from
other manufacturers and obtained very similar results.

Complying to the usual GPRS architecture, the base stations (BSs)
are linked to the SGSN (Serving GPRS Support Node) which is then
connected to a GGSN (Gateway GPRS Support node). In the current
Vodafone configuration, both SGSN and GGSN node is co-located in
a CGSN (Combined GPRS Support Node). A well provisioned vir-
tual private network (VPN) connects the Lab network to that of the
Vodafone’s backbone via an IPSec tunnel over the public Internet. The
RADIUS server is used to authenticate mobile terminals and assign IP
addresses.

We have configured routeing within the Lab such that all traffic going
to and from mobile clients must pass through a Linux-based software
router. This enables us to perform traffic monitoring as well as provid-
ing a location to run the transparent mobile proxy we describe later.

Link characterization measurements were performed during the
night to reduce the possibility of contention for GSM time slots with
other users. However, repeating the experiments at various times during
the working day revealed no sign of network contention occurring. This
is perhaps to be expected due to the currently small number of GPRS
users and the generous time slot provisioning employed by Vodafone.

B. Preliminary Results from GPRS link characterization

The tests were performed using a version of the ttcp program mod-
ified (ttcp+ [11]) to enable traffic streams to be generated at speci-
fied rates and with particular burst characteristics. We also insert time

2

BACKBONE NETWORK
SERVICE PROVIDER’s

������
��

PUBLIC
INTERNET

BSC

BS

BS

SGSN

CGSN

ROUTER
GPRS Edge

Gb

GGSN

Gn

Gi

Router
Edge

Mobile Proxy
Radius Server

Cambridge Computer Laboratory
Firewall

PPP−over−bluetooth
PPP−over−serial

Application Server

Sufficiently Provisioned
IPSec VPN

���������������	�	

�
�
�����
�����
��

Fig. 1. Test Bed Set-Up for Performance Measurements

stamps and sequence numbers in packets to track time-in-flight between
sender and receiver (using NTP synchronized clocks) and to detect
packet loss and re-ordering.

Tests were performed to measure up and downlink packet latencies
for different packet sizes, and up/downlink bandwidth (both TCP and
raw bandwidth). During all these tests, any incidence of packet loss
or re-ordering was noted. In all cases, the mobile terminal was sta-
tionary, though a number of locations were used during the bandwidth
measurements presented later. A separate technical report containing a
more detailed discussion of GPRS link characteristics is also available
[5].

0

20

40

60

80

100

120

140

0 1 2 3 4 5 6
Packet Delays (secs)

D
el

ay
 D

is
tr

ib
u

ti
o

n

Uplink Delay Distribution

0

10

20

30

40

50

60

70

80

0 1 2 3 4 5 6

D
el

ay
 D

is
tr

ib
u

ti
o

n

Packet Delays (secs)

Downlink Delay Distribution

Fig. 2. Plots showing delay distributions (non-normalized) for 64 bytes packet case (a) up-
link delay distribution (b) downlink delay distribution. Measurements involved transfer
of 1000 packets, rate limited to a 4 seconds delay between two successive transfers.
Various other scenarios for different packet sizes are also available in [5].

Figure 2 presents a histograms of time-in-flight latency for one thou-
sand 64 byte UDP datagrams sent with a random spacing of between
5 and 10 seconds during good radio conditions. The RTT experienced
by a connection is equal to the sum of the uplink and downlink distri-
butions. As can be observed, latencies are large and highly variable,
particularly in the downlink direction. RTTs of around a second are
commonplace, making the service very poor for any kind of interactive
application.

If the experiment is repeated by sending bursts of several packets,
it can be observed that it is only the first packet in a burst that expe-
riences the high jitter – following packets tend to arrive with quite a
tight jitter bound, unless there is evidence that the packet was retrans-
mitted due to loss signalled by ARQ. This indicates that a substantial
proportion of the latency is incurred when the link to a mobile terminal
transitions from previously being idle. Packets that are already queued
for transmission can then follow the first out over the radio link without
incurring additional jitter. The initial jitter will in part be due to the
‘paging channel’ required to inform a mobile terminal that data is to be

sent to it.
The latency figures reported here (measured on two different GPRS

networks) are rather higher than predicted in previous simulation stud-
ies. We are currently in discussions with the network operator to try
and determine the source of the discrepancy.

Good Uplink Conditions

Measured Uplink (Raw) Throughput

Moderate Radio Conditions

Poor Link Conditions

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 20 40 60 80 100

T
h
ro

u
g
h
p
u
t

(K
B

/s
ec

)

Time (sec)

Poor Link Conditions

Moderate Link Conditions (with Link Outage)
Good Radio Conditions

Measured Downlink (Raw) Throughput

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 20 40 60 80 100

T
h

ro
u

g
h

p
u

t
(K

B
/s

e
c
)

Time (sec)

Fig. 3. Raw throughput measurements using Mototola (3+1) GPRS phone for the case of
(a) uplink and (b) downlink.

Raw UDP bandwidth was measured using ttcp to send a contin-
uous stream of 1024 byte packets at a rate just above what the radio
link is capable of carrying. Bandwidth measurements taken at the re-
ceiver averaged over fixed intervals (5 secs) enable variations in raw
link bandwidth to be observed (packet losses in this experiment are ig-
nored as they are most likely due to packet discard at the CGSN).

Figure 3 shows raw UDP bandwidth traces for the uplink and down-
link directions taken under a number of different radio conditions. Note
how the available bandwidth often varies with time as radio conditions
change (we believe there was no contention for time slots).

In particular, note how the bandwidth available on the downlink
channel drops to zero for a period of 30 seconds in the middle of one of
the traces. Unfortunately, such link outages are not uncommon, partic-
ularly when the mobile terminal is on the move in a car or train. Link
outages typically last 5-40s. However, due to the RLC’s ARQ protocol
packets are rarely lost, just grossly delayed.

Packet loss does occur over GPRS links in both the downlink and up-
link directions, but the incidence is relatively rare, and hard to quantify.
When loss does occur, it is quite likely to occur in bursts of consecutive
packets. The RLC implementation should prevent packets from being
re-ordered, and indeed, no re-ordering events have ever been observed.

IV. TCP PERFORMANCE OVER GPRS LINKS

As well as the link characterization measurements, we also per-
formed separate tests to gain a better insight into the TCP performance,
specifically over the downlink channels. We targeted the downlink
channel because of its importance in Web applications.

In this experiment, file transfer tests were performed during different
radio conditions, and traces of the transfer collected using tcpdump
[11] at both ends � the sender host in the Lab and the mobile receiver
laptop connected via a GPRS phone. Both hosts used Linux version
2.4.16, which employs a modern TCP implementation supporting Se-
lective ACKnowledgements (SACKs) [2].

The traces were analysed using tcptrace [11]. To understand
steady-state link behaviour, we selected a reasonably large file transfer
size of 600KB. Figure 4(a) shows throughput measured at the receiver
averaged over 10 packets for three different file transfer runs performed
under different radio conditions. As can be seen, there are wide vari-
ations in throughput and hence download completion time. In figure
4(b) we observe a sudden improvement in available link bandwidth.
In this case, there are sufficient packets already queued at the GPRS
router that the TCP connection is able to seamlessly utilize the extra
bandwidth without having to grow the congestion window further.

In the following sections, we look at more detailed traces to describe
some of the specific performance issues observed during TCP transfers.

3

Good Radio Conditions

Moderate Link Conditions

Poor Radio Conditions

500

1000

1500

2000

2500

3000

3500

4000

4500

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00 08:00

R
ec

ei
v
er

 T
h
ro

u
g
h
p
u
t

(b
y
te

s/
se

c)

Time (min)

600KB file transfer under different radio conditions

Link Improves

Average Throughput

1000

1500

2000

2500

3000

3500

4000

4500

00:0000:00 01:0001:00 02:0002:00 03:0003:00
Time (min)

R
ec

ei
v
er

 T
h
ro

u
g
h
p
u
t

(b
y
te

s/
se

c)

Sudden Link Fluctuation during 600KB file transfer

Fig. 4. Plot (a) shows the 600KB transfer progressing under three different radio conditions.
Plot (b) shows how bandwidth can change during the course of a transfer

A. The effect of high RTTs on the slow start phase

In figure 5(a) we observe the classic outline of a TCP sender going
through slow start (SS) and entering the congestion avoidance phase.
What is unusual here is that it is not loss that causes congestion avoid-
ance to be entered, but receiver window limitations. A further point
to note about this particular trace is that the sender releases packets in
bursts in response to groups of four ACKs arriving in quick succession.
Receiver-side traces show that the ACKs are generated in a ‘smooth’
fashion, hence it is surmised that the compression occurs as a result of
the GPRS uplink (since the wired network is well provisioned). This
effect is not uncommon, and appears to be an unfortunate interaction
that can occur when the mobile terminal has data to send and receive
concurrently.

Receiver Adv. Window

Slow Start

Receiver ACK trace

Data Segments (Pushed)

Congestion Avoidance

Consequence of ACK compression

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0 10 20 30 40 50 60 70 80 90

Time (sec)

S
eq

u
en

ce
 O

ff
se

t

Congestion window growth during slow−start

link BDP (approx.)
(12 seg., 6+ sec)

(14 seg., 9+ sec)

Good Link Conditions

Poor Radio Conditions

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10 12 14
Time (sec)

O
u
ts

ta
n
d
in

g
 D

at
a

(b
y
te

s)

Outstanding Data during first few seconds of file transfers

Fig. 5. Plot (a) shows the characteristic exponential congestion window growth due to
slow-start (SS). The connection leaves SS due to receive window limitations rather than
packet loss. Plot (b) shows that SS takes 6+ seconds before the congestion window is
expanded sufficiently to enable the connection to utilise the full link bandwidth.

A close up of the first few seconds of the connection is presented
in figure 5(b), alongside another connection under slightly worse radio
conditions. Growth of the sender’s congestion window in response to
ACKs can be observed. Marked on the plot is an estimate of the band-
width delay product (BDP) of the GPRS link, approximately 10KB.
Note this estimate is approximately correct under both good and bad
radio conditions, as although the link bandwidth drops under poor con-
ditions the RTT tends to rise. For a TCP connection to fully utilize
the link bandwidth its congestion window must be equal or exceed the
BDP.

We see that in the case of good radio conditions this takes approx-
imately 6 seconds from the initial TCP SYN message (longer under
worse conditions). Hence, for transfers shorter than about 16KB TCP
fails to exploit even the meagre bandwidth that GPRS makes available
to it. Since many HTTP objects are around this size the effect on web
browsing performance can be dire. Section VI explores this further.

It is worth noting that although Linux uses an initial congestion win-
dow value of 2 many other TCP implementations use a value of 1,
which would further delay discovery of the correct congestion window.

B. Excess queueing

TCP uses loss as an indication of congestion, and hence a signal that
it should halve its congestion window. However, in the case of a GPRS
link the connection’s bandwidth bottleneck is almost always due to the
radio link rather than to multiplexing at a router in the wired Inter-
net. Hence, in the down link direction packets tend to accumulate at
GPRS CGSNs. The buffering resources within the CGSN are substan-
tial: Using UDP burst tests we have observed over 120KB of buffering.
Given a long enough connection, and assuming no packet losses occur
due to radio errors (which are normally fixed-up by the RLC), TCP’s
congestion control algorithm would fill the entire router buffer before
incurring packet loss and reducing its window.

Link Drain Time = 30 secs

link BDP (approx.)

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

O
u
ts

ta
n
d
in

g
 D

a
ta

 (
b
y
te

s)

Time (min)

No Clocking during Link Drain Time(30secs)

Improved RTTs with good radio conditions

0

5000

10000

15000

20000

25000

30000

35000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

R
T

T
 (

m
s)

rtt

Time (min)

Retransmit (after 3rd dupack)

24 dupacks from pkts inflight

Receiver Adv. Window

(Drain Time = 30 secs)

Segment and Ack Trace

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00
Time (min)

S
e
q

u
e
n

c
e
 O

ff
se

t
(b

y
te

s)

Average Throughput

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

00:0000:00 01:0001:00 02:0002:00 03:0003:00 04:0004:00 05:00

R
e
c
e
iv

e
r

T
h
ro

u
g
h
p
u
t

(b
y
te

s/
se

c
)

Time (min)

Fig. 6. Case of generation of dupacks (sacks in this case) during 600KB file transfer. Plots
showing effect of sacks on (clockwise from top-left) (a) outstanding TCP data (b) sender
perceived RTTs (c) receiver perceived throughput (d) sender packet trace. The time to
drain data from the link is high, in this case, about 30 secs. The dotted line in (a) gives
the estimated value of link BDP.

Fortunately, the window is not allowed to get quite so excessive due
to the receiver’s flow control window, which in most TCP implemen-
tation is limited to under 64KB unless window scaling is explicitly en-
abled. Even so, this still amounts to several times the BDP of unneces-
sary buffering, leading to grossly inflated RTTs due to queueing delay.
The left hand sections of figure 6(a) and (b) show a TCP connection is
just such a state: There is 40KB of outstanding data leading to a mea-
sured RTT of around 30 seconds! Excess queueing leads to a number
of problems:� RTT Inflation:- Higher queueing delays can severely degrade TCP
performance [3]. A second TCP connection established over the same
link is likely to have its initial connection request time-out [8]. Interac-
tive applications become neigh impossible in the presence of a simul-
taneous bulk transfer.� Inflated Retransmit Timer Value:- RTT inflation results in an in-
flated retransmit timer value that impacts TCP performance, for in-
stance, in cases of multiple loss of the same packet [8].� Problems of Leftover(Stale) Data:- For downlink channels, the data
in the pipe may become obsolete when a user aborts a web download
and abnormally terminates the connection. Draining leftover data from
such a link may take on the order of several seconds.� Higher Recovery Time:- Recovery time from timeouts due to du-
packs(or sacks) or coarse timeouts in TCP over a saturated GPRS link
is high. This is shown in figure 6(a)-(d).� Complexities in Network Buffer Provisioning:- Multiple users sat-
urating a bottleneck link with TCP data may lead to increased complex-
ities in buffer space provisioning.

4

B.1 Implications of Packet Loss

Results from our link characterization measurements indicate that
losses are relatively rare. However, some losses do occur, and can cause
TCP problems. Figure 6 shows one such case in which a loss occurred.

The main point to note is the large amount of time (30 seconds) it
takes TCP to recover from the loss, on account of the excess quan-
tity of outstanding data. Fortunately, the connection is using SACKs
and thus the packets transferred during the recovery period are not dis-
carded, and the effect on throughput is minimal. This emphasises the
importance of SACKs in the GPRS environment – it should be imple-
mented even on simple devices like PDAs where it is often currently
omitted.

The occasional link outages cause particular problems for TCP. Out-
ages can freeze data tranfer over the link during the outage interval,
which can lead to RTO triggered retransmissions that later turn out to
be spurious when the data is finally released over the link.

V. IMPROVING TCP PERFORMANCE OVER GPRS

From our observation of TCP over GPRS, we conclude that the high
underlying RTT on GPRS links results in suboptimal perfomance, par-
ticularly for short-lived sessions. Furthermore, we have also seen that
TCP causes excess queueing, leading to variety of performance prob-
lems.

We present a simple technique that improves TCP performance over
GPRS without need to modify either the sending or receiving hosts.
This is achieved through interposition of transparent ‘mobile TCP
proxy’ running on a Linux router using netfilter [10] to divert the pack-
ets to a user-space daemon.

Ideally, the mobile proxy would be co-located with the GPRS GGSN
node, but in our implementation we locate it at our end of the IPSec
tunnel, where it gets to examine (and can modify) packets going in
both directions over the link.

The proxy transparently splits TCP connections [7] into two legs: the
‘wired’ section and the ‘wireless’ section. Over the wireless section,
the proxy uses a modified TCP sender that uses a fixed size congestion
window, the size picked to be the current estimate of the BDP of the
link. Thus, slow start is eliminated, and further unnecessary growth
of the congestion window is avoided. As a further optimisation we
re-write the receiver window advertised in ACKs heading back to the
sender to control the amount of data it causes to be queued at the proxy.
We call our technique TCP cwnd clamping.

Attempting to apply our scheme to the Internet as a whole would
certainly be disastrous; slow start and congestion avoidance normally
serve essential roles. However, in the GPRS case congestion avoidance
is largely redundant. It is possible for the proxy to maintain state about
all of the TCP connections heading to a particular mobile terminal and
share the BDPs worth of buffering out amongst the connections appro-
priately. The underlying GPRS network is ensuring that bandwidth is
shared fairly amongst users (or according to some other QoS policy),
and hence there is no need for TCP to be trying to do the same based on
less accurate information. Ideally, the CGSN could provide feedback
to the proxy about current radio conditions and time slot contention,
enabling it to rapidly adjust its fixed size congestion window, but in
practise this is currently unnecssary.

The following sections describe our approach in more detail.

A. TCP cwnd Clamping

In cwnd clamping, the mobile proxy avoids the slow start phase and
starts with a congestion window that enables full use of link bandwidth.
It uses a clamped value (����� �����) of cwnd and maintains it for the
full duration of the connection. Once the mobile proxy is succesful
in sending ����� ����� amount of data it goes into a self-clocking state in
which it clocks out one segment each time its receives an ACK from
the receiver. This approach maintains the amount of outstanding data to

an optimistically estimated value of the link BDP, neither significantly
overrunning the link, or under utilizing it.

The cwnd remains clamped even during times or poor link perfor-
mance i.e. during handoff’s, interference or fading. While starting with
a fixed value of cwnd, the mobile proxy needs to ensure that any initial
packet burst does not overrun link buffers. Since the BDP of current
GPRS links is small (e.g. � 10KB), this is not a significant problem at
this time. For future GPRS devices supporting more downlink chan-
nels (e.g. 8+1), the proxy may need to use traffic shaping to smooth the
initial burst of packets to a conservative estimate of the link bandwidth.

In absence of any queuing or packet loss, the window size neces-
sary to keep a link busy without any idle times should correspond to
the BDP of the link. A reasonable value for the clamp window value
i.e. ����� ����� can be made from the maximum values of ���! #"%$ and& �! #"%$ i.e. � ����' and

& ����' . These values can be obtained through
appropriate link capacity measurement techniques. In such a case,
the clamp value (����� �����) for the congestion window will be given by� ��� �(���*) � ����'�+ & ����' . This value should avoid the link going idle
and hence under-utilization.

If the estimate of the BDP is good, packets arriving at CGSN router
will experience minimal queueing. As radio conditions vary the amount
of queueing may increase, but will be bounded, and is likely to be sig-
nificantly less than the excesses of normal TCP.

In the case of a packet loss, we preserve the cwnd value, clocking
out further packets when ACKs are received. RTO triggered retrans-
missions operate in the normal manner.

VI. VALIDATING TCP CWND CLAMP STRATEGY

In this section, we evaluate the efficacy of TCP cwnd clamping.
Specifically, we show the following benefits:, Reduced Queuing Delays:- Excessive queuing is reduced by limit-
ing TCP data over the link. As a consequence, RTT inflation and its
impact on retransmit timer values are also minimized., Faster Startup:- Slow-start is avoided, which improves start-up per-
formance and transfer times (especially for short web transfers)., Quick Recovery from Losses:- It reduces drain time during losses
leading to quick TCP recovery. By limiting data over the link, spurious
retransmission cycles due to sudden delay fluctuations can be avoided.
This also reconciles with other negative effects such as stale (or left-
over) TCP data due to abnormal disconnections.

A. Minimizing Excess Queuing using TCP clamp

We conducted a series of file download tests over GPRS, with and
without the presence of the mobile proxy implementing our clamping
strategy. For these tests we used fixed values of the clamped window
(����� �(���).

Transfer tests were performed with an initial value of 4KB and we
increased this to 32KB in a number of steps. Figure 7(a) shows typical
traces for the 600KB file transfers corresponding to different values
of cwnd. It is evident that the transfer times for all the runs except
when cwnd) 4KB run (a case of link under utilization) are almost
same. A cwnd value of 10KB (corresponding to 9.5KB when integer
numbers of segments are considered) or higher ensures the link is fully
utilized. An 8KB window typically yields similar results, though we
have observed circumstances in which under utilization has occurred
due to ACK compression; for clarity the line is omitted.

Higher values of cwnd leads to higher values of perceived RTTs.
Using a cwnd of 10KB results in a low and relatively stable RTT, sim-
ilar to the 4KB case. Other values progressively tend toward the large
and very variable RTT incurred in the absence of the mobile proxy.
B. Benefitting from slow-start elimination

To quantify the benefits of avoiding slow-start for short TCP ses-
sions, we used ttcp to perform a series of short (5KB-30KB) down-

5

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

00:00 01:00 02:00 03:00 04:00 05:00 06:00

R
T

T
 (

m
s)

Time(min)

cwnd=4k
cwnd=10k
cwnd=12k
cwnd=16k
cwnd=32k

nocwnd

cwnd=4k
cwnd=10k
cwnd=12k
cwnd=16k
cwnd=32k

nocwnd

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

00:00 01:00 02:00 03:00 04:00 05:00 06:00

O
u

ts
ta

n
d

in
g

 D
a
ta

 (
b

y
te

s)

Time(min)

Fig. 7. Figures showing (a) sender perceived RTTs and (b) Outstanding (inflight) TCP
data during 600KB file transfer. Effects of queuing delays can be effectively reduced
by clamping the congestion window. A good selection of -/.10!243/5 ensures that link is
never underutilized.

loads, primarily to reflect web sessions behaviour. Each transfer for a
given size was repeated 25 times and traces recorded using tcpdump.

4

5

6

7

8

9

10

11

12

13

14

0 5 10 15 20 25 30 35

Tr
an

sf
er

 T
im

e(
se

cs
)

Transfer Size(KB)

TCP clamp (cwnd=10KB)
TCP

Fig. 8. Results of the ttcp download transfers conducted over GPRS network. Plot
shows the transfer times for different transfer sizes for TCP clamp (cwnd=10KB) and
standard TCP. The error bars correspond to the standard deviation. Each transfer test
was repeated 25 times for a given size.

Figure 8 shows that transfer times for TCP as well as TCP clamp
with a 10KB window for a range of different transfer sizes. Note that
the transfer times shown also include the TCP connection establish-
ment and termination overhead. Given the high latency of the link, this
overhead can be quite large for short transfers.

TCP clamp does not perform quite as expected due to the Linux
2.4.16 receiver offering an initial receive window of just 5392 bytes.
The receiver rapidly opens the receive window as data starts to flow,
and the results demonstrate that despite the initial window limitation
TCP cwnd clamp provides clear performance benefits for small down-
loads on GPRS links.

This benefit will be maintained and even enhanced when using
HTTP/1.1 persistent TCP connections. When using persistent connec-
tions it is normally the case that the server has to let the TCP connection
go idle between object transfers since pipelining is rarely supported.
Normally this results in the congestion window being set back to its ini-
tial value. TCP clamp avoids this, and the benefit is more pronounced
due to the lack of connection establishment and termination phases.

C. Recovery with TCP clamp

As shown from the TCP sender trace in figure 9(d), an RTO occurs
during the file transfer, resulting in packet re-transmission. In this case,
there are no data packets in the router buffers, so TCP recovers quickly
from the link loss after its first retransmission, and then proceeds with
normal data transmission. Without the proxy, there are likely to be
a large number of TCP packets queued up over the link before the
timeout. This is particularly unfortunate if either host does not sup-
port SACKs, in which case the backlogged packets will be needlessly
retransmitted. Worse, acks of the retransmitted segments would fur-

ther trigger further retransmissions due to dupacks, leading to a cycle
of spurious retransmissions. By limiting the outstanding data over the
link the recovery phase is enhanced and occurrence of such spurious
retransmission cycles are avoided.

Timeout

Link condition deteriorates
after recovery from timeouts

Higher Perceived RTTs

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

R
T

T
 (

m
s)

rtt

Time(min)

Retransmit

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

O
u
ts

ta
n
d
in

g
 D

a
ta

 (
b
y
te

s)

Time(min)

Retransmit

Ack Trace

Receiver Adv. Window

0

100000

200000

300000

400000

500000

600000

700000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

S
e
q
u
e
n
c
e
 O

ff
se

t

Time(min)

Average Throughput

1000

1500

2000

2500

3000

3500

4000

00:0000:00 01:0001:00 02:0002:00 03:0003:00

T
h

ro
u

g
h

p
u

t
(b

y
te

s/
se

c)

Time (min)

Fig. 9. Early recovery from TCP timeout during 600KB file transfer with TCP clamp. Plots
showing (top-left and clockwise) (a) RTT plot of TCP timeout (b) Outstanding (inflight)
data (c) receiver perceived throughput and (d) sender trace. Reducing queued data can
help TCP to recover quickly.

VII. CONCLUSIONS

In this paper, we investigated the performance of TCP operating over
GPRS links. In addition to presenting link characterization results, we
conducted several file transfer tests to gain useful insight into the typical
TCP performance. We quantified the effect of GPRS link under utiliza-
tion during slow start, and observed the deleterious effects of queueing
caused by excessive congestion windows.

We described how a transparent proxy may be inserted into the net-
work close to the wired/wireless boundary to improve TCP perfor-
mance without modification of the end hosts. We validated our ap-
proach through file download trials over GPRS links under different
radio conditions and conclude that the proxy boosts TCP performance
by reducing queueing delays and improving overall throughput.

ACKNOWLEDGMENTS

The authors would like to thank Vodafone Group R&D, Sun Mi-
crosystems Inc. and BenchMark Capital for supporting this work.

REFERENCES

[1] G. Brasche and B. Walke, “Concepts, Services and Protocols of the New GSM Phase
2+ General Packet Radio Service”, IEEE Communications Magazine, August 1997.

[2] M. Mathis, J. Mahdavi, S. Floyd and A. Romanow, “TCP Selective Acknowledgement
Options”. RFC 2018, April 1996.

[3] D. Dutta and Y. Zhang, “An Active Proxy Based Architecture for TCP in Heteroge-
neous Variable Bandwidth Networks”, IEEE GLOBECOM, November 2001.

[4] M. Meyer, “TCP Performance over GPRS”, In Proc. of IEEE WCNC, pages 1248-
1252, 1999

[5] “GPRS Link Characterization”, http://www.cl.cam.ac.uk/ 6 rc277/linkchar.html
[6] “An Introduction to the Vodafone GPRS Environment and Supported Services”, Issue

1.1/1200, December 2000, Vodafone Ltd., 2000.
[7] O. Spatscheck et al., “Optimizing TCP Forwarder Performance”, IEEE/ACM Transac-

tions on Networking, Vol. 8, No. 2., April 2000
[8] R. Ludwig et al, “Multi-Layer Tracing of TCP over a Reliable Wireless Link”, In Pro-

ceedings of ACM SIGMETRICS 1999.
[9] H. Balakrishnan et al., “A Comparison of Mechanisms for Improving TCP Performance

over Wireless Links”, IEEE/ACM Trans. on Networking, Vol. 5, No.6, Dec 1997.
[10] The Linux NetFilter Homepage, http://www.netfilter.org
[11] tcpdump(http://www.tcpdump.org), tcptrace(http://www.tcptrace.org),

ttcp+(http://www.cl.cam.ac.uk/Research/SRG/netos/netx/)

