
!!!!!!!!!!!!!!!
!!!!!
!!
!!!!!!!!!!!!!!!!!!!!!!
!!!!!!!!!!!!!!!!
!!!!!
!!
!!!!!
!!!
!!
!
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!
!!!!
!
!!!!
!!!!
!
!!!
!!!!
!!!!!
!!!!!!!!!!!

Computer Laboratory!
William Gates Building!
15, JJ Thomson Avenue!
Cambridge, CB3 0FD

INTERNET!
INTelligent Energy awaRe NETworks

Cooling storage hotspots in the data centre
Toby Moncaster, George Parisis, Anil Madhavapeddy, Jon Crowcroft (first.last@cl.cam.ac.uk)

Data Centres: Where the ‘net Things Are

It’s all about the numbers!

• Exabytes of data

• Millions of processors

• Hundreds of thousands of servers

• Tens of MW of power

Used for web services like Google, Social
networking (Facebook), Cloud services (Amazon
EC2) and video streaming (NetFlix).

!

!

!

!

!

!

!

!

!

!

!

!

!

!

Trevi			

Fountain Coding
Mechanism for multicasting data. Simple idea is data source acts like a drinking fountain:

• To receive a file you simply fill up your cup from a stream of encoded blocks.

• As soon as you have enough blocks your file can be decoded.

• Doesn’t matter which blocks you get or the order they arrive in.

• To encode, file is split into chunks. Each chunk is XORed with a selection of others.

• Decoding is simply XORing the coded chunks to recover the data. Some chunks are sent on their
own - these act as the keys to unlock the coding.

The clever bit is choosing which chunks to combine to allow efficient decoding.

!

Storage, Storage, Storage!
All that data needs to live somewhere:

• in-memory storage. Keep it all in RAM. Fast, but volatile. Also requires

complex coordination.

•local-attached storage. Store on local disc with central metadata.
Slower, less volatile, but still needs coordination. Typical examples
include Flat Datacenter Storage which is the basis for Trevi

• network-attached storage. Central file server(s) appear as local storage
on the actual server. Uses significant network bandwidth. Slower. Allows
easy replication. Typical example is NetApp NAS server

Binary and decimal - the basics!
• Binary and decimal are both positional number systems. !
• Normally we're in base 10 (decimal) so the first position in the

number is units, then 10s, then 102 (hundreds), then 103
(thousands)!

• In binary we're dealing in base 2. So first position is units, then
2s then 22 (4s) then 23 (8s).!

• So to get 12 (10 + 2 in base 10) you need 8 + 4 which is 1100
in binary. And to get 14 you need 8 + 4 + 2 which is 1110!

 
XOR (exclusive OR)!
• Combine binary numbers. Anywhere with a single 1 becomes

a 1 in result, anywhere else is 0. !
• This is the same as addition but without any carry. !
So 8 + 6 = 14 gives:!
! 1000 ⊕ !0110 = 1110!

while 11 + 6 = 17 gives:!
! 1011 ⊕ !0110 = 1101 (13)!
(so in this example you ignore the carry from the 4 column)

Using fountain coding for storage!
Fountain Coding offer several neat advantages!

Rateless - so no need for feedback, timeouts, etc. If a codeword is
lost you just have to wait for another to come along.!
Efficient - encoding penalty is 3-10% (depending on approach).
ANY N + ∂ codewords allow you to recover original data.!
Data can be multicast - better than simple replication (this allows
the data to be read in parallel from many sources at the same time)!
Offers a chance to load balance and hence make better use of
limited storage and network resources.!

Two key drawbacks:!
Potentially computationally expensive. But it is very easy to do in
hardware (NetFPGA is a possible solution)!
Storage has to be semi-immutable (e.g. write to erase). Could use
a checkpointed git like file system (e.g. Irminsule)

Writing data with Trevi!
1. Controller decides where blocks are to be stored. Data is converted into code

blocks using suitable sparse erasure code.!
2.Sender contacts correct storage nodes.
Sending a data block improves efficiency.!
3.Each receiver sends back a stream of
requests for new code blocks. Sender uses
these to determine a safe sending rate.!
4.Once sufficient codewords received
storage node sends stop message. Sender

stops sending once all storage nodes have stopped.!
5. (not shown) sender can choose to ignore slowest node or otherwise optimise.!
6. Storage nodes decode data and store it on their disc array.

Reading data!
1. Find the set of storage nodes holding

the desired data.!
2. C sends getBlob request. !
3. Each sender recovers correct data

and creates set of code words then
sends an ack + first code word!

4. Stream of code words are sent to C
from each node. Random seed at
each node prevents the need for any coordination between them!

5. Once C has sufficient symbols it stops the senders.!
6. Data is decoded and passed up to the correct application at C.

Key mechanisms!
Trevi relies on a few key mechanisms!

Tract Locator Table. This is based on Flat Datacenter Storage. Table links data with
the set of discs and an associated multicast address for them.!
Multicast. Trevi uses multicast to create sets of storage nodes. This makes it easier
to achieve both replication and multi-sourcing.!
Sparse erasure codes. These allow you to recover data with a predictable small
overhead. See the box bottom left for an explanation!
Receiver-driven flow control. In a storage system discs can be the bottleneck. So in
Trevi receivers explicitly request data at the speed they can process it.!

!

! ! ! ! ! ! C1 = D1!

D1!! ! ! ! ! C2 = D1 + D3!

D2!! ! ! ! ! C3 = D1 + D4!

D3!! ! ! ! ! C4 = D2 + D4!

D4!! ! ! ! ! C5 = D3 + D5!

D5!! ! ! ! ! C6 = D1 + D2 + D5 + D6!

D6!! ! ! ! ! C7 = D3 + D5 + D6!

! ! ! ! ! ! C8 = D5

! Receive codewords C1, C2, C7, C3, C4, C5!

! Use C1 to recover D1!
! Use C2 and D1 to recover D3!
! Then wait for C3!
! Use C3 and D1 to recover D4!
! Use C4 and D4 to recover D2!
! Use C5 and D3 to recover D5!
! Use C7 and D3 to recover (D5 + D6)!
! Use (D5 + D6) and D5 to recover D6

mailto:first.last@cl.cam.ac.uk
mailto:first.last@cl.cam.ac.uk

