
The Fountain of Knowledge.
Infinitely scalable storage in the data centre.

Toby Moncaster, George Parisis, Anil Madhavapeddy, Jon Crowcroft (first.last@cl.cam.ac.uk)

INTERNET
INTelligent Energy awaRe NETworks

Data Centre Basics
Massive warehouses full of commodity servers: the “home” of the Internet and cloud services
Can consume upwards of 100MW each - rapidly exceeding airline industry as a source of CO2
Biggest contain 250,000+ computers connected by very fast network (10-40GbE)
Raise interesting research challenges:

Latency measured in nanoseconds - large packets may be in source and destination at same time
Often quicker to move application to data, rather than getting data from disc
Suffer from specific problems including TCP incast and broadcast storms 

Existing approaches to data centre storage
Centralised disc-based storage (e.g. SAN) 

remote array of discs presented as local 
storage to servers
Connected using storage network
Use TCP as transport - leads to incast

! ! ! ! ! ! Centralised metadata (e.g. Colossus)
chunks stored in RAM
central metadata server determines where 
to store new chunks
offer “raw” storage (block or chunk) 
issue with size of metadata - dictates the 
size of chunks (e.g. Mbytes)

Distributed metadata (e.g. FDS)
Storage is split into blobs. Data is split into tracts.
Each blob has tract server which allocates space to tracts.
Central server just lists location of tract servers.
Simple hash determines which blob(s) contain which tract.
Requires full bisection bandwidth network.

Fountain coding
Data is encoded using sparse erasure codes 
(Luby Transforms, Tornado codes, etc).
Truly rateless coding technique - receiver needs 
to get N + ∂ codewords to recover N data blocks, 
but can get any N + ∂ codewords.
Data to be coded is split into blocks.

Combinations of blocks are then XORed together
To decode you need to start with a codeword with 
1 block. Then XOR it with all blocks containing it.

Computer Laboratory
William Gates Building
15, JJ Thomson Avenue
Cambridge, CB3 0FD

Using fountain codes for storage
Fountain Codes offer several neat advantages

Rateless - so no need for feedback, timeouts, etc. If a 
codeword is lost you just have to wait for another.
Efficient - encoding penalty is a constant 3-10% 
(depending on approach). ANY N + ∂ codewords allow 
you to recover the original data.
Data can be multicast - better than simple replication 
(this allows the data to be read in parallel from many 
sources at the same time)
Offers a chance to load balance and hence make 
better use of limited storage and network resources.

Two drawbacks:
XOR is relatively computationally expensive. But it is 
very easy to do in hardware (c.f. NetFPGA as a 
possible solution)
Storage has to be semi-immutable (e.g. write to 
erase). Could use a checkpointed git like file system 
(e.g. Irminsule)

Writing data
Central controller, C, decides 
where blocks are to be sent.
1. Data is converted to symbols
2. symbols are distributed to set 

of storage nodes, decoded & 
stored

3. Once all symbols received storage nodes send stop.

Reading data
Send request to C.
1. C sends getBlob request. Sn 

recovers correct data and creates 
a set of symbols. 

2. These symbols are sent to C.
3. Once enough symbols are 

received storage C sends stop.


