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Digital Epidemiology Graph Specific Data Parallel

* Raspberry Pi based delay = Fast, flexible, and programmable graph
tolerant networks with processmg. -
satellite connectivity in = Cost effective but efficient storage
developing countries ®= Move to SSDs from RAM

® Reduce latency

= Real world mobility = Runtime prefetching ‘*iG OKTR
Qata (?ollection L < = Graph algorithm specific runtime
in Africa = Dynamic CPU/GPU scheduling

= Super efficient parallel processing

" Analyse network structure to « Reduce storage requirements

understand infectious disease

spread = Compressed adjacency lists
= Multiple modes of spread = Build efficient data analytic framework
without huge computing resources
= Search/update real time iy -
(Graph DB) +
o

Large-scale Graph Processing

Algorithms Graph Structure

(Access pattern) (Irregular work load)
Traversal vs Fixed Point Iteration Scale-free real world graphs

[ KEY: Data driven smart parallelism (computation, 1/0) ]

‘
Various Computation Platforms
liDJ = lcpulcru_cpul -] cpu]
L Multi-core + GPU )
tﬂj DUJ ’10J liUJ limj N
' : Laptop

Cluster

Az HD/SSD
Storage/Stream




Heterogeneous Workload Management for
Large-Scale Graph Processing

Karthik Nilakant and Dr Eiko Yoneki
Karthik.Nilakant@cl.cam.ac.uk / Eiko Yoneki@cl.cam.ac.uk

Graph Program (GPU)

"
ndl

Dispatcher
=

[ Shared Work List J
[ o O B

Heterogeneous Partitioning

- Run similar program -
instances on each device

- Aim to dispatch data to
best-suited device -

- Analyse work list elements

to characterise data

JOWBaN UIBA]

Vertices

Batch Management

Trade off element analysis
complexity with efficiency

gains

Elements can be classified
individually, aggregated in

batches, or dispatched

speculatively

Memory Interface
- Batching needs to take
into account local / global
memory layout
- Attempt to hide GPU /
CPU bus latency with
higher parallelism

\.
/Earlv Results — APU Architecture
- Accelerated Processing Units
provide higher-bandwidth DMA
- Left figure shows relative
performance advantage of
integrated GPU
- Right figure shows results of basic
implementation of above

\workﬂow an APU
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Optimizing Graph Computations:
Trading Communications for Computations

Valentin Dalibard, Eiko Yoneki
Cambridge University Computer Laboratory

valentin.daliba@cl.cam.ac.uk

@ UNIVERSITY OF
CAMBRIDGE

Example problem: Compute PageRank on a large graph

R(z‘):%ﬂka)xz—

Current Solution:
Distributed Bulk Synchronous Processing

j—i

R{)
1NTJ‘

Change Computation Model

Allow computations on
not up-to-date values

optimise convergence

Change View

Goal of PageRank is to find
a fixed point.

Treat it as a distributed
optimization: aim is to
minimize change between

com- iterations
to

Make full use of resources
to converge to this fixed

Solution proposed: Treat the computation as a distributed optimization

Change Execution Model

time

point. Constant Computation and

Communication

e

Use spare computations to:

»Perform more graph computations to converge faster
towards the fixed point

*Assign priorities to computations to perform the
more important ones first

»Assign priorities to messages to transfer the more

Find the subset of graph
computations that fit this
model:

*works well for Shortest

important ones first Paths slgorithms, Greedy
- Graph Colering or
Computations Connected Components

Transfer highest priority messages at full bandwidth to
other machines

*Doesn't work for Gibbs
Sampling which always
needs up-to-date inputs

Communications

Find the right balance
between  actual  graph
computations and meta-
computations

Aveoid making the model
difficult to use for the
programmer




SAKYOMI: SSD Prefetcher for Large-Scale Graph Traversal

Eiko Yoneki, Karthik Nilakant, Valentin Dalibard (University of Cambridge) and Amitabha Roy (EPFL)

SAKYOMI: Cost-effective Graph Processing with Semi-External Memo

Issues Insight

layout for Twitter graph | o wyith random access [CRICRUIR Cu oA
to disk-based data, predict future
standard caching is accesses to edge
inefficient data

Can hold program state,
\terator state (work list),

Jlfcem:y list index and
disk cache

® Poor I/O queue depth
and storage = Issue multiple
bandwidth utilisation concurrent I/O

with most requests to load this
synchronous graph data into cache
programs

SSD (8.40 GB)
E—-)éternal Can hold adjacency list,
orage edge weights and other
(SSD) edge-specific data

I/O Latency Mitigation with SAKYOMI

Advantages
Dijkstra’s zlgorithm
completed on a
graph (315GB edge
data) in 10 hours,
using only 30GB RAM
Unlike GraphChi,
SAKYOMI can easily
zdapt to changing

Example:

BFS Compute Prefetch
Thread RAM Thread SsD

o

1. Mark current
vertex visited,
add unvisited
neighbours to
queue

2. Pop next

1. Update
program state

o

vertex from . 1. Look ahead resource conditions
e 2. Step to next Work _|I§ + for upcoming Edge data w/o re-processing
e vertex edge index vertices edge data
neighbours of o Various algerithms
" dapted (connected
current vertex 3. Fetch edge &~ 2. Fetch &
g » its, 5SSP,
Repeat until data for vertex &5 multiple edge 3 e i
. K-Cores, SSSP and
queue is empty L data e

Simpler alternative to
multi-threaded graph
traversal, avoiding
need to implement
concurrency control

o

« Computation stalls not-yet cached requested
page of memory-mapped edge file

® Prefetcher reduces such page faults by
fetching edge data directly from memory

® SAKYOMI has predefined look-ahead
functions for common work lists (Sequential
/ FIFO / Priority Queue) and allows custom
look-ahead via callbacks

Key Results

# Runtime only 1.5x to 5x slower than in- ® Better ut\hsatlon of limited cache capacity
memory programs, despite requiring hardware o T T s
platform at least 10x cheaper

Aol
1200 [

1000

SAKYOML

Weakly Connected
Component (WCC)

Running Time for WCC on Twiter fsex
@
s
8

In-memory Algorithm on Twitter 200 -—
Data (52M vertices,
1.6B edges) %o 100 2000  ame 4000

Edge Data Cache Size (MB)

Multi-threadsd

® Immediate saturation
of SSD random read
throughput capacity
with WCC on ER with
high K value (average
degree)

GraphChi

Non-prefetched

Fead Bta oS80 (Wiraee, TRETR

] 500 1000 1500 2000 2500 Kot

Running time (s) o 100 200 300 w00 200
Time (secons)
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TECHNOLOGY USE Th I

What problems groups solve with them, and how they can improve.
New models for GUI, Website and Knowledge Repository use.
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Graphical Games: Human-Computer
Communication, Game-Theory and
Applications -UIST'12 .

AModel of Learning in Low Income
Communities: Coordination and
Recommendation Systems - [CMLA12
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