
1

Addressing the Scalability of Ethernet with MOOSE

Malcolm Scott, Andrew Moore and Jon Crowcroft
University of Cambridge Computer Laboratory, 15 JJ Thomson Avenue, Cambridge, CB3 0FD, UK

{Malcolm.Scott, Andrew.Moore, Jon.Crowcroft}@cl.cam.ac.uk — +44 1223 763500

Abstract—Ethernet does not scale well to large networks.
The flat MAC address space, whilst having obvious benefits
for the user and administrator, is the primary cause of
this poor scalability; other recent efforts to improve upon
Ethernet’s scalability have addressed symptoms, rather
than this underlying cause. In this paper we present
MOOSE, Multi-level Origin-Organised Scalable Ethernet,
an Ethernet switch architecture that performs in-place
rewriting of MAC addresses in order to impose a hier-
archy upon the address space without reconfiguration or
modification of connected devices. This removes the need
for switches to maintain large forwarding databases, is of
direct use in implementing improved routing, and allows
for a variety of other scalability and security innovations.

I. INTRODUCTION

Ethernet has lasted well since its inception in the
’70s [1] with Ethernet frame-structure and addressing
remaining ubiquitous in the data centre environment as
in many others. Alongside IP and IP-transported services
such as iSCSI, it is now commonplace to see converged
network services such as physical disk interfaces and
cluster interconnects layered directly over Ethernet (e.g.
ATA-over-Ethernet and variants of Infiniband). However,
Ethernet exhibits scalability issues on networks of more
than a few thousand devices, such as costly and energy-
dense address table logic and storms of broadcast traffic.

Aside from more physical devices, virtualised in-
frastructure further increases the density of Ethernet
addresses in data centres. Widely-used layer-2 virtual-
isation mandates a unique Ethernet address per virtual
machine [2]. This means that each physical machine in a
data centre may represent many tens of Ethernet devices.

The traditional method of avoiding such problems is
the artificial subdivision of a network, but this introduces
an administrative burden, requires significant routing
equipment and also precludes seamless migration—a
necessity for virtualised infrastructure [3]. While IP Mo-
bility [4] addresses the problem of maintaining higher-
layer connections when roaming between subnets, it re-
quires client support that is neither ubiquitous or reliable.
Common practice sees the provision of one physical
Ethernet network covering an entire data centre, or even
an entire WAN of data centres.

Our approach, Multi-level Origin-Organised Scalable
Ethernet (MOOSE), provides all the advantages of an
Ethernet network without the capital and running costs
and administrative overhead of a IP router-based ap-

proach. MOOSE does this by providing a hierarchical
addressing scheme without requiring host reconfigura-
tion or modification.

Ethernet’s scalability is limited firstly by the forward-
ing database that every switch in an Ethernet network
must maintain [5, §7.8–7.9]. A switch’s forwarding
database contains one entry per source address seen in
any frame passing through that switch, and stores that
MAC address together with the learnt location of that
address—the port on which packets from that address
were last seen. This is later used to determine on which
port to transmit frames destined for that address. Devices
frequently broadcast frames throughout the network (e.g.
ARP queries) so active devices on the network are listed
in most switches’ forwarding databases most of the time.

In modern switches the capacity of this database is
generally of the order of 16,000 entries [6]. (Higher-
capacity forwarding databases exist but are currently
constrained to very high-end switches.) On a moderately
large network, full databases are a serious risk. If the
database becomes full, entries will be discarded; frames
for unknown addresses are flooded to all ports and
the resulting traffic storm could cause major problems,
especially in the presence of low-capacity edge links.

Traditionally the forwarding database has been stored
in a content-addressable memory (CAM) as lookups
must be very fast, particularly as 10 Gbit/s Ethernet
becomes ubiquitous. As networks grow, the number of
entries in a switch’s forwarding database must naturally
increase; however, increasing the capacity of CAMs
without sacrificing speed whilst constraining energy con-
sumption is proving to be challenging [7], [8]. Cheaper
switches use DRAM in place of a CAM, but this is likely
to remain slower especially for large tables.

Secondly, Ethernet’s inability to handle networks con-
taining loops also presents a scalability problem. The
Rapid Spanning Tree Protocol, RSTP [5, §17], must re-
move loops by disabling any redundant links. On a dense
mesh network, RSTP will disable a large proportion of
links; this constrains frames to suboptimal routes and
may introduce bottlenecks in the network, particularly
around the root of the spanning tree. In a data centre
environment, this potentially amounts to a very large
proportion of capacity being wasted wherever redundant
fibres are installed, e.g. between cabinet switches and
between data centres.

file:Malcolm.Scott@cl.cam.ac.uk,Andrew.Moore@cl.cam.ac.uk,Jon.Crowcroft@cl.cam.ac.uk


2

Thirdly, not only does Ethernet flood frames destined
for unknown hosts, but it also uses—and encourages
higher-layer protocols to use—broadcast for control mes-
sages. For example, ARP [9] performs address resolution
via broadcast queries, and DHCP [10] uses broadcast
messages for automatic configuration. It is impractical
to replace these protocols entirely as this would require
software upgrades to every device, but it would be
desirable for the network to minimise the amount of
broadcast traffic required to be forwarded.

In this paper we identify the relevant underlying
problems in the design of Ethernet (section II), review
previous work (section III) and present the MOOSE
switch architecture, which addresses inadequacies in
the fundamental operation of Ethernet in a novel yet
backwards-compatible way (section IV). By revisiting
the addressing scheme itself, rather than simply address-
ing symptoms of the problem as many previous proposed
solutions have done, we can go about solving all of the
above scalability problems and more.

A working high-level software implementation of
MOOSE is described and evaluated in section V.

II. ETHERNET’S UNDERLYING PROBLEM

The original Ethernet was a shared-medium network,
where every frame was broadcast and no switching
took place. Modern-day wired Ethernet-based networks
instead consist almost entirely of point-to-point links; as
a result of this, the distinction between unicast, broad-
cast and multicast has become more important. 802.11
wireless LANs are the one remaining vestige of Ethernet
operating over shared media, where one switch (access
point) serves many hosts on the same radio channel.

Ethernet’s poor scalability arises in various guises,
as outlined in section I. It would seem at first glance
that these are entirely distinct and unrelated. However,
there is a common underlying cause: that MAC addresses
provide no location information.

Globally-unique MAC addresses are structured such
that the first three bytes of a device’s address contain an
organisationally unique identifier (OUI) allocated to the
device’s manufacturer by the IEEE, with the remaining
three bytes allocated by the manufacturer. This hierar-
chy exists solely for the purpose of allocating unique
addresses in a decentralised fashion, and is of no use to
Ethernet switches, which must treat the unicast address
space as flat.

A flat address space has the advantage that no con-
figuration of devices is required; a device can use its
unique, manufacturer-assigned MAC address anywhere
on any network. However, this leaves each switch with
the task of discovering and storing the location of every
addressable device.

If the MAC address space were not flat, but instead
contained enough information to locate the device pos-
sessing the address, several advantages would be gained.
Firstly, large forwarding databases would no longer have
to be maintained on every switch. This location infor-
mation could instead be distributed across the network
so that frames are directed towards their destinations
according to successive stages of a hierarchy.

Secondly, a hierarchical MAC address space would
also make the addition of shortest-path routing consid-
erably easier. Shortest-path routing is clearly a desirable
property for a network, yet it is one that Ethernet does
not provide. Flat addressing does not lend itself to easy
routing: any address can be located anywhere on the
network, which means either advertising every host’s
MAC address via the routing protocol—which scales
very poorly—or providing some other location lookup
service. The use of hierarchical addresses, with each
switch handling a block of sequential addresses akin to
an IP subnet, would reduce the routing problem to the
one that routing protocols were designed to solve.

Thirdly, this would allow for reduction of broadcast
traffic in a variety of different ways. Hierarchical MAC
addresses could, for example, be mapped directly and
deterministically onto the IP address space, if appro-
priate for the specific deployment. This would allow
switches to respond directly and simply to DHCP and
ARP queries, avoiding the need to forward the most
common sources of broadcast frames. Alternatively, a
distributed directory service can be used, which is less
limiting and is thus our preferred approach as detailed
in section IV-D.

The facility for network administrators to assign lo-
cally administered addresses (LAAs) to devices has
existed for as long as Ethernet. However, configuring
and maintaining the LAA on every device based upon
where they are connected would be a considerable and
unwelcome administrative overhead. In this paper we
therefore present MOOSE, a system for applying hi-
erarchical addressing to an Ethernet transparently and
without any configuration to edge devices.

III. RELATED WORK

It is well-known that traditional Ethernet scales poorly,
and there have been various attempts in recent years
to rectify this. The most widely-used of these in real-
world networks is MPLS-VPLS (Multiprotocol Label
Switching—Virtual Private LAN Service) [11]. This
connects Ethernet islands together through tunnels across
a MPLS cloud. MPLS works by adding one or more
labels to the start of every frame, i.e. encapsulating the
frame inside its own protocol.

In MPLS-VPLS, the label edge routers (LERs) must
determine the frame’s initial label(s) based upon the



3

destination address via a lookup table. Frames follow
prenegotiated label-switched paths (LSPs) that, unlike
Ethernet, are not constrained to follow a spanning tree;
LSPs are precomputed at connection setup time and the
relevant next hop is stored in a lookup table on each
intermediate switch. Each switch must hence use each
frame’s label to index into this lookup table to determine
how to switch the frame.

The effect, once the connection has been negotiated,
is to provide what appears to be one or more large
Ethernet networks, transparently overlaid on the MPLS
cloud. Whilst this solves effectively the problem of
shortest-path routing across the MPLS cloud, the overlay
Ethernets are still susceptible to the usual scalability
problems—and in fact VPLS adds further large lookup
tables on every switch that can in some configurations
scale even worse than Ethernet’s forwarding databases.
LERs must map every MAC address to a LSP; label
switch routers (LSRs) must store the next hop for every
LSP in which they participate, which in the core of the
network could scale as O(hosts2).

A similar scheme is proposed by Hadžić [12], with the
difference that Ethernet-inside-Ethernet encapsulation is
used rather than a new protocol. This has the advantage
that less processing is required on intermediate switches
in the backbone network. However, routes across the
backbone are constrained to a spanning tree, and encap-
sulating switches must obtain a new destination address
for every frame using a lookup table that—like Ether-
net’s forwarding database—must contain every transmit-
ting MAC address. Due to its heavy basis on Ethernet,
this shares many of Ethernet’s scalability problems.

SmartBridge [13] and Rbridges [14] both encapsulate
Ethernet frames in a new inter-switch protocol, and
run a link-state routing protocol between switches. The
link state graph includes the location of every MAC
address—necessary because the address space remains
flat and any address could appear anywhere—i.e. it
is again a table containing every host. Furthermore,
switches must perform expensive computation to update
routing tables whenever a MAC address joins or leaves
the network.

Myers et al. [15] suggest that Ethernet’s main failing
is its broadcast service, and propose a new architecture in
which hosts make explicit use of directory services op-
erated by the switches rather than broadcasting queries.
It is clear that switches’ participation is necessary in
order to deal with the broadcast problem; however the
modifications to Ethernet suggested are not backwards-
compatible and would require at least software modi-
fications to all connected devices. Ethernet is, perhaps
unfortunately, too widespread for this to be practical;
transparent interception of broadcast frames and sub-
sequent local handling or redirection via multicast or

unicast remains the only practical solution. The use of
hierarchical addressing is a useful stepping-stone to such
a system, and our architecture includes a transparent
directory service (ELK, section IV-D) for this purpose.

SEATTLE [16] takes a more scalable approach. A
routing protocol is operated between switches, but in
contrast to the approaches described above and in com-
mon with MOOSE, the routing protocol only propagates
switch location information, rather than every MAC ad-
dress on the network. Flat MAC addresses are still used,
and hence a mechanism is required to look up the switch
to which a given address is connected. This is achieved
by using a distributed hash table (DHT) operating on
participating switches with local caching to alleviate
load. This is certainly a step in the right direction but
introduces considerable complexity to switches, since
they now must maintain and update the DHT continually,
and it is clear that a SEATTLE switch would have a
significant software component in the data path. MOOSE
alleviates some of the complexity of SEATTLE by a
combination of hierarchical addresses and delegation to
a separate directory service.

IV. MOOSE ARCHITECTURE

The basic operation of MOOSE is to assign a new
hierarchical MAC address to each host on the network,
assigned dynamically and automatically from the uni-
cast LAA space. This dynamically-assigned address is
referred to as a MOOSE address to avoid confusion with
hosts’ static, manufacturer-assigned MAC addresses.

Every frame entering the network has its source ad-
dress rewritten in-place to the sending host’s MOOSE
address by the first MOOSE-aware switch it traverses;
the new source address becomes the sending host’s
MOOSE address. The switch that performs address
rewriting for a host—i.e. the closest MOOSE switch to
that host—is the host’s home switch and is responsible
for assigning a MOOSE address to that host. (If non-
MOOSE switches or hubs are in use, a host may have
more than one “closest” MOOSE switch, in which case
an RSTP-like protocol must be used to elect a switch to
handle each edge segment.)

The destination address is left intact in the expecta-
tion that it already is a MOOSE address. Hosts’ ARP
caches will already contain the MOOSE addresses of any
hosts being communicated with as any packet received
will already have had its source address rewritten; a
host’s manufacturer-assigned MAC address is never seen
outside of the segment containing that host. This is
a crucial point since encapsulation-based technologies
such as MPLS do not reveal to the destination host
the address used for routing; as a result, switches must
also convert destination as well as source addresses
of frames entering the network. In other words, once



4

switch
02:22:22

switch
02:33:33

02:33:33:00:00:01

02:33:33:00:00:04

02:33:33:00:00:02

02:33:33:00:00:03

hosts

02:22:22:00:00:01

02:22:22:00:00:02

02:22:22:00:00:03

...

...
switch

02:11:11

Fig. 1. Assignment of MOOSE addresses by switches

again switches must maintain large tables of remote
hosts on the network. The only destination rewriting that
MOOSE switches perform, however, is of the destination
addresses of frames destined for local hosts back to their
manufacturer-assigned MAC addresses; this is simple as
the required information is already known, and necessary
because otherwise that host’s network interface card
would discard the frame as misaddressed.

A MOOSE address consists, in the simplest case, of
a three-byte switch identifier followed by a three-byte
host identifier, as illustrated in figure 1. Since these
two identifiers when concatenated must form a unicast
LAA, the settings of two bits in the first byte of the
switch identifier are fixed: the least significant bit must
be 0 to indicate a unicast address, and the second-
least significant bit must be 1 to indicate a LAA. The
remaining 22 bits of the switch identifier vary from
switch to switch.

Each switch can select for itself a unique switch iden-
tifier when joining the routing protocol (section IV-A)
as it will in the process gain an up-to-date list of in-
use identifiers. Depending on requirements, the switch
identifier may itself be a hierarchical address—e.g. six
bits to identify a network area followed by two bytes to
identify a switch within that area—which could then be
used to aid routing decisions.

Each host is assigned a host identifier by its home
switch from the pool of 224 such identifiers available
to that switch. Only a host’s home switch ever bases a
switching decision on the host identifier, so the detail of
how these are allocated can vary from switch to switch.
Suitable schemes include:

• sequential assignment;
• the port number followed by a sequential portion

(to allow for multiple hosts connected to one port);
• a hash of the host’s real MAC address.
The latter two approaches are preferable to a simple

sequential assignment, as they better isolate certain kinds
of denial-of-service attack in which a malicious host
attempts to use up all available host identifiers on the
switch. They also require less state to be shared between
ports. The third option has the further advantage that it
is deterministic and hence can be recovered easily in the
event of a crash.

It is hence possible to route frames through the

network to remote hosts by simply inspecting the switch
identifier in the destination address, and ignoring the
host identifier until the frame reaches the destination
host’s home switch. Switches no longer need to keep
a table of all MAC addresses seen recently; they only
need store the locations of other switches and of any
directly-connected hosts.

As well as reducing the amount of data that must
be consulted in order to make switching decisions, this
provides extra resilience by making this data much more
predictable. The number of MAC addresses in a network
can increase unexpectedly in the event of an address
flooding attack [17] or even under normal operation
if the network contains open wireless access points;
relying on the MAC address list for forwarding leads
to some of the vulnerabilities of Ethernet. The set of
switch identifiers participating in MOOSE switching, on
the other hand, is kept predictable and manageable by
ensuring that only authenticated switches can participate
in the routing protocol (a feature of most popular routing
protocols). As the switch identifier is the only address
consulted for forwarding decisions, a MOOSE switch is
likely to remain reliable in the face of attacks that could
have brought down a traditional Ethernet. Furthermore,
any attacks based upon MAC address spoofing cannot
function on a MOOSE network as the user-provided
MAC address is translated immediately.

A. Shortest Path Routing

As described so far, MOOSE switches must still
forward frames along a spanning tree. As discussed in
section I, this is an undesirable property of Ethernet as
it can cause frames to take a highly suboptimal path
through the network. The foundations are in place to do
much better than this using shortest-path routing.

For the purpose of frame forwarding, a MOOSE
switch can be considered akin to a layer 3 router; it has
one locally-connected subnet—containing all addresses
starting with its switch identifier—and delivers frames
to other subnets by passing them to an appropriate
neighbouring switch. Bearing this in mind, the switch
can run a routing protocol of the kind normally used for
IP, such as a variant of OSPF [18]. This allows frames
to be routed along the shortest available path, rather than
being constrained to a spanning tree. OSPF-OMP [19]
may be particularly desirable due to its ability to make
use of multiple equal-cost routing paths in order to
improve performance [20].

B. Broadcast and Multicast

Since Ethernet does still need to support arbitrary
broadcast frames, these must still be forwarded along a
spanning tree in order that they reach each host exactly
once. An explicit spanning tree protocol is not required



5

Host
A

Host
B

MAC address:
00:16:17:6D:B7:CF

MAC address:
00:0C:F1:DF:6A:84

Switch ID:
02:11:11

Switch ID:
02:22:22

Switch ID:
02:33:33

Ti
m

e

Query:
00:16:17:6D:B7:CF


broadcast

Query:
02:11:11:00:00:01


broadcast

source
rewritten

Response:
00:0C:F1:DF:6A:84


02:11:11:00:00:01

source
rewritten

frame broadcast using reverse path forwarding

Response:
02:33:33:00:00:01


02:11:11:00:00:01

frame routed to 02:11:11destination
rewritten

Response:
02:33:33:00:00:01


00:16:17:6D:B7:CF

Fig. 2. Sequence diagram of a broadcast query and subsequent unicast response

however, as the tree can be deduced from the routing
table via reverse path forwarding in a similar manner
to Protocol-Independent Multicast (PIM) [21]. In other
words, broadcast packets are routed as if they had been
sent to the all-hosts multicast group.

More general multicast groups can be implemented
using a combination of IGMP snooping [22] as used
by modern Ethernet switches, and participation of the
MOOSE switches in PIM routing.

C. Example

To illustrate the basic behaviour of MOOSE switches,
before we go on to describe further features, we will of-
fer a simple example. We will describe the steps involved
in forwarding a broadcast frame containing a query in
some higher-layer IPv4-based protocol, and subsequent
unicast frame containing the response, between two hosts
A and B via three MOOSE switches 02:11:11, 02:22:22
and 02:33:33; see figure 2.

1) Query:

i) Host A transmits the broadcast query frame as
it would on any Ethernet network, with its own
manufacturer-assigned MAC address in the Ether-
net header’s source field and the broadcast address
(FF:FF:FF:FF:FF:FF) in the destination field.

ii) The frame is received by switch 02:11:11, which
observes the non-MOOSE address in the frame’s
source field, and rewrites the source field into a
MOOSE address containing the switch identifier
and the appropriate host identifier. As this is Host
A’s first frame, the switch must allocate a host

identifier (in this case 00:00:01, making Host A’s
complete MOOSE address 02:11:11:00:00:01).

iii) The three switches broadcast the frame using
reverse path forwarding away from Host A.

iv) The frame is received by Host B (and any other
hosts on the network) in its current form; no
further rewriting is performed.

2) Response:

i) Host B looks up Host A’s IP address in its ARP
cache to determine a suitable destination address
for the response frame. Since the rewritten query
frame arrived at Host B with the source field con-
taining the MOOSE address 02:11:11:00:00:01,
this is the address returned by the cache lookup.

ii) As above, switch 02:33:33 assigns a MOOSE ad-
dress to Host B (02:33:33:00:00:01) and rewrites
the source address of the frame.

iii) The frame is now routed through the network
based solely on the destination switch identifier—
the host identifier is ignored for now. The rout-
ing table is consulted for the location of switch
02:11:11 and the frame is forwarded accordingly.

iv) On receiving the frame, switch 02:11:11 observes
that it is destined for a host directly connected to
itself (02:11:11:00:00:01). It prepares the frame
for transmission along its final hop by rewriting
the destination address to Host A’s manufacturer-
assigned MAC address. The source field of the
frame is again left as the MOOSE address of Host
B in order that this address is used for any further
communication with Host B.



6

D. Directory Service

A directory service, Enhanced Lookup (ELK), runs in
conjunction with the basic MOOSE switch described so
far. ELK exists to handle ARP and DHCP queries in a
broadcast-free manner by learning mappings from IP ad-
dresses to MOOSE addresses. The master ELK directory
is served by one or multiple systems for resilience and
is reached using an anycast MOOSE address; the layer-2
anycast feature is a convenient side-effect of running a
routing protocol. Slave copies of the directory can be
held nearer the edge of the network in order to take
load away from the masters; slaves can be reached for
lookups via a separate anycast address, and the entire
herd of ELK can be kept synchronised via the masters
using a combination of multicast and unicast.

MOOSE switches intercept ARP and DHCP packets
broadcast by hosts and convert them into anycast ELK
queries to the nearest slave (for ARP) or master (for
DHCP). The ELK slave answers ARP queries directly
using information in the directory; as it does so, if the
query is from a host not in the directory, it learns the
sender’s IP address to MOOSE address mapping. The
ELK master can also act as a DHCP server, populating
the ELK directory as it grants IP address leases to clients.

The one case in which the ELK directory will not
contain the answer to a query is when answering an ARP
request for a host that is not configured to use DHCP
and that has not yet itself sent an ARP packet (i.e. has
not yet communicated via IP). This must be dealt with
by flooding the query to every active switch port, in a
manner akin to current Ethernet switches, and caching
the result in the ELK directory. Although this is not ideal,
it is necessary in order to deal with this scenario in a
compatible manner, and is unlikely to happen frequently.

E. Mobility

A consequence of introducing location-based hierar-
chy into MAC addresses is the need to explicitly handle
host mobility. In a traditional Ethernet, hosts can migrate
between switches as the switches will learn the host’s
new location as soon as it sends a frame. With MOOSE,
if a host relocates to a new switch its address changes
and any ARP cache entries on other hosts pertaining to
the migrated host become incorrect; frames will continue
to be sent to the host’s old location for a while. There
are two strategies for dealing with this, as illustrated in
figure 3, which can be used separately or in conjunction:

i) The previous home switch of the migrated host
can forward frames sent to the host’s old address
until outdated ARP cache entries expire. This is
similar to IP Mobility [4]: the previous home
switch essentially becomes a care-of agent for the
host. However, unlike IP Mobility, it requires no
host support. A handover protocol is necessary for

Host
B

Host
A

host relocated to new switch


data forwarded 

by care-of switch

gratuitous ARP 
sent by new 
home switch





Fig. 3. Two ways to handle a host A roaming onto another switch
whilst maintaining communication with another host B

the old and new home switches to set up such
forwarding: on the arrival of a new host at a
switch, that switch would ask all other switches
(via multicast) whether any had seen this host be-
fore, identifying it using its manufacturer-assigned
MAC address, and would instruct such switches to
redirect frames.

ii) A broadcast ARP announcement (or “gratuitous
ARP”) can be sent by the new home switch to
immediately update remote ARP caches and the
ELK directory with the new MOOSE address. This
is the technique used by Xen when migrating live
virtual machines [3]. Unlike the previous approach,
this works even if the previous switch is no longer
reachable, for example if this host migration was
as a result of a switch failure. This is a simpler
approach as a handover protocol is not required,
but results in additional broadcast traffic.

Unless the frequency of host migrations is very high,
the additional load introduced by either mobility ap-
proach is expected to be negligible.

V. IMPLEMENTATION

We have implemented a MOOSE switch in threaded,
object-oriented Python as a proof-of-concept. The archi-
tecture is intended for clarity and modularity rather than
raw performance, but this implementation is still capable
of switching data at 100 Mbps on a modern desktop PC.

Data forwarding and control functions are kept sepa-
rate for clarity and to mimic a hardware implementation.

A. Data plane

The software MOOSE switch is intended to be run on
a Linux PC with several network interface cards, and
uses raw sockets to send and receive frames directly
in promiscuous mode, so that all frames are received
whether or not they are addressed to that PC.



7

Frame
receiver

Frame
transmitter

Network interface card

raw sockets

Source
rewriting

Port

Forwarding database

Fig. 4. Prototype data plane architecture

Each network interface is managed by two indepen-
dent threads: a FrameReceiver and a FrameTransmitter.
A Port object is maintained in shared memory, contain-
ing shared data structures such as a per-port forwarding
database (implemented as two Python dictionaries: one
for locally-connected hosts and one for remote switches).
The relation between modules is outlined in figure 4.

The FrameReceiver thread does most of the work; the
main steps performed are:

i) A received frame is immediately packaged in a
Frame object, which provides methods for access-
ing individual fields within the frame’s headers.
Some checks are run so that unwanted frames
are dropped: for example, frames whose source
addresses indicate that they have already passed
through this switch, which could be a sign of a
routing protocol malfunction or a misconfigured
switch elsewhere in the network with the same
switch identifier.

ii) If the frame is a DHCP or ARP query, it is
transferred to the control plane for conversion into
an ELK query.

iii) Once the frame has been received and checked
to be valid, the source address is rewritten if
it is not already a MOOSE address. This pro-
cess requires a host identifier, which is reused or
allocated as appropriate; allocated identifiers are
stored in a Python dictionary (hash table). In this
implementation, in order to allow each port to issue
host identifiers independently, each identifier starts
with a byte identifying to which port this host is
connected; for example, the host identifier of the
first host seen on port 3 will be 03:00:01.

iv) The locally-connected-host forwarding database is
updated where necessary based upon the frame’s
source address.

v) The frame is passed to the relevant forwarding
database, which obtains the correct destination
Port object from its internal dictionary. The frame
is enqueued with the FrameTransmitter of this port.

The only processing the FrameTransmitter performs
before sending the frames over the relevant raw socket
onto the network is to rewrite the destination address to
be the target host’s manufacturer-assigned MAC address
if the destination switch ID is this switch’s, i.e. if that
host is directly connected to this switch.

The use of threads for parallel transmission to and
reception from each network interface makes this soft-
ware design analogous to a basic hardware design, with
several independently-operating ports interconnected by
a switch fabric. It is our eventual goal to produce a
hardware prototype as described in section VI.

B. Control plane
The control plane operates largely independently of

the data plane, in a separate thread, as it is much less
timing-sensitive than the data plane. In a production
implementation, the control plane would likely run in
software on a microprocessor.

The main function of the control plane is to run the
routing protocol in order to determine the location of and
best route to every other switch. This implementation
uses PWOSPF [23], a simple link state routing protocol
based on OSPF version 2 [18], as a proof of concept—
the authentication features of OSPF are not required for a
prototype implementation. A production MOOSE switch
would likely require a full-featured OSPF implementa-
tion (or another routing protocol) to ensure security and
resilience, and in particular to prevent the unauthorised
spoofing of switches by end users.

As PWOSPF is designed to operate on 4-byte IP
addresses rather than the 3- or 6-byte identifiers used
in MOOSE, the fields intended for IP addresses are
retrofitted to contain a switch identifier followed by one
null byte of padding. Each switch handles all addresses
starting with its switch identifier, which is equivalent to
each switch routing a subnet of length 24 bits.

The routing protocol calculates the shortest path to
every other switch using Dijkstra’s algorithm [24]. The
results are used to update the remote-switch forwarding
database maintained in each Port object of the local
data plane with the best Port on which to output frames
destined for each switch.

The control plane would also be responsible for op-
erating the mobility handover protocol; however this
protocol was unimplemented in the prototype.

C. Evaluation
The prototype MOOSE switch was found to behave

transparently to a variety of unmodified devices commu-
nicating via IP with each other and with other hosts on
the Internet, both with physical and wireless connections
to a network of three MOOSE switches. The only visible
effect was, as intended, that hosts’ individual ARP
caches show MOOSE addresses, as shown in figure 5.



8

Address HWtype HWaddress Iface
10.100.11.1 ether 02:00:0c:01:00:01 eth1
10.100.11.3 ether 02:00:0a:01:00:01 eth1
10.100.11.4 ether 02:00:0a:03:00:01 eth1
10.100.11.8 ether 02:00:0b:02:00:01 eth1

Fig. 5. ARP cache of an unmodified Linux PC connected to a
network of MOOSE switches (02:00:0a, 02:00:0b, 02:00:0c) showing
the addresses automatically assigned to other hosts

A second test was run on a virtual network comprising
six virtual switches each connected to ten Xen virtual
machines acting as client hosts. This allows for compar-
ison with a traditional Ethernet switch (as implemented
by the Linux bridging driver). The forwarding database
of each switch was inspected during a period when all
clients were actively transmitting broadcast packets. In
the case of Ethernet, the switches’ forwarding databases
each contained sixty entries. In the case of MOOSE, each
switch’s two forwarding database dictionaries contained
five entries for the other switches and ten entries for
the locally-connected hosts respectively. The storage
requirement of the forwarding has been reduced from
O(hosts) to O(switches), assuming that the number of
locally-connected hosts is a small constant; this is a
significant improvement.

VI. CONCLUSIONS AND FUTURE WORK

Ethernet remains popular due to its simplicity and
ubiquity, but is showing its age and exhibits serious scal-
ability issues in large deployments. Previously-proposed
improvements address either a few of the problems in a
simple way, or most of the problems in a highly complex
or backwards-incompatible way. We have demonstrated
a simple, novel and easily-implementable approach for
significantly boosting the scalability of Ethernet, along
with a working software implementation.

Our next step will be to produce a true hardware
prototype. This will be built using the NetFPGA plat-
form [25]. The NetFPGA card comprises four gigabit
Ethernet interfaces connected directly to an FPGA with
full control over everything from the Ethernet PHY and
MAC inwards, plus a PCI interface to allow frames to
be passed to a PC for processing in software (e.g. for
running the control plane).

We also intend to implement a more extensive set
of additional Ethernet features, including in particular
802.1Q VLANs and Quality-of-Service provision.

VII. ACKNOWLEDGEMENTS

We acknowledge the support of the UK EPSRC which
funded this project through grant EP/D076803/1. We
are also grateful for David Simner’s invaluable security
insight, and for the countless comments and suggestions
made by him, Ian Abel, Dave Eyers, Malte Schwarzkopf,
Dan Wagner-Hall and Derek Murray.

REFERENCES

[1] R. M. Metcalfe and D. R. Boggs, “Ethernet: distributed packet
switching for local computer networks,” Commun. ACM, vol. 19,
no. 7, pp. 395–404, 1976.

[2] P. Barham, et al., “Xen and the art of virtualization,” in SOSP,
2003, pp. 164–177.

[3] C. Clark, et al., “Live migration of virtual machines,” in USENIX
NSDI, 2005.

[4] C. Perkins, “IP Mobility Support for IPv4,” RFC 3344
(Proposed Standard), Aug. 2002, updated by RFC 4721.
[Online]. Available: http://www.ietf.org/rfc/rfc3344.txt

[5] IEEE, “802.1D: Standard for local and metropolitan area net-
works: Media access control (MAC) bridges,” 2004.

[6] 3Com Corporation, “Switch 5500G 10/100/1000 family data
sheet.” [Online]. Available: http://www.3com.com/other/pdfs/
products/en US/400908.pdf

[7] F. Yu, et al., “Efficient multimatch packet classification and
lookup with tcam,” IEEE Micro, vol. 25, no. 1, Jan. 2005.

[8] K. Pagiamtzis and A. Sheikholeslami, “Content-Addressable
Memory (CAM) circuits and architectures: a tutorial and survey,”
IEEE Journal of Solid-State Circuits, vol. 41, pp. 712–727, 2006.

[9] D. C. Plummer, “Ethernet Address Resolution Protocol,”
RFC 826 (Standard), Nov. 1982. [Online]. Available: http:
//www.ietf.org/rfc/rfc826.txt

[10] R. Droms, “Dynamic Host Configuration Protocol,” RFC 2131
(Draft Standard), Mar. 1997, updated by RFCs 3396, 4361.
[Online]. Available: http://www.ietf.org/rfc/rfc2131.txt

[11] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label
Switching Architecture,” RFC 3031 (Proposed Standard), Jan.
2001. [Online]. Available: http://www.ietf.org/rfc/rfc3031.txt

[12] I. Hadžić, “Hierarchical MAC address space in public Ethernet
networks,” in IEEE GLOBECOM, vol. 3, 2001.

[13] T. Rodeheffer, C. Thekkath, and D. Anderson, “SmartBridge: a
scalable bridge architecture,” in SIGCOMM, 2000.

[14] R. Perlman, “Rbridges: transparent routing,” in INFOCOM,
vol. 2, 2004.

[15] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model:
Scaling Ethernet to a million nodes,” in ACM SIGCOMM Work-
shop on Hot Topics in Networking, Nov. 2004.

[16] C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE:
a scalable Ethernet architecture for large enterprises,” in SIG-
COMM, 2008, pp. 3–14.

[17] S. Sipes, “Why your switched network isn’t secure,” in Intrusion
Detection FAQ. The SANS Institute, Sep. 2000. [Online]. Avail-
able: http://www.sans.org/resources/idfaq/switched network.php

[18] J. Moy, “OSPF Version 2,” RFC 2328 (Standard), Apr. 1998.
[Online]. Available: http://www.ietf.org/rfc/rfc2328.txt

[19] C. Villamizar, “OSPF optimized multipath (OSPF-OMP),”
IETF Internet Draft, Feb. 1999. [Online]. Available: http:
//tools.ietf.org/html/draft-ietf-ospf-omp-02

[20] G. M. Schneider and T. Nemeth, “A simulation study of the
OSPF-OMP routing algorithm,” Computer Networks, vol. 39,
no. 4, pp. 457–468, 2002.

[21] A. Adams, J. Nicholas, and W. Siadak, “Protocol Independent
Multicast - Dense Mode (PIM-DM): Protocol Specification
(Revised),” RFC 3973 (Experimental), Jan. 2005. [Online].
Available: http://www.ietf.org/rfc/rfc3973.txt

[22] M. Christensen, et al., “Considerations for Internet Group
Management Protocol (IGMP) and Multicast Listener Discovery
(MLD) Snooping Switches,” RFC 4541 (Informational), May
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4541.txt

[23] Stanford University High-Performance Networking Group,
“Pee-Wee OSPF protocol details.” [Online]. Avail-
able: http://web.archive.org/web/20070708180017/http://yuba.
stanford.edu/cs344 public/docs/pwospf ref.txt

[24] E. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[25] J. W. Lockwood, et al., “NetFPGA — an open platform for
gigabit-rate network switching and routing,” in IEEE MSE, 2007,
pp. 160–161.

http://www.ietf.org/rfc/rfc3344.txt
http://www.3com.com/other/pdfs/products/en_US/400908.pdf
http://www.3com.com/other/pdfs/products/en_US/400908.pdf
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc826.txt
http://www.ietf.org/rfc/rfc2131.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.sans.org/resources/idfaq/switched_network.php
http://www.ietf.org/rfc/rfc2328.txt
http://tools.ietf.org/html/draft-ietf-ospf-omp-02
http://tools.ietf.org/html/draft-ietf-ospf-omp-02
http://www.ietf.org/rfc/rfc3973.txt
http://www.ietf.org/rfc/rfc4541.txt
http://web.archive.org/web/20070708180017/http://yuba.stanford.edu/cs344_public/docs/pwospf_ref.txt
http://web.archive.org/web/20070708180017/http://yuba.stanford.edu/cs344_public/docs/pwospf_ref.txt

	Abstract
	I Introduction
	II Ethernet's Underlying Problem
	III Related Work
	IV MOOSE Architecture
	IV-A Shortest Path Routing
	IV-B Broadcast and Multicast
	IV-C Example
	IV-C1 Query
	IV-C2 Response

	IV-D Directory Service
	IV-E Mobility

	V Implementation
	V-A Data plane
	V-B Control plane
	V-C Evaluation

	VI Conclusions and Future Work
	VII Acknowledgements
	References

