
Motivating Future Interconnects: A Differential
Measurement Analysis of PCI Latency

David J. Miller
∗

Philip M. Watts Andrew W. Moore
Computer Laboratory

University of Cambridge
Cambridge, CB3 0FD, UK

ABSTRACT
Local interconnect architectures are at a cusp in which ad-
vances in throughput have come at the expense of power
and latency. Moreover, physical limits imposed on dissipa-
tion and packaging mean that further advances will require
a new approach to interconnect design. Although latency in
networks has been the focus of the High-Performance Com-
puting architect and of concern across the computer com-
munity, we illustrate how an evolution in the common PCI
interconnect architecture has worsened latency by a factor
of between 3 and 25 over earlier incarnations.

Keywords
Experimental evaluation, FPGA, interconnects, latency, mi-
crobenchmark, measurement, PCI Express

1. INTRODUCTION
Demand for performance is constantly driven by new ap-

plications. It applies to all aspects of computer systems,
from disk to processor, and the internal interconnect is no
exception. Alongside a long-considered possible energy ben-
efit [1], recent photonic advances have provided enabling
technologies for both improved interconnects and perhaps
also the whole-sale re-evaluation of interconnect design.

Wholly-photonic systems have for some time been pro-
moted as specialist interconnects such as for HPC and even
the back-planes of Internet routers [2]. SWIFT [3] and Data
Vortex [4] illustrate novel approaches to LAN and HPC in-
terconnects enabled by new photonic-electronic devices and
using techniques such as the wave-length striping of data.
Each of these systems was architected to embrace the buffer-
less nature of photonic interconnects, turning that to an ad-
vantage.

More recently still, the potential for photonic intercon-
nects further includes high-speed on-chip interconnects [5],
and an exciting early-day optical PCI Express experiment [6].

∗Contact author address: david.miller@cl.cam.ac.uk

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’09 October 19-20, 2009, Princeton, New Jersey, USA.
Copyright 2009 ACM 978-1-60558-630-4/09/0010 ...$10.00.

Aided by advances such as practical polymer waveguides [7,
8] as well as ongoing developments on optical-electronic inte-
gration we can reconsider interconnect architectures through-
out the spectrum of computer-systems. However, the näıve
reuse of existing photonic-systems, such as long distance
communications techniques, CRC error detection, and their
use of buffers to mediate flow control [1], may compromise
the actual performance gained [9, 10].

Understanding the change in latency across a number of
evolution-points for the PCI interconnect provides the mo-
tivation for this work. We focus on PCI Express, the latest
incarnation of the PCI family.

A trend noted five years ago observes that throughput im-
proves significantly faster than latency [11]. Accordingly, we
show in this paper that instead of merely improving more
slowly, PCI Express actually made latency much worse com-
pared with its antecedents.

Traditionally, there has been a substantial difference in
performance between peripherals (notably disk and network)
and the local interconnect used to attach them to a host.
This is now no longer always the case. 10 Gb/s Ethernet to
a server is not unusual, and throughputs of 10 Gb/s have
been in use by the HPC community since early this decade.
Where peripheral characteristics once dominated latency, in-
terconnect latency may now be a significant factor.

Community knowledge1 as well as research such as Endo et
al. [12] has shown that certain applications are more sensi-
tive to latency than others — especially those which are in-
teractive or transactional in nature, where responsiveness
is dominated by latency. For example, recent novel use
of graphics processors has been made in scientific comput-
ing [13], the performance of which greatly depends on com-
munications latency, just as it does in parallel applications [14].
Although some of these references are over 10 years old, the
issues which they address are no less relevant today, and
it seems that very little related work has been done in the
intervening time.

Further, the success of algorithmic share trading applica-
tions depends heavily on how quickly quotes are received
and trades made, and financial markets demand faster link
speeds2 — in part, because of an expectation of lower laten-
cies [15]. Finally, HPC interconnects go to great lengths
(such as the use of cut-through routing) to minimize la-
tency [16]. Therefore, it is unfortunate that the PCI in-

1 “It’s the latency, stupid”, Stuart Cheshire, May 1996.
http://rescomp.stanford.edu/~cheshire/rants/Latency.html
2 “Stock exchanges start thinking in microseconds”, Patrick
Thibodeau, August 2008. http://tinyurl.com/Thi08

http://rescomp.stanford.edu/~cheshire/rants/Latency.html
http://tinyurl.com/Thi08

Combinational Logic Registers

PCI-X mixed mode 2500 1500
PCI Express 4-lane 10500 9000

Factor increase ×4 ×6

Table 1: End point resource utilization compared

terconnect which interfaces an InfiniBand adapter will re-
linquish (hard-won) latency gains by being packet oriented
and employing a store-and-forward switching architecture.

This paper presents the results from a study into the rela-
tive latency intrinsic to different forms of PCI architecture.
The study reveals that latency suffers in PCI Express —
just at the time when the importance of latency has become
significantly greater.

2. LATENCY STUDY
The radical changes PCI Express made solved through-

put and physical implementation issues (notably PCB lay-
out and skew) using inexpensive existing technologies, such
as high speed serial transceivers, 8b10b coding, scrambling
and CRC error checking. We show that certain compromises
were made, however, which may have adversely affected la-
tency.

Architecturally, PCI Express is a message passing proto-
col, and shares much in common with Gigabit Ethernet. If
not directly derived from Ethernet, it was certainly inspired
by it — to the extent that it even uses the same coding and
CRC error checking mechanisms.

The parallel PCI standards all use parity to detect trans-
mission errors. This means that a PCI target can begin
decoding, allocating and scheduling a transaction as soon
as the transaction arrives because it can be confident that
the header is error-free. PCI Express must wait until the
whole packet has arrived, which means the packet must be
buffered in scratch space until the receiver can verify its
integrity. Conversely, the transmitter must also buffer the
packet, in case retransmission should be required.

Where PCI-X targets could choose between split and im-
mediate completions (described in Section 4.2), in PCI Ex-
press all transactions must be split into separate messages
so buffering and serialization overheads are doubled.

As also described in Section 4.2, high speed serial trans-
ceivers, or multi-gigabit transceivers (MGTs) can poten-
tially add significant latency over and above serialization
delay. Clock domain crossing, coding and equalization (if
any) can each also add delay. Latency in modern MGTs is
better than in earlier MGTs, but the aforementioned syn-
chronous components mean that an MGT can never be lower
latency than conventional I/O.

PCI Express uses a layered protocol stack (described in
Section 4.2). The longer pipeline formed by the protocol
processing logic (i.e., greater complexity) demands more
complex logic which, aside from greater power dissipation,
potentially means greater processing delay. Table 1 shows
that a typical FPGA based PCI Express implementation
uses around 5 times more logic than that of a mixed mode
PCI-X implementation. The trend in general is for PCI Ex-
press devices to require a heat sink, where the older PCI-X
equivalents didn’t. For example, compare the Intel 82546
PCI-X and Intel 82571 PCI Express Gigabit Ethernet con-

trollers: the data sheet for the latter demands a heat sink,
where the former does not [17, 18]. Higher power dissipa-
tion may suggest increased overhead and therefore latency
associated with the implementation of a PCI Express end
point.

The rest of this paper presents a comparative investigation
into the latency characteristics of PCI Express links, parallel
PCI buses and their respective implementations.

2.1 Apparatus
A modern PC typically consists of memory, processor(s)

and peripherals connected together with a chipset. Intel
chipsets (as used here) typically consist of two multifunction
devices known as the MCH (Memory Controller Hub, aka
North Bridge) and the ICH (I/O Controller Hub, aka South
Bridge). The MCH integrates a small number of higher
performance device controllers, typically memory, CPU and
a link to some sort of high performance disk or graphics
accelerator. The ICH integrates a larger number of lower-
speed devices, typically individual disks, USB, sound, net-
work, and input devices.

PCI forms a hierarchy of buses, each attaching up to 32
devices, each of which contains up to eight independently
addressable PCI targets known as ‘functions’. In PCI ter-
minology, a bridge is a function that attaches to exactly two
buses. Bridge chips, such as the PXH ([PCI Express to]
PCI-X Hub), frequently contain multiple PCI bridges.

The motherboard used in this study is a Super Micro
X7SBE, which is based on the Intel 3210 (rev 01) + ICH9R
(rev 02) chipset. PCI-X bus connectivity is provided by a
6700PXH (rev 09). The CPU is an E8400 (3.0 GHz core,
1333 MHz FSB, stepping 0a). The operating system is 32-
bit Linux Ubuntu 8.10 running kernel 2.6.28.3. Two FPGA
based end points are used (one PCI-X and one PCI Ex-
press) to provide a measurable target on the external buses
and links.

Figure 1 shows the CPU, main memory (SDRAM), and
ICH connected to the MCH. The link between the MCH
and ICH is called the Direct Media Interface (labeled D),
and is a (proprietary) variant of a 4-lane PCI Express v1.1
link. The MCH provides two 8-lane PCI Express v1.1 links
(labeled Ea and Eb). As modern Intel chipsets provide native
support only for PCI Express, Ea is used to provide PCI-X
connectivity by means of a PXH bridge chip. PCI-X can
operate at 133 MHz (labeled Xh), 66 MHz (labeled Xl) and
in basic (conventional PCI) mode at 33 MHz (not shown).
Note that, although the PCI-X bus is nominally 64 bits wide,
bus control phases are always 32-bit, and only data phases
can be 64 bit [19, 20]. Since this study involves DWORD
reads, throughput calculations consider the bus to be 32 bits
wide.

The MCH contains two 8-lane PCI Express bridges (la-
beled Ma and Mb). The SDRAM controller (labeled Ms)
— the only other addressable device within the MCH — is
included to complete the picture of timing relationships be-
tween MCH devices. Devices in the ICH present to software
as being attached to the same logical bus as devices in the
MCH so, together, they provide timing information for the
near side of the DMI link (labeled D).

There are two bridges within the PXH (attached via Ma
and Ea), but only one is used and shown (labeled Bb). The
FPGA based PCI-X target attaches via Bb, and can run
in three modes — 133 MHz PCI-X (labeled Txh), 66 MHz

Figure 1: Block diagram of experimental apparatus

PCI-X (labeled Txl), and 33 MHz basic PCI (not shown,
but referred to as Tb).

The ICH provides a conventional 32-bit 33 MHz PCI bus
(labeled B, via bridge Ib), which attaches the on-board video
adapter (labeled Tbv), and six PCI Express lanes which can
be combined according to need. This motherboard provides
one 4-lane link (labeled Ec, via bridge I0) to a slot for add-in
cards, and the remaining two links attach Intel 82573 Ether-
Express NICs (Network Interface Controller), one of which is
shown (labeled Tee, via link Ed and bridge I5). The FPGA
based PCI Express target can be attached via Mb (where it
is labeled Tem) or I0 (where it is labeled Tei). The rounded
rectangles for targets Txl and Tei represent alternative con-
figurations for Txh and Tem respectively, not physically sep-
arate devices. Two additional targets are measured, but not
shown in Figure 1: an 8-lane PCI Express Areca ARC-1220
SATA RAID adapter attached in place of Tem and a 4-lane
PCI Express Intel 82571 EtherExpress dual-port NIC (very
similar silicon to the on-board NICs) attached in place of
Tei.

The enlargement describes the nomenclature used for la-
beling measurement targets. Block names of M, I, B and T
respectively represent the MCH, ICH, PXH PCI-X bridge
and target end points. Block types of e, x and b respectively
represent PCI Express, PCI-X and basic (conventional) PCI
devices for end points, or the port number for bridges. Lo-
cations of m, i, h and l respectively represent targets on the
MCH, ICH, 133 MHz PCI-X bus, and 66 MHz PCI-X bus,
where e and v represent the integrated Ethernet and VGA
adapters. Register spaces of c, di and ds respectively repre-
sent configuration registers, data registers with immediate
completions and data registers with split completions.

2.2 Measurements
The objective of these measurements is to determine the

marshaling delay inherent in each link: i.e. protocol and
all other overheads as distinct from serialization delay. We
consider serialization delay to be of less interest than mar-
shaling delay because it is purely a function of signaling
speed and link width. Marshaling delay, on the other hand,
invites more opportunity for improvement: although there
are mechanisms that (depending on application) can miti-
gate latency, such mechanisms don’t alter the existence of
that latency.

DWORD transfers (the smallest unit of data in the PCI
protocol) are therefore used to characterize the round-trip
time (RTT) across a given link or bus because they repre-
sent the smallest possible transaction and therefore contain
the minimum component of serialization delay. Since, in
PCI, memory-mapped write operations are posted (i.e. no
acknowledgment of completion is made), non-posted read
operations must instead be used for probe transactions.

We initiate each measurement from the processor, and
time each read using the processor’s TSC (Time Stamp
Counter) register. The TSC, incremented once for every
core clock cycle, provides a useful clock reference as sam-
pling the TSC register can be done with a single processor
instruction. Therefore, the latency incurred by the act of
sampling the time is lower than would be any other source
of time information available within the PC.

The accuracy of the TSC can be affected if Intel Speed-
Step (a power saving technology) is active; Intel SpeedStep
was disabled for this work. Additionally, we operated the
machine with only one CPU core as coherence among the
TSC registers of each CPU core is not guaranteed.

Without building new hardware, it is not possible to mea-
sure individual links directly. Instead, we estimate the RTT
across a given link by taking the difference between measure-

Target PCI-X (imm) PCI-X (spl) PCI Express

Method kernel user kernel user kernel user

min val 399 399 471 477 2169 2169
mean 403.6 403.7 493.6 493.6 2193 2193

std dev 3.710 3.734 3.829 4.001 13.01 13.13

Table 2: Software sampling validation results
(nanoseconds)

ments of devices on either end of that link. This is repeated
until all links between the CPU and leaf node devices (end
points) described above have been measured.

PCI specifies separate address spaces for configuration
registers (which control how the device responds to trans-
actions), memory-mapped I/O registers and legacy I/O reg-
isters. Every device, including bridges, is required to sup-
port a minimum set of configuration registers. End points
implement data spaces as required to support their appli-
cation, whereas bridges implement no data spaces of their
own; rather, they forward data space transactions across to
the bridge’s subordinate bus. Bridge RTTs can therefore
only be measured using configuration reads.

The path to each end point is measured by timing reads to
a configuration register (denoted with a superscript suffix c

in Figure 1, e.g. Mac) in every bridge between the CPU and
the end point inclusive. In the example in Figure 1 (shown
by the arrow), Mac is measured, then Bbc and Txdi

h . In
the FPGA based targets — in which we can design logic to
minimize handling time, and control how the transaction is
terminated — samples are taken of a memory-mapped I/O
register with immediate (denoted with superscript suffix di)
and split completions (denoted with superscript suffix ds,
and described further in Section 4.2).

The RTT for each target is taken to be the minimum from
a set of one million samples. Each sample is comprised of
certain irreducible components of delay (serialization and
marshaling overhead) that represent the latency intrinsic to
the protocol, plus some variable amount of error attributable
to small variations between samples in the protocol over-
head component (owing to implementation detail), and to
ordinary measurement error. The data-set minimum repre-
sents the best approximation of the irreducible component
(the smallest variation and error). Figure 2 displays cumu-
lative distribution functions of one million measurements of
the RTT in two cases. This demonstrates that there is a
well defined minimum RTT in both cases. All other mea-
surements showed similar distributions. We realize that the
minima do not represent performance on average; however,
our intention throughout has been to identify base-level mea-
surements of interconnect latency.

The latency of each individual link or bus (including as-
sociated buffering and processing) can then be estimated by
taking the difference between the minima measured at the
devices on either end of that link.

2.3 Validation
In a system as complex as a computer with a modern

chipset, processor and operating system, measurements made
from software could be biased by a variety of influences.

2.3.1 Software sampling mechanism
Table 2 compares the aggregate results from two imple-

mentations (one kernel mode, the other user mode) of the

Figure 2: Cumulative Distribution Functions of
RTTs (a) for reads to the MCH SDRAM controller,
Msc, which is representative of all MCH bridges and
(b) for reads to PCI-X target, Txdi

h , with immediate
completion

sampling software used to measure RTTs. The two imple-
mentations are very different yet, with interrupts disabled,
there is good agreement between samples. We are therefore
confident that the software measurement technique produces
reliable results.

The low standard deviations reported in Table 2 provide
further evidence that the measurement technique gives re-
peatable results (c.f. Figure 2).

It is interesting and encouraging to note that our tech-
nique is sensitive enough to detect a small difference in the
compiled output between the user mode and kernel mode
sampler. In an earlier iteration of this validation experiment,
the results from the user mode results were consistently 3 ns
greater than the kernel mode results. Careful examination
revealed that this was because a missing compiler flag for the
user mode sampler caused the call to the rdtsc instruction
not to be in-lined.

2.3.2 Effect of cross traffic
Modern architectures make considerable use of sophisti-

cated scheduling and pipelining techniques. Although PCI
access rules are strict, and re-ordering and combining are
forbidden within uncached I/O space, it is conceivable that
the implementation of the chipset could influence the results
collected depending on what cross-traffic is present.

We tested the effect of cross traffic by running an exper-
iment in which known cross traffic is injected in a variety
of combinations, while making measurements in the manner
described in Section 2.2.

We present in Table 3 the minima and standard deviations
of data recorded under artificially-generated cross traffic.
With an otherwise idle system, read operations alternate be-
tween a pair of data registers in the FPGA targets. Different
combinations of target device and page are tested in order to
establish the independence of the target on the effect of the
cross traffic generated. The column labeled Reference shows
the result from the software validation experiment user case
for comparison.

The six cases tested were:

1 Two registers within the same page of the PCI-X target
using immediate completions (Txdi

h)

2a Two registers within the same page of the PCI-X target
using split completions (Txds

h)

2b Two registers from different pages within the PCI-X tar-
get using split completions (Txds

h)

3a Two registers within the same page of the PCI Express
target (Teds

m)

3b Two registers from different pages within the PCI Ex-
press target (Teds

m)

4 One register from each of the PCI-X (Txdi
h) and PCI Ex-

press (Teds
m) targets

Since all measurements are made with interrupts disabled,
and since only one processor core is active in the system,
we make the assumption that the effect of our artificially-
generated, interleaved cross-traffic is as significant as any
external “natural” source of cross-traffic. In other words, al-
though the artificial cross-traffic is synchronous with respect
to itself, the lack of any other asynchronous source of read
transactions means that all other traffic not generated by
the cross-traffic experiment must also be synchronous with
the measured traffic.

We note that the interleaved read transactions in the com-
binations described above show no appreciable difference in
observed minima — i.e., there is good agreement between
the reference and cross traffic measurements. We therefore
conclude that the presence of cross traffic is not a factor in
the results we present next.

3. RESULTS
Table 4 presents the main results in this paper. The

Source Target and Dest. Target columns show the minima
as measured at the location indicated (refer to Figure 1).
The difference column shows the estimate of the latency for
that link based on those RTTs.

For parallel bus measurements, the estimated RTT is also
expressed in bus clock cycles. Since the RTT includes pro-
cessing time within the PCI logic as well as time on the

Case Reference Address 1 Address 2

1
399.0 ns 399.0 ns 399.0 ns
(±3.734 ns) (±3.700 ns) (±3.742 ns)

2a
477.0 ns 489.0 ns

477.0 ns (±3.830 ns) (±3.838 ns)

2b
(±4.001 ns) 486.0 ns 489.0 ns

(±3.954 ns) (±4.014 ns)

3a
2169.0 ns 2169.0 ns

2169.0 ns (±12.93 ns) (±12.85 ns)

3b
(±13.13 ns) 2169.0 ns 2169.0 ns

(±13.28 ns (±12.96 ns)

4
As per cases 1 399.0 ns 2169.0 ns

and 3 (±3.876 ns) (±13.06 ns)

Table 3: Minimum RTTs from the Cross traffic val-
idation test (±1σ)

PCB, the absolute values are only an approximation, but
their relative values are in proportion, as described in Sec-
tion 3.1.

For comparison, the serialization period (actual time spent
on the printed circuit board) is shown as calculated and also
expressed as an efficiency (percentage of the estimated time).
Note that for parallel PCI, the exact period of the transac-
tion depends on how quickly the intended target decodes
the transaction. For PCI Express links, the serialization de-
lay can be calculated exactly and includes frame delimiters,
serial number, and CRC with the transaction packet itself.

Transactions destined for the ICH pass through the MCH,
but there is no bridge in the MCH which handles ICH traffic.
However, the three measurable targets (Mac, Mbc and Msc)
within the MCH all return the same RTT; this value (63 ns)
is used to calculate the delay of D.

3.1 Parallel PCI results
A parallel PCI device may be designed to claim a transac-

tion after one, two or three cycles after a transaction begins
as suits implementation constraints. A device is described
as fast, medium or slow devsel respectively.

Column bus clocks in Table 4 illustrates the effect of this
decode latency. The VGA adapter and the FPGA target are
known to be medium and slow devsel devices respectively,
from which we predict that DWORD bus transactions with
the VGA adapter should be one cycle faster than with the
FPGA target. The data show this to be the case.

Similarly, the effect can be seen in the relationship be-
tween the RTTs for split and immediate completions. Split
transactions involve two bus transactions. The target of the
transaction which completes a split request is the PCI-X
bridge, which in this case is a fast devsel device (two cy-
cles faster than the FPGA target). The relationship can be
expressed as:

Tsplit = 2× Timm − 2× Tcycle

As highlighted in Table 4, latency in the parallel buses re-
duces linearly with increasing bus speed. These observations
further validate the results presented here.

We note that at 84 ns, the 133 MHz PCI-X bus (Xh) is
three times faster than the 8x PCI Express link (Ea) which
feeds it (252 ns, as noted in Table 4). This is despite Ea

having nearly eight times the throughput. Evidently, the
advantage that PCI Express has in serialization delay is lost
to the packet buffering and processing as described in Sec-
tion 4.2, which is not present in PCI-X.

3.2 PCI Express results
In addition to measuring Ea, the 8-lane PCI Express link

which attaches Bb, we also measured an 8-lane PCI Express
SATA RAID adapter attached via Eb. Both return RTTs
of 252 ns, further confirming the validity of the bridge mea-
surements.

Similarly, measurements for 4-lane links are made of D
(the DMI link) and also the Intel 82571 EtherExpress NIC
attached via Ec, a 4-lane PCI Express version of the on-
board 1-lane NICs. Unsurprisingly, the 4-lane NIC returns
an RTT of 498 ns, almost twice the latency of the 8-lane
links measured. The DMI link RTT is 366 ns — some 26%
faster than the NIC. While this result may be entirely due
to proprietary optimizations of the DMI link over a true 4-

Description Source target Dest. target Latency Time Efficiency
(1) (2) (2)− (1) clks on PCB

MCH bridge to PXH bridge PCI Express 8x Mac = 63 ns Bbc = 315 ns 252 ns – 22 ns 8.7%

MCH bridge to ICH bridge DMI (PCI Express 4x) Mc = 63 ns Ic = 429 ns 366 ns – 44 ns 12.0%

ATI VGA adapter basic PCI (32 bit, 33 MHz) on ICH Ibc = 423 ns Tbc
v = 711 ns 288 ns 10 180 ns 62.5%

33 MHz PCI target (mapped data immediate completions) Bbc = 315 ns Tbdi = 639 ns 324 ns 11 210 ns 64.8%

33 MHz PCI target (config space immediate completions) Bbc = 315 ns Tbc = 639 ns 324 ns 11 210 ns 64.8%

66 MHz PCI-X target (mapped data immediate completions) Bbc = 315 ns Txdi
l = 489 ns 174 ns 11 105 ns 60.3%

66 MHz PCI-X target (mapped data split completions) Bbc = 315 ns Txds
l = 633 ns 318 ns 20 – –

66 MHz PCI-X target (config space immediate completions) Bbc = 315 ns Txc
l = 549 ns 234 ns 15 – –

133 MHz PCI-X target (mapped data immediate completions) Bbc = 315 ns Txdi
h = 399 ns 84 ns 11 53 ns 63.1%

133 MHz PCI-X target (mapped data split completions) Bbc = 315 ns Txds
h = 468 ns 153 ns 20 – –

133 MHz PCI-X target (config space immediate completions) Bbc = 315 ns Txc
h = 429 ns 114 ns 15 – –

Intel EtherExpress PCI-e 1x on ICH I5c = 429 ns Tec
e = 1737 ns 1308 ns – 176 ns 13.5%

Dual Intel EtherExpress PCI-e 4x on ICH I0c = 429 ns Tec
d = 927 ns 498 ns – 44 ns 8.8%

Areca SATA RAID Controller PCI-e 8x on MCH Mbc = 63 ns Tec
r = 315 ns 252 ns – 22 ns 8.7%

1x PCI-e target on MCH (mapped data split completions) Mbc = 63 ns Teds
m = 2169 ns 2106 ns – 176 ns 8.4%

1x PCI-e target on MCH (config space split completions) Mbc = 63 ns Tec
m = 2331 ns 2268 ns – 176 ns 7.8%

1x PCI-e target on ICH (mapped data split completions) I0c = 429 ns Teds
i = 2535 ns 2106 ns – 176 ns 8.4%

1x PCI-e target on ICH (config space split completions) I0c = 429 ns Tec
i = 2679 ns 2250 ns – 176 ns 7.8%

Table 4: Differential Measurement Results with Best Case Latencies in Each Class Highlighted in Bold

lane PCI Express link, an alternative explanation is made
in Section 4.1.

The 1-lane FPGA based targets, Tem and Tei, both mea-
sure 2.1µs — approximately 8 times the 8-lane RTTs. We
note that the 1-lane on-board NIC does better at 1.3µs, for
which we propose an hypothesis in Section 4.1.

With the exceptions of the DMI and on-board NIC, the
PCI Express targets measured all return RTTs with good
agreement appropriate to their respective link widths — yet
as noted, even the fastest link is still substantially outper-
formed by the technology which PCI Express was meant to
replace. Furthermore, in the most equivalent comparison3

the 1-lane PCI Express link has between 16 and 25 times
longer latency than 133 MHz PCI-X.

3.3 General observations
Reads of the configuration space of the FPGA-based end

points are consistently slower than reads of data registers.
Completion of configuration transactions is handled by the
PCI cores themselves, so we speculate that the user code in
each of the targets is more efficient at completing requests
than the PCI cores.

4. ANALYSIS
Since access to implementation detail is generally unavail-

able (or only available under NDA), we can only conjecture
as to why PCI Express in general should exhibit latencies so
much greater than PCI-X.

3Direct comparisons are complicated by the fact that PCI-X
is half duplex and PCI Express is full duplex. For these
purposes, we compare aggregate throughput in PCI Express
(since a read transaction is a bi-directional process) with
the half-duplex throughput in parallel PCI. We consider
parallel PCI to be 32-bit wide (even when all 64 bits are
available) because the upper 32 bits are never used dur-
ing a DWORD transaction. 133 MHz PCI-X is therefore
133 MHz × 32 bits = 4.3 Gb/s and 1-lane PCI Express is
2.0 Gb/s/lane× 2 = 4.0 Gb/s.

4.1 A latency model for PCI Express
The PCI Express data presented in Section 3 suggest an

inverse relationship between total latency and link width.
Accordingly, we hypothesize a simplified delay model, for n
lanes, of the form:

TRTT = 2×
„
Tproc +

Tserdes

n
+ Tflight

«
which, together with the data collected, support the per-

haps obvious conclusion that latency reduces with increasing
link width.

The factor of two allows for both request and completion
packets. Tflight is negligible at 2 ns per foot. Tproc and
Tserdes represent the work done (for a given transaction size)
that, respectively, is fixed and dependent on link width.

Except for D and Tec
e, the PCI Express RTTs scale almost

linearly with link width, suggesting that Tserdes dominates
measured latency. We hypothesize that this is because pack-
ets are processed using a clock derived from the link. For a
given internal data-path-width, wider links require a faster
clock and therefore not only do packet data arrive faster,
packet processing tasks are completed faster as well.

For example, the target logic in Tem and Tei (the FPGA
based PCI Express targets) is driven with a 31.25 MHz clock
derived from the link. The TLP handling code returns a
response in around 5 cycles which, at 31.25 MHz, is 160 ns
— almost as much as the serialization delay for that 1-lane
link.

The impact of Tserdes can be mitigated by using a fast
clock to drive processing logic, but introduction of extra
clock domains increases complexity of design and testing,
and clock domain crossing is therefore generally avoided
where possible.

Where this design choice is made, however, Tproc becomes
more significant, and overall latency can be reduced. We
speculate that this is the case in D and Tee, or else a nar-
row internal data path is used to increase the rate at which

Bridge

Transaction

Data link

Physical

Transceiver Rx TxMGTRx TxMGT

Rx TxBu�erRx TxBu�er Rx Tx

Rx Tx

Application

Transaction

Data link

Physical

Transceiver MGT

Bu�er

Reg

core

layers {{ {
I

II

III

IV

V

VII

VI

Figure 3: PCI Express layer model (Roman numer-
als correlate with Table 5 and Figure 4)

processing logic is driven, and for this reason the RTTs mea-
sured for D and Tee don’t scale strictly with link width.

4.2 Analysis of a PCI core
Parallel PCI architecture multiplexes address and data on

one 32 or 64 bit bus, and uses about a dozen extra signals to
control the progress of a transaction. The IP cores that drive
them can therefore almost be as simple as a few pipeline
stages on the multiplexed address and data bus along-with
sufficient logic to sequence bus transactions.

PCI Express follows a layered communications stack (shown
in Figure 3) resembling the OSI model — more processing
is done in PCI Express than in PCI-X. Each of these lay-
ers require more logic to implement the standard, and each
contribute to the higher total delay seen in the PCI Express
results.

Component Delay % of total

I Tx Transaction Layer 1056 ns 71%
II Tx Data Link Layer 336 ns 22%
III Tx Physical Layer 32 ns 2%
IV Tx Transceiver 72 ns 5%

V Tx Total 1496 ns 100%

VI Time of flight < 1 ns

VII Rx Transceiver 183 ns

Table 5: Delay breakdown by layer (Roman numer-
als correlate with Figures 3 and 4)

The precise breakdown by layer of the total latency is
challenging to deduce without access to the high level RTL
(Register Transfer Level) of a PCI Express core. However,
an estimate may be made by analyzing the post-synthesis
netlist of a PCI Express core in simulation.

Table 5 presents approximate figures for the transmit path
in the PCI Express core used for the FPGA based PCI Ex-
press target in this study. This core buffers packets in its
transaction layer, and the transaction layer accounts for ap-
proximately three quarters of the latency in the transmit
path. This highlights the impact that buffering within the
end-point can have on end-to-end latency.

The latency in the receiver half of the transceiver is in-
cluded for comparison with the transmit half. Time of flight
on short traces is negligible, and serialization delay (176 ns,

Request

Request

(ack)

Completion

Completion

(ack)

Immediate completions Split completions

PCI-X core

Application Physical

Transceiver

Data link

Transaction

Application

A A

D

D

B

B

C

C

PCI-e

core

layers
{

I
II

III
IV

VII

VI

Figure 4: Immediate and split completions com-
pared (Roman numerals correlate with Table 5 and
Figure 3)

as noted in Table 4) is dwarfed by the other components.
From this we conclude that it is not the principle of se-
rialized links, but the protocol overhead which dominates
performance.

Technological developments can help reduce latency, but
as Table 5 shows, most of the latency arises from how the
protocol itself works, and the greatest performance gains will
be made in a protocol designed for low latency.

Figure 4 shows the events of an immediate completion on
a PCI-X bus compared with those of a split completion on
a PCI Express link. (A split completion on a PCI-X bus
would look similar to that of the PCI Express case shown,
with the following differences: PCI-X has no need to ac-
knowledge transactions and isn’t layered like PCI Express,
so the overhead will be less. Conversely, PCI Express cannot
support immediate completions).

In each case, a request originating at A traverses the cores
and arrives at target B. After a short delay, while the re-
quested data are being retrieved (C), the immediate com-
pletion returns the data in the one, unbroken transaction
(D). When the target splits the request, a new transaction
is initiated at some later time to carry the response back to
the requester.

In PCI Express, acknowledgment packets are returned to
free buffers in the transmitter.

5. LIMITATIONS
Certain sources of latency have been left uncharacterized

in our analysis.
PCI Express supports sliding windows with cumulative

acknowledgments similar to TCP, and therefore pending ac-
knowledgments don’t prevent packet transmission for as long
as there are sufficient flow control credits available in each
receiver [21].

Certain conditions (e.g. a large number of posted write
operations) can exhaust flow control credits, which will in-
troduce latency. Because the probe requests used to measure
latency in this study are serialized (only one measurement
is made at a time), flow control credit starvation cannot
happen here.

Multi-lane PCI Express links have the potential to intro-

duce an additional source of latency. Although most individ-
ual transceivers can perform CRC calculation and checking
automatically, they cannot do so when the packet data are
interleaved across multiple lanes, because no one transceiver
sees the whole packet. As a result, PCI Express implemen-
tations must implement their own CRC logic in a separate
stage. PCI Express soft core end points, for example, im-
plement CRC logic in their link layers — even in the 1-lane
instance which could otherwise have used the dedicated CRC
logic in the transceivers.

The cross-traffic validation experiment (Section 2.3.2) de-
pends on the assumption that with only one processor core
enabled, the artificial cross-traffic is comparable with back-
ground traffic, and that there aren’t other patterns of cross-
traffic that might affect the results gathered. A more com-
plete investigation, perhaps based on an SMP-enabled oper-
ating system is warranted.

It is possible that a bridge might in some way deprioritise
configuration transactions (in much the way an IP router
deprioritises ICMP traffic) however, the PCI protocol re-
quires that bridges maintain transaction order — including
the order of reads, since read operations can have side ef-
fects in PCI devices. Given that ordering must be strictly
maintained, there is a strong incentive to retire configuration
requests as quickly as possible, so that subsequent transac-
tions can be serviced as quickly as possible. From this, we
assert that bridge configuration registers are a reliable indi-
cation of latency to that bridge.

6. PROPOSED SOLUTIONS
Higher latency in PCI Express is no reason to abandon

high speed serial interconnects — especially when they can
scale throughput far beyond that of a parallel interconnect,
and we certainly make no case for a return to them. Nor is
there any fundamental reason why a PCI Express-like pro-
tocol or other backwards compatible protocol should not be
low latency.

Serial interconnects can deliver the throughput demanded
by emerging applications without compromising latency prin-
cipally by low latency protocol design, and also by means of
emerging interconnect technologies such as photonic switch-
ing.

6.1 Low latency protocol design
It should not be assumed that long distance communi-

cations techniques are appropriate for short-haul intercon-
nects. For example, instead of a single check-sum code at
the end of the packet, separate check-sums for header and
payload would permit a receiver to allocate and configure a
path while payload is still being received.

Relatedly, interactions between master and target in par-
allel standards were much more closely coupled than they
are in packet-oriented protocols such as PCI Express, and
there is no particular reason why this should be so. The
sooner transaction correctness can be verified, the sooner
the transaction can be allocated and executed. We there-
fore conclude that there is some merit for abandonment of
the packet model employed by PCI Express.

The abstraction afforded by a layered protocol stack can
simplify design, but the benefits are outweighed if such an
abstraction is made at the expense of latency.

6.2 Photonic interconnect
Intermediate buffering increases latency. A reduction of

reliance on buffering — both in I/O structures (such as the
MGT block) and in queuing — will likely yield the great-
est gains in latency [10]. To this end, we claim that op-
tical interconnects offer the greatest prospects (especially
when there are serially-connected bridges involved) because
an optical signal can be transmitted through multiple pho-
tonic switches before signal integrity issues force an O-E-O
(optical-electronic-optical) conversion where buffering might
be required. Optical bandwidth scales far beyond electrical
bandwidth, important because PCI Express 3 is already at
the limits of FR-4 printed circuit board. Possible solutions
include optical chip-to-board packaging such as IBM’s Ter-
aBus [22] and polymer waveguides which can be incorpo-
rated into printed circuit boards such as [8]. Optical loss
characteristics mean that a signal can cross a board with-
out need of a repeater. Further, since random access optical
memory doesn’t (yet) exist, optical architectures must per-
force avoid buffering.

Wavelength division multiplexing provides the equivalent
of additional lanes without need of additional physical chan-
nels and, since optical channels are bidirectional, flow con-
trol and acknowledgment feedback (as done in SPINet [23])
require no additional switching overhead.

7. RELATED WORK
The performance of interconnects has maintained the con-

stant interest of a subsection of the computer-architecture
community4 including the analysis of PCI interconnect ar-
chitectures. For example, Liu et al. [24] showed that Mel-
lanox PCI Express adapters consistently outperformed its
own PCI-X adapters, both in throughput and in latency. It
analyzes end-to-end performance of the respective adapters,
taking in operating system, protocol stack, adapter and net-
work performance as a whole. It concludes that for builders
of HPC clusters, the Mellanox PCI Express HBA provides
lowest latency, but does not attempt to attribute the spe-
cific role that the PCI Express link itself plays in the overall
performance.

As pointed out by Liu et al., the PCI-X case attaches
through an extra bridge, which is itself attached via the same
8-lane PCI Express link which attaches the PCI Express
case. Without evaluating the contribution to latency of each
component in the PCI hierarchy, measurements will include
latency due to both the PCI-X bus, and the PCI Express
link which supplies it.

The PCI-X bus on the motherboard used in our study
uses a similar arrangement. Their measurement technique
times the RTT of an InfiniBand ping message, each of which
involves traversing an HBA and associated bus or link four
times. If the data collected in this study are representative
of typical PCI-X buses and PCI Express links, the contri-
butions of the HBA’s host interface to RTT latency are re-
spectively 7% and 27% of the best reported RTTs (4.8 µs
and 3.8 µs).

The use of programmable logic for the measurement of
high-speed systems has a long heritage, for example, Moll et
al. [25] demonstrates the use of simple FPGA based hard-
ware for the profiling of software applications including an
analysis of PCI bus performance.

4For example, see Hot Interconnects Symposium various.

Additionally, the use of CPU counters for the differen-
tial analysis of timing has been a technique employed by a
number of previous researchers; use of the TSC register for
micro-benchmarking is described in Sottile et al. [26], and
for time stamping in Veitch et al. [27], while Hall et al. [28]
makes a differential analysis of operating system latency in
OSF/1, using the Alpha’s Program Cycle Counter.

The use of micro-benchmarks has long been established as
a useful method for evaluation of specific aspects of perfor-
mance. Martin et al. [14] uses micro-benchmarks to evaluate
the effect of various forms of latency, overhead and band-
width. Similarly, Ousterhout [29] describes micro-benchmarks
as applied to profiling operating system performance, and
Liu et al. [30] as applied to MPI implementations.

Finally, Endo et al. [12] establish the primacy of latency
to performance in interactive and transactional application
software, and describes micro-benchmarking for analysis of
performance by latency and encourage further, application-
specific study of PCI interconnect latency impact.

8. CONCLUSIONS
In this paper we have described an approach that mea-

sures PCI interconnect latency through the differential anal-
ysis of transaction delays. Where intuition might suggest
that newer, higher throughput interconnects should have
lower latency than older interconnects, in fact PCI Express
consistently shows higher latency than PCI-X.

The fastest PCI Express link we measured (8-lane) has
three times longer latency than the fastest PCI-X bus — de-
spite having nearly eight times the throughput for DWORD
reads. We present data that demonstrate that PCI inter-
connect implementations can have a dramatic effect on the
latency measured in PCI Express links: the slowest PCI
Express links (single lane), comparable in throughput with
133 MHz PCI-X, have between 15 and 25 times higher la-
tency.

We propose a model to explain why PCI Express latencies
are so much longer than PCI-X, and provide possible imple-
mentation related explanations. We note that link width
has a profound impact on latency, much greater than the
influence of serialization delay alone. We speculate that the
reason for this in some cases is that implementation consid-
erations amplify the contribution of link width to latency.

Accepting that high speed serial links are more scalable
than parallel buses, we suggest how such links could be em-
ployed in a low-latency interconnect. We observe that la-
tency hiding techniques can, to some extent, ameliorate the
impact of intrinsic interconnect latency, yet there are ob-
vious advantages to an interconnect that avoids latency by
design.

Interconnect latency is only one of the many sources of la-
tency in a computer system. It is more or less a constant for
a given architecture, and it imposes a lower bound on overall
latency. By addressing interconnect latency, improvements
made elsewhere are more likely to show greater returns.

Lastly, we make the case that a bufferless, all-optical in-
terconnect offers the potential for scalable throughput with
low latency.

Future work
Recognizing the contributions of application-specific latency
studies such as that of Endo et al. [12] and Hall et al. [28], we
are currently working to quantify the impact of interconnect

latency on a variety of applications. Alongside this, we are
exploring alternative architecture and protocol design for
the PCI interconnect.

9. ACKNOWLEDGMENTS
David Miller would like to thank the Cambridge Com-

monwealth Trust, the Cambridge Angels and Endace Ltd
for their financial support. Philip Watts would like to thank
the Royal Commission for the Exhibition of 1851.

The authors thank Steve Hand, Jon Crowcroft, Simon
Moore, David Greaves, the Systems Research Group of the
Cambridge Computer Laboratory and anonymous reviewers
for their helpful and constructive input to this paper.

10. REFERENCES
[1] R. S. Tucker. The role of optics and electronics in

high-capacity routers. Lightwave Technology, Journal
of, 24(12):4655–4673, Dec. 2006.

[2] I. Keslassy et al.. Scaling internet routers using optics.
In SIGCOMM ’03:, pages 189–200, 2003.

[3] M. Glick et al.. SWIFT: a testbed with optically
switched data paths for computing applications.
Transparent Optical Networks, 2005, pages 29–32 Vol.
2, July 2005.

[4] A. Shacham et al.. A fully implemented 12×12 data
vortex optical packet switching interconnection
network. J. Lightwave Technology, 2005.

[5] A. Shacham et al.. Photonic NoC for DMA
Communications in Chip Multiprocessors. In HOT
Interconnects ’07, pages 29–38, Aug. 2007.

[6] H. Wang et al.. Experimental demonstration of
end-to-end PCI-Express communication over a
transparent all-optical photonic interconnection
network interface. In OFC, March 2009.

[7] N. Bamiedakis et al.. Cost-effective multimode
polymer waveguides for high-speed on-board optical
interconnects. Quantum Electronics, IEEE Journal of,
45(4):415–424, April 2009.

[8] J. D. Ingham et al.. Multimode siloxane polymer
waveguides for robust high-speed interconnects. In
Lasers and Electro-Optics and 2006 Quantum
Electronics and Laser Science Conference, pages 1–2,
May 2006.

[9] Nick McKeown. Buffers: How we fell in love with
them, and why we need a divorce. In Hot
Interconnects, 2004.

[10] M. Enachescu et al.. Part III: routers with very small
buffers. SIGCOMM Comput. Commun. Rev.,
35(3):83–90, 2005.

[11] David Patterson. Latency lags bandwidth.
Communications of the ACM, 47(10), 2004.

[12] Y. Endo et al.. Using latency to evaluate interactive
system performance. SIGOPS Oper. Syst. Rev.,
30(SI):185–199, 1996.

[13] Q. Huang et al.. GPU as a general purpose computing
resource. In 9th PDCAT, pages 151–158, Dec. 2008.

[14] R. Martin et al.. Effects of communication latency,
overhead, and bandwidth in a cluster architecture.
24th ISCA, 1997, pages 85–97, Jun 1997.

[15] Aite Group. Algorithmic trading 2006: More bells and
whistles.

http://www.aitegroup.com/reports/200610311.php,
November 2006.

[16] N.J. Boden et al.. Myrinet: a gigabit-per-second local
area network. Micro, IEEE, 15(1):29–36, Feb 1995.

[17] Intel Corporation. 82546GB Dual Port Gigabit
Ethernet Controller, October 2005.

[18] Intel Corporation. 82571 & 82572 Gigabit Ethernet
Controller, December 2006.

[19] PCI-SIG. PCI local bus specification, 2.3, March 2002.

[20] PCI-SIG. PCI-X addendum to the PCI local bus
specification, 1.0a, July 2000.

[21] PCI-SIG. PCI Express base specification, 1.1, March
2005.

[22] J. A. Kash et al.. Terabus: a chip-to-chip parallel
optical interconnect. Lasers and Electro-Optics
Society, 2005. LEOS 2005. The 18th Annual Meeting
of the IEEE, pages 363–364, Oct. 2005.

[23] Assaf Shacham et al. A scalable, self-routed, terabit
capacity photonic interconnection network. Hot
Interconnects 13, 2005.

[24] J. Liu et al.. Performance evaluation of InfiniBand
with PCI Express. In HOT Interconnects’04, pages
13–19, 2004.

[25] L. Moll and M. Shand. Systems performance
measurement on PCI Pamette. In FPGAs for Custom
Computing Machines, pages 125–133, Apr 1997.

[26] M. Sottile and R. Minnich. Analysis of
microbenchmarks for performance tuning of clusters.
In Cluster Computing, IEEE International Conference
on, pages 371–377, Sept. 2004.

[27] D. Veitch et al.. Robust synchronization of software
clocks across the internet. In IMC ’04: Proceedings of
the 4th ACM SIGCOMM conference on Internet
measurement, pages 219–232, 2004.

[28] J. Hall et al.. Counting the cycles: a comparative
study of NFS performance over high speed networks.
In Proceedings of the 22nd Conference on Local
Computer Networks (Minneapolis, MN), pages 8–19,
1997.

[29] John Ousterhout. Why aren’t operating systems
getting faster as fast as hardware. In Proceedings of the
Summer USENIX Conference, pages 247–256, 1990.

[30] J. Liu et al.. Performance comparison of MPI
implementations over InfiniBand, MyriNet and
Quadrics. Supercomputing Conference, pages 58–58,
Nov. 2003.

http://www.aitegroup.com/reports/200610311.php

	Introduction
	Latency study
	Apparatus
	Measurements
	Validation
	Software sampling mechanism
	Effect of cross traffic

	Results
	Parallel PCI results
	PCI Express results
	General observations

	Analysis
	A latency model for PCI Express
	Analysis of a PCI core

	Limitations
	Proposed solutions
	Low latency protocol design
	Photonic interconnect

	Related work
	Conclusions
	Acknowledgments
	References

