
Configuration and Adaptation of Binary Software Components

Stephen Kell
Computer Laboratory

University of Cambridge
15 JJ Thomson Avenue, Cambridge CB3 0FD, UK

Stephen.Kell@cl.cam.ac.uk

Abstract

Existing black-box adaptation techniques are insuffi-
ciently powerful for a large class of real-world tasks.
Meanwhile, white-box techniques are language-specific and
overly invasive. We argue for the inclusion of special-
purpose adaptation features in aconfiguration language,
and outline the benefits of targettingbinaryrepresentations
of software. We introduce Cake, a configuration language
with adaptation features, and show how its design is being
shaped by two case studies.

1. Introduction

Under decentralised development, it is inevitable that
most code will be written independently of most other code
with which it could usefully be combined. We therefore
require tools for realising compositions ofindependently
evolvingcode, and even completelyunanticipated compo-
sitionsof code. The key challenge of such compositions,
beyond the traditional challenge of “programming in the
large” [6], concerns overcomingmismatchbetween com-
ponents’ interfaces.

Conventional approaches to mismatch are ad-hoc: most
common is invasive editing of source code. This yields
a brittle patchset that is expensive to maintain. Aspects
and other white-box techniques have been proposed to rem-
edy this [8], but such invasive techniques are language-
dependent and arguably damage modularity [16]. A less
powerful but more modular approach is to manually code a
black-box adaptor: this avoids dependence on source code
details, by expressing adaptation relative to an interface
definition only. Although limited to interface-level adap-
tations, and still fragile to the extent that interface details
change, adaptors have proved useful both as a design pat-
tern in conventional languages [9] and as a domain for spe-
cialised tools and languages [13, 17, 10, 7]. We embrace the
latter approach, but target its practical weaknesses thus far.

The most visible decentralised development effort is in
the open-source community. Of the many useful research
tools developed to enable adaptation, none applies effec-
tively to a substantial range of the software produced by this
community. C and C++ remain popular languages for large
projects, whereas the many adaptation tools targetting Java
and other higher-level runtimes [10, 7] sidestep a large class
of mismatches concerning memory allocation and pointer
use. Several common classes of mismatch arise in practi-
cal adaptation tasks, but many tools focus only on one or
other of argument- [13], protocol- [17], or wiring-level [14]
adaptations, so apply to few real use-cases. Another com-
mon source of mismatch lies in the parallel reimplementa-
tions of various recurring abstractions (e.g. objects, com-
mon data structures, RPC, many-to-many communication);
some tools support interchange among fixed sets of these
[3, 5], but none supportsdescriptionof anopenset of these.

This paper describes our ongoing work towards the fol-
lowing goals:

• to create a high-level language for describing primarily
black-box adaptations, which can apply to components
written in various languages including C and C++;

• to ensure a language design sufficiently expressive to
apply to a wide class of real-world adaptation tasks;

• to demonstrate the feasibility of performinglink-time
adaptation on fully-compiledbinarycomponents.

2 Overview

We are developing Cake, a language for high-level de-
scription of adaptations. Its goal is to reduce the prac-
tical complexity of performing real-world adaptations; it
does so by borrowing ideas from variousconfiguration lan-
guages. These are a spectrum of languages explored in
mostly parallel strands of research, from low-level link-
ing languages [14] through module interconnection lan-
guages [6], coordination languages [1] up to high-level

Figure 1. Configuration with adaptation logic

architecture description languages [12, 15]. All share a
key property: they mitigate complexity by capturinginter-
component relationships, such as communication topolo-
gies, information-hiding or parallel execution constraints.
Since adaptation requirements are also a function of these
relationships (specifically of asymmetries betweenprovided
andrequiredinterfaces), we believe that adaptation logic is
best captured within a configuration language. Unsurpris-
ingly, existing configuration languages often enable limited
forms of adaptation—e.g. by interposing conversion mod-
ules, modifying synchronisation conditions, or replacing
communication subsystems—but are neither powerful nor
complete enough to be practical as adaptation tools.

Cake targets binary representations of software (specifi-
cally relocatable ELF object files at present). This has sev-
eral advantages: binary formats unify multiple source lan-
guages, so have wide applicability; adaptation can conve-
niently be performedlateon code already deployed; finally,
it works when source code is unavailable, provided that the
binary can be comprehended by other means (such as doc-
umentation, metadata or reverse-engineering tools).

Object code presents several challenges: there are few
constraints on the use of memory, and often no run-time
safety guarantees or metadata. This widens the space of
adaptations required, and complicates automated analysis.
However, recent work has shown binaries to be surprisingly
tractable, witnessed by the success of link-time optimisers
[4], binary instrumentation tools [11], binary-rewritingvir-
tual machine monitors1 and reverse-engineering tools [2].

Another difficulty is that programmers must now deal
with two different views of their code: the source view and
the binary view. These may differ: firstly from interpro-
cedural optimisations (e.g. inlining); secondly from name-
mangling and other unfriendly encodings. These can be
mitigated: the former by delaying interprocedural optimisa-
tion until link-time [14, 4], and the latter with tool support
for describinginterpretationsof such encodings (see§3.4).

1For example VMware,http://www.vmware.com/.

3 Design and case studies

To prototype the Cake language, we are conducting case
studies where we implement glue logic conventionally, then
devise Cake syntax expressing that same logic. This pa-
per discusses two case studies. The first examines mis-
match across majorevolutionsof interfaces, specifically in
the Gtk+ family of libraries.2 We took thegtk-theme-
switch3 client, available in two separate source forks for
API versions 1.2 and 2.0, and adapted the binary 1.2 client
to link with the 2.0 libraries. The second case study ex-
aminesunanticipated composition: we took therox-filer
file manager4 and replaced its simple built-in history log
(which remembers visited directories) with the history from
the Konqueror web browser.5

3.1 Introducing components

Statements in Cake are of two main kinds: about compo-
nents which alreadyexist, and about ones which Cake must
derive. The simplest derivation just invokes the linker.

exists elf archive (”libgdk−x11−2.0.a”) gdk−x11−2.0;
exists elf archive (” libatk−1.0.a”) atk−1.0; // ... more follow
derive elf reloc archive (”gtk−libs−2.0.a”) libgtk20

= link [gtk−x11−2.0, gdk−x11−2.0, atk−1.0,/∗ ... ∗/];

Cake derives glue logic using information from three
sources: programmer annotations in the input file, metadata
in object files, and static analysis. It treats these sources
interchangeably: for example, if an input file lacks certain
metadata, this may be provided as annotations; static anal-
ysis may infer certain annotations omitted by the program-
mer, or verify ones provided. Programmer knowledge is
invaluable in creating efficient and maintainable adaptors.
For example, a programmer may know that a field in one
library’s data structure is ignored by the intended client;
therefore, adaptor logic between the two need not specify
how to represent this field on the client side. Annotations
such as this appear in a component’sexists statement, and
are subject to controllable checking using keywordscheck
(raises an error if metadata or analysis cannot verify the
annotation),declare (allows unverifiable annotations, but
flags contradictions as errors) oroverride (unconditional).

exists elf archive (” libgtk−x11−2.0.a”) gtk−x11−2.0{
override { . gtk dialog new : → GtkDialog ptr } };

// ... ˆ−− override the imprecise type found in debug info
/∗ Declare the client binary , adding annotations.∗/
exists elf reloc (”switch.o ”) switch12{

declare { . gtk dialog new : → object { // this component
.vbox: opaque ptr; // treats ‘vbox’ opaquely

: ignored } ptr } // and ignores other fields
/∗ more annotations ...∗/ } // on the returned object

2http://www.gtk.org/
3http://www.muhri.net/nav.php3?node=gts
4http://rox.sourceforge.net/
5http://www.konqueror.org/

3.2 Function correspondences

Adaptations in Cake are expressed usingpattern-
matchingandcorrespondences. For example, the following
correspondence

switch12 ↔ libgtk20 {
. gtk signal connect (i , d, ch , data)
→ . g signal connectdata (i , d, ch , data , null , {}); }

states that a call to.gtk signal connect in compo-
nent switch12 corresponds to a slightly different call in
libgtk20. The left-hand side constitutes a pattern whose
matched elements are instantiated on the right of the ar-
row. Most arrows are bidirectional, implying a symmetric
correspondence. Unidirectional arrows indicate correspon-
dences which only apply in one direction—these are useful
to describe asymmetric correspondence rules. (Unidirec-
tional arrows also appear in value correspondences, to pro-
vide default values for missing fields—see§3.3.)

More complex patterns are useful. Sequences of calls
can adapt cases where one function call has become two
(e.g. the splitting ofgtk text new into gtk text buffer new
andgtk text view new) or vice-versa.

switch12 ↔ libgtk20 { /∗ provides / requires correspondences.∗/
(t = . gtk text new (null , null); ...; gtktext insert (t , ...))

→ // call sequence pattern
(tb = . gtk text buffer new (null);
tv = . gtk text view new (null); // new call sequence
. gtk text view set buffer (tb)); }

This shows a simple loop-free imperative sublanguage
expressing sequences of calls, which Cake compiles into
stubs interposed at link-time. Simple local call sequences
may be matched statically on the control flow graph. More
generally, a dynamic approach is needed, amounting to pro-
tocol adaptation [17], although our case studies have so far
not required this generality. Similarly, dynamic matching
can be used to support patterns which match a call only
when certain argument values are passed.

3.3 Value correspondences

Value correspondences capture equivalences between
sets of values flowing between mismatched components.
The following might appear in aderive block

values switch12.GtkWindow↔ libgtk20.GtkWindow{
”” → .wm role; // default value for new field
. type { names.GtkWindowType} // enum in disguise , so
↔ . type { names.GtkWindowType}; // give names

.window hasfocus↔ . hasfocus ;

. autoshrink ← 0; /∗ field removed∗/ }

to give correspondences between values of respective
structures (both namedGtkWindow), providing default val-
ues for missing fields. Name equivalences are drawn by

Figure 2. Interposing on object exchange

default between like-named fields, inserting relevant co-
ercions for primitive DWARF datatypes if lossless; the
programmer need only specify exceptions to these rules.
Name-equivalence can be requested for simple values, us-
ing name–value mappings either provided manually as an-
notations, or by named enumeration types in the debug in-
formation. Regular expression correspondences are sup-
ported for variable-length data, as in thelibkonq case
study’s conversion between pathname and URL strings.

Objects are structured values with identity and lifetime.
In the Gtk+ case study, client and library exchange objects
on the heap, and their expectations of object sizes and lay-
outs do not match. To interpose on the exchange of such
objects, we identify calls where mismatched objects may be
passed (directly or indirectly), and link in code to create and
synchronise “logical replica” objects (each with differing
layout), much like deep copying in an RPC system. Copy
depth is limited using knowledge of which fields are actu-
ally examined, e.g. fromopaque andignored annotations
(§3.1). Since the client ignores most fields, most pointers
need not be followed and most fields need not be synchro-
nised. This also helps avoid “forked” objects, where con-
flicting updates have been made to different replicas. Spe-
cial handling is also required when passing function point-
ers, testing object identity, and in scheduling synchronisa-
tion of replica objects. Despite obvious limitations, we are
hopeful this approach will prove sufficient for a wide range
of practical adaptation tasks.

Getting history data fromlibkonq to rox entailed in-
terposing onrox’s history query function, to rebuildrox’s
linked list from one provided bylibkonq. The above ap-
proach applies similarly in this case. However, in both of
these case studies the correspondences are simplified by
the 1:1 correspondence between objects. Full generality
demands consideration of arbitrary graph transformations.
In practice tree rewriting syntaxes (with back-edges treated
opaquely) may suffice, perhaps similar to CSS selectors6 or

6http://www.w3.org/TR/CSS2/selector.html

XSLT7. Prototyping this is future work.

3.4 Further features and future work

Correspondences shown so far have been particular to
a pairing of components, but others may beglobal, refer-
encing a single component only. In the static case, these
are effectivelyrewritesto the input binaries. We found this
useful for rewriting embedded constant data (e.g. pathname
of the Gtk+ config file), and for replacing function bodies
in two cases. Firstly, the behaviour of thelibkonq history
logger was to ignorefile:// URLs; since we wished to log
precisely these, we redefined itsfilterOut function to return
true. Secondly, to avoid linkingrox with the whole of bulky
libkonq.a, we discarded all but thekonq historymgr.o
component and its immediately depended-upon functions,
then replaced the latter with stub implementations.

In the Gtk+ case study, another mismatch is in the data
read from config files: the file format differs between library
versions. A dynamic sequence offread() calls can beinter-
pretedas ahigher-level channel; given a suitable grammar,
the same tree-based rewriting techniques applied to objects
(above) could be used to transform this file data.

Unexpected complexity came from communication
paths inlibkonq: calls to add history entries are not sim-
ple function calls, but are indirected through the X server
and a DCOP server process, then dispatched by a separate
listener thread. Most of the adaptor’s complexity was in
correctly initialising both the listener and the DCOP-layer
state for routing these messages. DCOP is a well-defined
style ofpackaging[5]; knowledge of it should be express-
ible in Cake, from which code to support any binding of a
regular C function (as inrox-filer) to a DCOP handler (in
libkonq) could be generated.

Although not encountered in our case studies,memory
allocation is a likely source of mismatch: whether callee
or caller is responsible for freeing memory, when this may
happen, what mechanism is used, and what accounts must
be kept (e.g. reference counts). Suitable annotations (on
pointer arguments) and packaging-style descriptions should
allow concise description of the necessary adaptation.

In both of our case studies we were fortunate that our
task waswell-abstracted: linkage boundaries exposed the
necessary points of interposition. On occasions where this
is not true, we must fall back on instrumentation [11] and
other more invasive techniques to recover those points.

4 Status and acknowledgements

Ongoing work is generalising the manual glue code pro-
duced during the case studies into code generation logic in

7http://www.w3.org/TR/xslt

the Cake compiler. Further case studies are planned, includ-
ing application of Cake to binary device drivers. We hope
that use of Cake together with a link-time optimiser [4] will
show that performance overheads need not be great.

The author is extremely grateful to Michael Hicks for
most productive and timely feedback, and to David Greaves
for helpful discussions and support.

References

[1] F. Arbab and F. Mavaddat. Coordination through channel
composition. InProc. Coordination, pages 21–38, 2002.

[2] G. Balakrishnan, R. Gruian, T. Reps, and T. Teitelbaum.
CodeSurfer/x86—a platform for analyzing x86 executables.
In Proc. 14th Intl. Conf. Compiler Construction, 2005.

[3] J. Callahan and J. Purtilo. A packaging system for heteroge-
neous execution environments.IEEE Transactions on Soft-
ware Engineering, 17:626–635, 1991.

[4] B. De Sutter, B. De Bus, and K. De Bosschere. Link-time
binary rewriting techniques for program compaction.ACM
TOPLAS, 27(5):882–945, 2005.

[5] R. DeLine. Avoiding packaging mismatch with flexible
packaging. IEEE Transactions on Software Engineering,
27:124–143, 2001.

[6] F. DeRemer and H. Kron. Programming-in-the large versus
programming-in-the-small. InProceedings of the Interna-
tional Conference on Reliable Software, 1975.

[7] D. Dig, S. Negara, V. Mohindra, and R. Johnson. ReBA:
a tool for generating binary adapters for evolving Java li-
braries. InProc. 30th ICSE, 2008.

[8] M. E. Fiuczynski, R. Grimm, Y. Coady, and D. Walker. patch
(1) considered harmful. InProceedings of the 10th confer-
ence on Hot Topics in Operating Systems, 2005.

[9] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.De-
sign patterns: elements of reusable object-oriented soft-
ware. Addison-Wesley, 1995.

[10] R. Keller and U. Holzle. Binary component adaptation. In
ECOOP ’98, pages 307–329, 1998.

[11] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. Pin:
building customized program analysis tools with dynamic
instrumentation. InProc. PLDI, 2005.

[12] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying
distributed software architectures. InProceedings of the 5th
European Software Engineering Conference, 1995.

[13] J. Purtilo and J. Atlee. Module reuse by interface adaptation.
Software - Practice and Experience, 21:539–556, 1991.

[14] A. Reid, M. Flatt, L. Stoller, J. Lepreau, and E. Eide. Knit:
Component composition for systems software. InProc. of
the 4th OSDI, pages 347–360, 2000.

[15] M. Shaw, R. DeLine, D. Klein, T. Ross, D. Young, and
G. Zelesnik. Abstractions for software architecture and tools
to support them.IEEE Transactions on Software Engineer-
ing, 21:314–335, 1995.

[16] F. Steimann. The paradoxical success of aspect-oriented
programming. InProc. OOPSLA, 2006.

[17] D. Yellin and R. Strom. Protocol specifications and compo-
nent adaptors.ACM TOPLAS, 19:292–333, 1997.

