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Abstract. Internet protocols encapsulate a significant amount of state,
making implementing the host software complex. In this paper, we de-
fine the Statecall Policy Language (SPL) which provides a usable middle
ground between ad-hoc coding and formal reasoning. It enables program-
mers to embed automata in their code which can be statically model-
checked using SPIN and dynamically enforced. The performance over-
heads are minimal, and the automata also provide higher-level debugging
capabilities. We also describe some practical uses of SPL by describing
the automata used in an SSH server written entirely in OCaml/SPL.

Constructing modern Internet servers is a difficult proposition, since the soft-
ware must encapsulate a significant amount of state and deal with a variety of
incoming packet types, complex configurations and versioning inconsistencies.
Network applications are also expected to be liberal in interpreting received
data packets and must reliably deal with timing and ordering issues arising from
the “best-effort” nature of Internet data traffic.

Due to this complexity, mechanical verification techniques are very useful to
guarantee safety, security and reliability properties. One mature formal method
used to verify properties about systems is model checking. Software model-
checking involves: (i) creating an abstract model of a complex application; (ii)
validating this model against the application; and (iii) checking safety properties
against the abstract model. To non-experts, steps (i) and (ii) are often the most
daunting. How does one decide which aspects of the application to include in the
abstract model? How does one determine whether the abstraction inadvertently
“hides” critical bugs? If a counter-example is found, how does one determine
whether this is a genuine bug or just a modeling artifact?

In this paper, we present the Statecall Policy Language (SPL) which simpli-
fies the model specification and validation tasks with a view to making model
checking more accessible to regular programmers. SPL is a high-level modelling
language which enables developers to specify models in terms of allowable pro-
gram events (e.g. valid sequences of received network packets). We have im-
plemented a compiler that translates SPL into both Promela and a general-
purpose programming language (e.g. OCaml). The generated Promela can be
used with SPIN [1] in order to check static properties of the model. The OCaml
code provides an executable model in the form of a safety monitor . A developer



can link this safety monitor against their application in order to dynamically
ensure that the application’s behaviour does not deviate from the model. If the
safety monitor detects that the application has violated the model then it logs
this event and terminates the application.

Although this technique simplifies model specification and validation it is, of
course, not appropriate for all systems. For example, dynamically shutting down
a fly-by-wire control system when a model violation is detected is not an option.
However, we observe that there is a large class of applications where dynamic ter-
mination, while not desirable, is preferable to (say) a security breach. Melange [2]
focusses on constructing correct, clean-room implementations of Internet appli-
cations using statically type-safe languages, and SPL delivers real benefits in this
area. None of the major implementations of protocols such as HTTP (Apache),
SMTP (Sendmail/Postfix), or DNS (BIND) are regularly model-checked by their
development teams. All of them regularly suffer from serious security flaws rang-
ing from low-level buffer overflows to subtle high-level protocol errors, some of
which could have been caught by using model checking. In this paper, we use
the Melange SSH [3] server as an example of how an application using SPL can
be model-checked without sacrificing performance (§3.1) and enforcing critical
security properties (§3.2) that are informally specified in the RFC documents.

There is no “perfect” way of specifying complex state machines, and the
literature contains many different languages for this purpose (e.g. SDL [4], Es-
telle [5], Statemate [6], or Esterel [7]). In recognition of this, the SPL language
is very specialised to expressing valid sequences of packets for Internet protocols
and is translated into a more general intermediate “Control Flow Automaton”
representation first proposed by Henzinger et al. [8]. The output code is gener-
ated from this graph, allowing for other state machine languages to be used in
the future without requiring the backend code generators to be rewritten.

1 Statecall Policy Language

SPL is used to specify sequences of events which represent non-deterministic
finite state automata. The automaton inputs are referred to as statecalls—these
can represent any program events such as the transmission of receipt of net-
work packets or the completion of some computation. The syntax of the lan-
guage is written using a familiar ’C’-like syntax, with built-in support for non-
deterministic choice operators in the style of Occam’s ALT [9]. Statecalls are
represented by capitalized identifiers, and SPL functions use lower-case identi-
fiers. Semicolons are used to specify sequencing (e.g. S1; S2 specifies that the
statecall S1 must occur before the statecall S2).

1.1 Case Study

Before specifying SPL more formally, we explain it via a simple case study—
the UNIX ping utility which transmits and receives ICMP Echo requests and
measures their latencies. A simple ping automaton with just 3 statecalls could
be written as:



automaton ping() {

Initialize;

multiple (1..) {

Transmit_Ping;

Receive_Ping;

}

}

This automaton guarantees that the statecalls must initially operate in the
following order: Initialize, Transmit Ping, and Receive Ping. Since a re-
alistic implementation of ping transmits and receives packets continuously, we
also use the multiple keyword in our SPL specification. Using this automa-
ton, the ping process can perform initialisation once, and then transmit and
receive ping packets forever; an attempt to initialise more than once is not per-
mitted. In a realistic network a ping response might never be received, and the
non-deterministic either/or operator allows programmers to represent this sce-
nario.

automaton ping() {

Initialize;

multiple (1..) {

Transmit_Ping;

either {

Receive_Ping;

} or {

Timeout_Ping;

};

}

}

ping provides a number of command-line options that can modify the pro-
gram behaviour. For example, ping -c 10 requests that only 10 ICMP packets be
sent in total, and ping -w specifies that we must never timeout, but wait forever
for a ping reply. We represent these constraints by introducing state variables
into SPL as follows:

automaton ping(int max_count , int count , bool can_timeout) {

Initialize;

during {

count = 0;

do {

Transmit_Ping;

either {

Receive_Ping;

} or (can_timeout) {

Timeout_Ping;

};

count = count + 1;

} until (count >= max_count );

} handle {

Sig_INFO;



Print_Summary;

};

}

Observe that the either/or constructs can be conditionally guarded in the
style of Occam’s ALT, and state variables can be assigned in an imperative style.
A long-running ping process would need to receive UNIX signals at any point
in its execution, take some action, and return to its original execution. Signal
handlers are often a source of bugs due to their extremely asynchronous na-
ture [10]—SPL provides a during/handle construct (used in the example above)
which models them by permitting a state transition into alternative statement
blocks during normal execution of an SPL specification.

Once we are satisfied that our SPL specification is of suitable granularity,
the SPL compiler is run over it. The compiler outputs several targets: (i) a
graphical visualisation using the Graphviz tool [11] as seen in Figure 1 for the
example above; (ii) a non-deterministic model in the Promela language; and
(iii) an executable model designed to be linked in with an application. The
OCaml interface for the executable model is shown below:

exception Bad_statecall

type t = [ ‘Initialize | ‘Print_summary | ‘Receive_ping

| ‘Sig_info | ‘Timeout_ping | ‘Transmit_ping ]

type s

val init : max_count:int -> count:int -> can_timeout:bool ->

unit -> s

val tick : s -> t -> s

This code is linked in with the main ping application, and appropriate calls to
initialize the automaton and invoke statecalls are inserted in the code. Crucially,
we do not mandate a single style of invoking statecalls; instead the program-
mer can choose between automatic mechanisms (e.g. MPL [2] packet parsing
code can automatically invoke statecalls when transmitting or receiving pack-
ets), language-assisted means (e.g. functional combinators, object inheritance,
or pre-processors such as cpp), or even careful manual insertion in places where
other methods are inconvenient.

1.2 Syntax and Typing Rules

The SPL syntax is presented in Figure 2 using an extended Backus-Naur Form [12].
We represent terminals as term, tokens as token, alternation with {one | two},
optional elements as [optional], elements which must repeat once or more as
(term)+ and elements which may appear never or many times as (term)*.

SPL is a first order imperative language, extended from Cardelli’s simple
imperative language [13]. We distinguish between commands (without a return
value) and expressions which do have a return value. Function and automaton
names are distinct, and are considered commands. Function types are written



S_h_init_6

S_seq_8

{Sig_INFO}

S_h_exit_7

{Print_Summary}

S_do_11

S_assign_10

(!(ping_count > ping_max_count))

S_final_2

(ping_count > ping_max_count)

h_ret_5=13

S_seq_12

{Transmit_Ping}

S_or_20

ping_can_timeout

S_or_16

true

h_ret_5=22

S_either_or_15

{Timeout_Ping}

h_ret_5=18

{Receive_Ping}

(h_ret_5 == 13)

(h_ret_5 == 22) (h_ret_5 == 18)

ping_count=(ping_count + 1)

S_initial_1

S_seq_3

{Initialize}

ping_count=0

Fig. 1. Graph output of the example ping state machine. Red nodes indicate the start
and final states, black edges are statecalls, blue edges are conditional, and green edges
are state variable assignments



ρ1 × . . . × ρi, or abbreviated to ρ. Γα represents a global environment with
type signatures for functions and Γ a per-function environment containing state
variable bindings. SPL does not have any built-in functions, so all type signatures
are obtained from the SPL specifications.

Table 1 lists the imperative type judgements and Table 2 establishes the
basic typing rules. Note that procedure environments contain only the variables
passed in as arguments to the function declaration, and no global variables are
permitted. Table 3 and Table 4 list the type rules for expressions and statements.

main → (fdecl)+ eof
fdecl → {automaton | function} id [ fargs ] fbody
fargs → ( {int id | bool id} [, fargs] )

fcall-args → id [, fcall-args]
statecall-args → statecall [, statecall-args]

fbody → { (statement)* } [;]
int-range → ( [int] .. [int] ) | ( int )
statement → statecall ; | id ( fcall-args ) ;

| always-allow ( statecall-args ) fbody
| multiple int-range fbody | optional fbody
| either [ guard ] fbody (or [ guard ] fbody)+
| do fbody until guard ;

| while guard fbody
| id = expr ;

| during fbody (handle fbody)+
| exit ; | abort ;

guard → ( expr )

expr → int | id | ( expr )

| expr + expr | expr - expr
| expr * expr | expr / expr
| - expr | true | false

| expr && expr | expr || expr | not expr
| expr > expr | expr >= expr
| expr < expr | expr <= expr
| expr = expr

Fig. 2. EBNF grammar for SPL specifications

2 Intermediate Representation

This section defines the Control Flow Automaton graph used as an intermediate
representation of SPL specifications (§2.1), the semantics of multiple automata
in the same SPL specification (§2.2), and finally optimisations applied to the
CFA to reduce the number of states (§2.3). The CFA is a good abstraction for
a software-based non-deterministic model and it is often used by model extrac-
tion tools (e.g. BLAST [8]) as the representation into which C source code is



Table 1. Type Judgments for SPL

Γ ` � Γ is a well-formed environment
Γ ` A A is a well-formed type in Γ
Γ ` C C is a well-formed command in Γ
Γ ` E : A E is a well-formed expression of type A in Γ

Table 2. Basic environment and typing rules

(Env φ)

φ ` �

(Env x)

Γ ` A I /∈ dom(Γ )

Γ, I : A ` �

(Type Int)

Γ ` �
Γ ` Int

(Type Bool)

Γ ` �
Γ ` Bool

(Decl Proc)

φ,x : ρ ` C Γα, I : ρ ` �
Γα ` (fun I (x× ρ) = C)

Table 3. Expression typing rules

(Expr Bool)

Γ ` � x ∈ {true, false}
Γ ` x : Bool

(Expr Int)

Γ ` �
Γ ` N : Int

(Expr Val)

Γ1, I : A,Γ2 ` �
Γ1, I : A,Γ2 ` I : A

(Expr Not)

Γ ` E1 : Bool

Γ ` not E1 : Bool

(Expr BoolOp)

Γ ` E1 : Bool Γ ` E2 : Bool O1 ∈ {and,or}
Γ ` O1(E1, E2) : Bool

(Expr IntOp)

Γ ` E1 : Int Γ ` E2 : Int O1 ∈ {+,−,×,÷}
Γ ` O1(E1, E2) : Int

(Expr CompOp)

Γ ` E1 : Int Γ ` E2 : Int O1 ∈ {=, >,≥, <,≤}
Γ ` O1(E1, E2) : Bool



Table 4. Command typing rules

(Cmd Assign)

Γ ` I : A Γ ` E : A

Γ ` I ← E

(Cmd Sequence)

Γ ` C1 Γ ` C2

Γ ` C1;C2

(Cmd Allow)

Γ ` C
Γ ` allow C

(Cmd Either Or )

Γ ` C1..n Γ ` E1..n : Bool

Γ ` either (C1 × E1 . . . Cn × En)

(Cmd Do Until)

Γ ` E : Bool Γ ` C
Γ ` (until E = C)

(Cmd Multiple)

Γ ` E1 : Int Γ ` E2 : Int Γ ` C
Γ ` (multiple E1 E2 = C)

(Cmd While)

Γ ` E : Bool Γ ` C
Γ ` (while E = C)

(Cmd Function Call)

Γ 1
α, I : ρ, Γ 2

α ` � Γ ` x : ρ

Γ 1
α, I : ρ, Γ 2

α ` call I x

(Cmd Exit)

Γ ` exit

(Cmd Abort)

Γ ` abort

converted. Since there are a myriad of state-machine languages similar to SPL
which share the properties formalised by Schneider’s software automata [14], our
adoption of the CFA representation ensures that the back-ends of the SPL tool-
chain (e.g. the Promela output) remain useful even if the front-end language
is changed into something specialised for another task.

2.1 Control Flow Automaton

The SPL compiler transforms specifications into an extended Control Flow Au-
tomaton (CFA) [8] graph. A CFA represents program states and a finite set of
state variables in blocks, with the edges containing conditionals, assignments,
statecalls or termination operations. The CFA is non-deterministic and multiple
states can be active simultaneously. More formally, our extended control flow
automaton C is a tuple (Q, q0, X, S,Op,→) where Q is a finite set of control
locations, q0 is the initial control location, X a finite set of typed variables, S a
finite set of statecalls, Op a set of operations, and →⊆ (Q×Op×Q) a finite set
of edges labeled with operations. An edge (q, op, q′) can be denoted q

op−→ q′. The
set Op of operations contains: (i) basic blocks of instructions, which consist of
finite sequences of assignments svar = exp where svar is a state variable from
X and exp is an equivalently typed expression over X; (ii) conditional predi-
cates if(p), where p is a boolean expression over X that must be true for the
edge to be taken; (iii) statecall predicates msg(s), where s is a statecall (s ∈ S)
received by the automaton; and (iv) abort traps, which immediately signal the
termination of the automaton. From the perspective of a Mealy machine, the
input alphabet Σ consists of statecall predicates and the output alphabet ∧ is



the remaining operations. Thus a CFA graph is driven purely by statecall inputs,
and the other types of operations serve to hide the state space explosion of a
typical software model.

The CFA graph is constructed from SPL statements by recursively applying
transformation rules to an initial state I and a final state O. Figure 3 illustrates
the transformations for the basic SPL statements diagrammatically with the
circles and lines representing CFA nodes and edges. The diamonds indicate a
recursive application of the transformation rules with the initial and final states
mapped to the input and outputs of the diamond node. Nodes within the dashed
ellipses (named α, β, γ and so on) are newly created by the transformation rule.
The abort and exit keywords signal the end of the automaton and thus do not
connect to their output states. Each transformation rule has an environment
(Γ×∆) where Γ is the list of always allowed statecalls as seen in allow blocks and
∆ represents statecalls which result in a transition to a handle clause (generated
by the during/handle statement). A during/handle statement first creates all
the handler nodes and transforms the main block with the handlers registered
in the ∆ environment. A statecall node creates a statecall edge and inserts
appropriate edges to deal with allow and during handlers.

Some statements require the creation of new internal variables. The multiple
call can optionally specify upper and lower bounds to the number of iterations;
extra variables are automatically created to track these bounds in the CFA.
during/handle statements create a new internal variable to track the state
to which a handler must return. Function calls are either macro-expanded (if
only called once) or temporary variables used to push and pop arguments in a
single copy of the function graph (if called multiple times). An example of these
internal variables can be seen in Figure 1 in our earlier ping sample.

2.2 Multiple Automata

It is often more convenient and readable to break down a complex protocol into
smaller blocks which express the same protocol but with certain aspects factored
out into simpler state machines. Accordingly, SPL specifications can define mul-
tiple automata, but the external interface hides this abstraction and only exposes
a single, flat set of statecalls. The scope of automata names are global and flat;
this is a deliberate design decision since the language is designed for light-weight
abstractions that are embedded into portions of the main application code. Even
a complex protocol such as SSH [3] can be broken down into smaller, more man-
ageable automata—we have listed some of these in Appendix A. In this section,
we explain how statecalls are routed to the individual automata contained in an
SPL specification.

Each automaton executes in parallel and sees every statecall. If an automaton
receives a statecall it was not expecting it reports an error. If any of the parallel
automata report an error then the SPL model has been violated. When a statecall
is received, it is dispatched only to automata which can potentially use that
statecall at some stage in their execution.
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Fig. 3. Transformations of SPL statements into the corresponding CFA nodes



More formally, let A represent an automaton or function definition in an
SPL specification. Let V(A) represent the union of all the statecalls referenced
in A, and F(A) be the list of all functions called from A. The potentially visible
statecalls P(A) are the set of statecalls which the automaton A will use at some
stage in its execution where P(A) = V(A) ∪ {P(F0) . . .P(Fn)}. A statecall is
only dispatched to an automaton A if it is present in its potentially visible set
P(A). Since the set of externally exposed statecalls Pall = {P(A0) . . .P(An)}
is calculated by the union of all the potentially visible sets of the automata
contained in an SPL specification, it trivially follows that every statecall will be
dispatched to at least one automaton.

This mechanism allows complex protocols such as SSH to be broken down
into simpler automata which are still connected together by common messages.
The SPL compiler can output the list of statecalls which are shared between
automata as a development aid; in practise while specifying Internet protocols
we have observed that most automata share only one or two statecalls between
them (normally global messages to indicate protocol termination or auth status).

2.3 Optimisation

The transformation rules defined earlier (§2.1) result in a CFA which has a
number of redundant edges (e.g. if(true) conditionals). The SPL compiler reduces
the number of states in the CFA without modifying the graph semantics. We
iterate over the graph and perform constant folding [15] to simplify conditional
expressions. Since SPL only has expressions with booleans and integers, the
folding is a simple recursive pattern match.

The CFA is then traversed to eliminate redundant nodes: (i) for a node Qi,

all edges from the node are of the form Qi
if(true)−−−−−→ Qo or (ii) for a node Qo,

all edges pointing to the node are of the form Qi
if(true)−−−−−→ Qo. The initial state

of the automaton is left unoptimised, so that automata can have a single entry
point for simplicity.

3 Compiler Outputs

The SPL compiler outputs automata in: (i) OCaml to be embedded as a dy-
namic safety monitor; (ii) Promela to statically verify safety properties using a
model checker such as Spin; and (iii) HTML/AJAX to permit debugging of SPL
models embedded in an executing application. Although we specifically describe
an OCaml interface here, the compiler can also be easily extended to other type-
safe languages (e.g. Java or C#), allowing application authors to write programs
in their language of choice and still use the SPL tool-chain.

When describing each output, we will also analyze that output’s use in the
Melange SSH server. The Melange SSH server is written in pure OCaml, and
uses the Meta Packet Language [2] to do the low-level packet parsing, and SPL to
enforce the higher-level protocol constraints. The SSH protocol itself is defined
in the form of Internet RFC documents [3].



3.1 OCaml

The OCaml output from the SPL compiler is designed to: (i) dynamically enforce
the SPL model and raise an exception if it is violated; and (ii) provide real-
time monitoring, debugging and logging of the SPL models. The SPL compiler
generates OCaml code with a simple external interface which provides a: (i)
variant type of statecalls for that model; (ii) constructor for a fresh automaton;
and (iii) tick function which accepts a statecall and advances the automaton.

If a bad statecall is received, the automaton raises an exception. The interface
is purely functional, thus allowing an automaton to be “rolled back” by keeping
a list of previous automaton values.

The internal implementation takes several steps to make transitions as fast
as possible. Since the only edges in the CFA which can “block” during execution
are the statecall edges, all other edges are statically unrolled during compile-time
code generation. When unrolling non-statecall edges during code generation, as-
signment operations are statically tracked by the SPL compiler in a symbol
table. This permits the compiler to apply constant folding when the resultant
expressions are used as part of conditional nodes (or when creating new state
descriptors). Multiple conditional checks involving the same variable are grouped
into a single pattern match (this is useful in SPL specs with during/handle
clauses). These are necessary even when using the optimising OCaml compiler
since they represent constraints present in the SPL specification which are diffi-
cult to spot in the more low-level OCaml code output.

The performance impact of several automata running in parallel in an ap-
plication is minimal. In the Melange SSH server, written purely in OCaml and
using SPL specifications to enforce constraints in the transport and connection
layers of the protocol, it has around a 2-3% impact on the throughput of the
server during bulk copy operations (see Figure 4). Some of the SPL specifications
used in the SSH server are listed in Appendix A, with the full versions present
in the Melange source code at http://melange.recoil.org/.

3.2 Model Checking

The SPL compiler also output Promela models from the SPL input, providing
an easy way to statically reason about properties which are then dynamically
enforced by the OCaml run-time automata. In the case of the SSH protocol, the
SPL specification for the transport, authentication and global channel handling is
a complex state machine, and an exhaustive safety verification in Spin without
any additional LTL constraints (i.e. testing assertions and invalid end-states)
requires around 400MB of RAM and one minute to verify on a dual-G5 1.25GHz
PowerMac. Spin reports the following statistics:

State-vector 48 byte, depth reached 78709, errors: 0

1.41264e+07 states, stored (1.99736e+07 visited)

2.59918e+07 states, matched

4.59654e+07 transitions (= visited+matched)

7.85945e+07 atomic steps



Fig. 4. Performance of the OCaml SSH server with and without the SPL automata

The large number of atomic steps show the complexity reduction which
results from the SPL compiler inserting atomic statements in the generated
Promela to simulate the execution semantics of the OCaml safety monitors.
Before this optimisation, messages would unnecessarily be interleaved and veri-
fication took orders of magnitude longer.

We now list some of the LTL formulae applied to the Promela output of the
SSH global automaton and describe the security properties which they enforce.
Unlike some other tools which translate state machine languages into Promela
(e.g. Scott’s SWIL language for interface descriptions [16]), we never require the
manual modification of the Promela code (which would be dangerous since the
equivalence between the model and the dynamically enforced SPL automaton
would not be guaranteed any more). Instead, globally allocated state variables1

are exposed within the model which can be referenced with LTL formulae, as
shown below:

– �(a → �a) where (a ← transport encrypted) which informally reads
“once the transport is encrypted, it will remain encrypted”. This check en-
sures that the transport layer can never turn off encryption once a secure
transport has been established for the lifetime of that connection.

– �(a→ �(a && b)) where (a← transport serv auth) and
(b← transport encrypted) which informally reads “in the transport au-
tomaton, once serv auth is true, both serv auth and encrypted remain

1 Spin does not support partial order evaluation over local variables, so the SPL
compiler safely promotes automaton-local variables to a global scope.



true forever”. This guarantees that authentication can only happen over an
encrypted connection.

– �a where (a← auth success + auth failed < 2) informally reads “in the
auth automaton, success and failure must never simultaneously be true”.
This restriction lets us use two boolean variables instead of a larger integer
to store the 3 values for undecided, success or failure authentication states.

– �(a→ X(b || �♦c)) where (a← p == Transmit Auth Success) and (b←
auth success) and (c← err) informally reads “when an authentication suc-
cess packet is transmitted, it must immediately be followed by the success
variable being true or always eventually lead to an error.”

– �(a → (b || �♦c)) where (a ← p == Transmit Transport Accept Auth)
and (b← transport encrypted) and (c← err) which informally reads “if
the authentication service is unlocked then the transport layer must be en-
crypted or an error always eventually occurs”. This matches the security con-
siderations section of the SSH authentication specification in RFC4252 [17]
which states that “it assumed (sic) that this runs over a secure transport
layer protocol, which has already authenticated the server machine, estab-
lished an encrypted communications channel [...]”.

– �(a→ (b || �♦c)) where (a← p == Receive Channel Open Session) and
(b ← auth success) and (c ← err) which informally reads “requests to
open a new channel are only allowed when authentication has been suc-
cessful, or an error state is always eventually reached”. This is in line with
the security considerations section of the SSH connection specification in
RFC4254 [18] which states that “this protocol is assumed to run on top of
a secure, authenticated transport”.

These properties all reflect restrictions expressed informally in the SSH spec-
ifications [3, 17, 18], and can now be sure to either work correctly in the running
SSH server, or terminate the connection to prevent a potential security breach.

3.3 AJAX Debugging

The SPL compiler can also include debugging stubs in the executable automata,
most usefully in the form of HTML/AJAX code which can be accessed via a
web browser. This page contains a real-time graphical view of all the automata
embedded in the program, along with the set of valid states they can transition to
next. Since the granularity of the SPL automata are chosen by the programmer,
this is much more useful than the “raw” models obtained through static code
analysis which often include a lot of superfluous information.

Figure 5 shows a screen capture of the SPL AJAX debugger single-stepping
through the global SPL automaton for the Melange SSH server. The mlssh server
is blocked waiting for password authentication, having previously attempted to
authenticate via null and public-key authentication. In our experience, the de-
bugger was a valuable tool to debug complex protocol bugs in our implemen-
tation, as the single-stepping view via this debugger is significantly higher level
than the alternative provided by either the native OCaml debugger or gdb.



Fig. 5. Screen capture of the AJAX debugger embedded into the SSH daemon, showing
the global SPL automaton. The green states are valid statecalls, the pie chart shows
the 5 most popular statecalls in real time, and the list on the left show recent statecalls.



4 Related Work

The Bandera tool-chain [19] is designed to ease the model-checking of Java source
code. It includes components for program analysis and slicing, transformation,
and visualisation. Bandera accepts Java source as input and requirements writ-
ten in the Bandera Specification Language (BSL) [20]. A key design goal of BSL
is to hide the intricacies of temporal logic by placing emphasis on common spec-
ification coding patterns (e.g. pre- and post-conditions to functions). BSL is also
strongly tied to the source program code via references to variables and meth-
ods names. Much of Bandera’s utility arises from its tools for model construction
which eliminate redundant components [21], simplifying the eventual output.

The BLAST [8] project introduced the lazy abstraction paradigm for verifying
safety properties about systems code. Lazy abstractions follows the following
steps: (i) an abstraction is extracted from the source code; (ii) the abstraction
is model-checked; and (iii) the model is then refined using counter-example
analysis. The process is repeated until the model is sufficiently refined, and
the resulting proof certificates are based on Proof Carrying Code [22]. This
mechanism helps make the model extraction process more scalable by reducing
the amount of time and effort required to create abstractions of systems code.
In contrast to the conventional abtract-verify-refine loop, lazy abstraction builds
abstract models on demand from the original source code. This results in a non-
uniformedly detailed model which contains just enough detail to show a counter-
example to the developer. SPL also provides an alternative way to provide non-
uniform models by permitting the programmer to choose the level of granularity
they want to write the models in.

Alur and Wang have tackled the problem of model checking real-world pro-
tocols by extracting a specification from RFCs and using symbolic refinement
checking to verify the model against protocol implementations written in C [23].
They evaluate their technique by creating and verifying models of DHCP and
PPP, and conclude that “[manual model extraction] is unavoidable for extracting
specification models since RFC documents typically describe the protocols in a
tabular, but informal, format”.

The Model-Carrying Code (MCC) project led by Sekar combines the model-
extraction techniques described earlier with system call interception to provide
a platform for the safe execution of untrusted binaries [24]. Untrusted code is
bundled with a model of its security-relevant behaviour which can be formally
verified against a local security policy by a model checker. The execution of the
binary is dynamically verified by syscall interception to fit the model and the
application terminated if a violation occurs. As Wagner and Soto point out [25],
the low-level nature of syscall interception makes it easy for attackers to launch
an observationally equivalent attack by crafting a valid sequence of syscalls,
and so this technique is only useful as a last-resort if more formal and reliable
verification techniques against the source code cannot be applied. We have drawn
inspiration from the work described above, in particular the MCC approach of
providing static models and dynamic enforcement, but our work operates at a
higher level with explicit support from the application source code.



5 Conclusions

We have described the Statecall Policy language, which aims to provide a us-
able mechanism for programmers to integrate lightweight models into complex
networked software. We solve the code/model equivalence problem by specify-
ing models in our SPL language, and compiling them to multiple outputs for
different purposes—model checking using Spin by outputting Promela code,
dynamical enforcement executables in OCaml, and even HTML/AJAX stubs for
run-time debugging. It is currently targeted at applications written in OCaml
and model checked using Spin, but is simple to port to other languages and tools
due to its use of the Control Flow Automaton intermediate graph.

We have also described practical uses of SPL in our complex Secure Shell
server which uses several complex models to enforce critical security properties
that are only informally specified in the official SSH RFCs.

We gratefully acknowledge funding from Intel Research and the UK Engi-
neering and Physical Sciences Research Council grant EP/F024037/1.
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A SPL Policies for Secure Shell

In this appendix, we list an excerpt of the SPL policies for the Secure Shell
(SSH) protocol. The full policies may be found in the Melange source code.
There are two automata listed here which run in parallel (§2.2) and represent the
transport and authentication layers respectively. The transport layer establishes
an encrypted connection, and the authentication layer handles the negotiation
of user credentials.



automaton transport (bool encrypted , bool serv_auth) {

during {

always_allow (Transmit_Transport_Debug ,

Receive_Transport_Debug , Transmit_Transport_Ignore ,

Receive_Transport_Ignore) {

multiple {

either {

either {

Transmit_Transport_KexInit;

Receive_Transport_KexInit;

} or (encrypted) {

Receive_Transport_KexInit;

Transmit_Transport_KexInit;

}

either {

Expect_DHInit;

Receive_Dhgroupsha1_Init;

Transmit_Dhgroupsha1_Reply;

} or {

Expect_GexInit;

Receive_Dhgexsha1_Request;

Transmit_Dhgexsha1_Group;

Receive_Dhgexsha1_Init;

Transmit_Dhgexsha1_Reply;

}

Receive_Transport_NewKeys;

Transmit_Transport_NewKeys;

encrypted = true;

} or (encrypted && !serv_auth) {

Receive_Transport_ServiceReq_UserAuth;

Transmit_Transport_ServiceAccept_UserAuth;

serv_auth = true;

}

}

}

} handle {

either { Signal_HUP; }

or {

either { Receive_Transport_Disconnect; }

or {

optional { Signal_QUIT; }

Transmit_Transport_Disconnect;

exit;

}

} or { Receive_Transport_Unimplemented; }

}

}



automaton auth (bool success , bool failed) {

Transmit_Transport_ServiceAccept_UserAuth;

during {

do {

always_allow (Transmit_Auth_Banner) {

either {

Receive_Auth_Req_None;

Transmit_Auth_Failure;

} or {

Receive_Auth_Req_Password_Request;

either {

Transmit_Auth_Success;

success = true;

} or {

Transmit_Auth_Failure;

}

} or {

Receive_Auth_Req_PublicKey_Request;

either {

Transmit_Auth_Success;

success = true;

} or {

Transmit_Auth_Failure;

}

} or {

Receive_Auth_Req_PublicKey_Check;

either {

Transmit_Auth_PublicKey_OK;

} or {

Transmit_Auth_Failure;

}

} or {

Notify_Auth_Permanent_Failure;

failed = true;

}

}

} until (success || failed );

} handle {

Transmit_Transport_Disconnect;

exit;

}

}


