Improving Xen Security through Disaggregation

Derek G. Murray
University of Cambridge

Grzegorz Milos

Steven Hand

Computer Laboratory

[Firstname.Lastname]@cl.cam.ac.uk

Abstract

Virtual machine monitors (VMMs) have been hailed as thedfasi

an increasing number of reliable or trusted computing syst&he
Xen VMM is a relatively small piece of software —hgypervisor

— that runs at a lower level than a conventional operatingesys
in order to provide isolation between virtual machines: size

is offered as an argument for its trustworthiness. Howetres,
management of a Xen-based system requires a privileged, ful
blown operating system to be included in the trusted computi
base (TCB).

In this paper, we introduce our work thsaggregatehe man-
agement virtual machine in a Xen-based system. We begin by
analysing the Xen architecture and explaining why the stgtio
results in a large TCB. We then describe our implementatitich
moves thedomain builder the most important privileged compo-
nent, into a minimal trusted compartment. We illustrate hbis
approach may be used to implement “trusted virtualisatiamd
improve the security of virtual TPM implementations. Figalve
evaluate our approach in terms of the reduction in TCB siad, a
by performing a security analysis of the disaggregatecdegyst

Categories and Subject Descriptors D.4.6 [Operating Systenits
Security and Protection—Information flow controls

General Terms Design, Security

Keywords Disaggregation, trusted computing base, virtual ma-
chines

1. Introduction

Many researchers have proposed using virtual machine orenit
(VMMs) to improve the reliability, security or assuranceamfm-
puting systems [10]. They argue that the small code-bas& bfid
can be used as justification for trusting its correct openatthis
same argument has been applied to microkernels [31]. Thegss
tion is made that the integrity of the lower layers (inclglithe
VMM) is axiomatic, therefore it is possible to infer the igtéy of
components (individual virtual machines) running above7[3We
aim to use the Xen hypervisor [4] as the basis of an “openddust
computing” system [20]. Such an approach extends the purefe
trusted computing hardware into virtual machines (VMskxlgo
allows the user discretion over when to use this hardwamet ean
ables the use of trusted and untrusted software side-ley-sid

This is the author’s version of the work. It is available hieygpermission of ACM for
your personal use. Not for redistribution. The definitivesien was published in VEE
'08. http://doi.acm.org/10.1145/1346256.1346278

VEE'08, March 5-7, 2008, Seattle, Washington, USA
Copyright(© 2008 ACM 978-1-59593-796-4/08/03. . . $5.00

In order to evaluate the trustworthiness of a software syste
it is necessary to identify its trusted computing base (T.CB)e
integrity of the TCB may then be measured, and this unforigeab
measurement can be used to generate a key that may be used for a
testation, encryption and decryption operations [33]. Eay, the
TCB of a current Xen-based system comprises, in additiohéo t
VMM, a fully-fledged operating system (known &m0 and a
set of user-space tools. These tools are used to performastagks
that require elevated privileges, including the creatibnew VMs.

Due to the inclusion of user-space software in the TCB, the of
the TCB is practically unbounded, as it can include any saféw
that may be run by the administrator of the physical platfdfomr-
thermore, any measurement of the TCB cannot be used to gearan
the integrity of a virtual machine, because the system aditrdtior
may run arbitrary privileged code at any time. In effectsthn-
plies that the system administrator must be trusted, wimghairs
the usefulness of Xen in utility computing scenarios [26].

In this paper, we demonstrate the useishggregatiorio shrink
the TCB of a virtual machine in a Xen-based system. We have
transferred the VM-building functionality into a smallysted VM
that runs alongside Dom0. We had two main goals in this work.
The primary goal was to reduce and bound the TCB of a Xen-based
system, in order to improve its security. In particular, bynoving
DomO user-space from the TCB, we would remove the require-
ment that the administrator of the physical platform bet&dsWe
anticipate that this will be relevant for the users of vittsetion in
utility computing. A closely-related goal was to demontgrihat a
VM running on a disaggregated system maintains the same- confi
dentiality and integrity properties as a physical machéssuming
the inviolability of the TCB. This should allay many concsrmwver
switching to a virtualised approach.

We begin by introducing the Xen architecture, the domaitdbui
ing process, and how these relate to the TCB of a Xen-based sys
tem (Section 2). We then describe our framework for selgcéin
TCB for the disaggregated solution, and introduce new riaifer
evaluating a TCB that should be considered in addition tadhe
number of lines of code (Section 3). We discuss the impleatiemt
of our disaggregated domain builder design, which has adses:
sitated the development of a lightweight inter-VM commuauticn
mechanism (Section 4). We evaluate our disaggregated agipro
against our primary goals by enumerating the contents of €@
and performing a security analysis (Section 6). Finallypcaesider
related work (Section 7) and draw conclusions (Section 8).

2. Background

The existing Xen VMM architecture and privilege model have
implications for security, and enable an administratoratcetfull
control of all virtual machines running on the same hostslt i
therefore impossible for the users of a virtual machine tsttr
in the confidentiality and integrity of that virtual machin€his

may inhibit the uptake of virtualisation, especially in ttlass of
applications where confidentiality is required by law.

In this section, we provide a brief overview of the Xen arebit
ture (Subsection 2.1), describe the domain building po¢8sb-
section 2.2), and discuss the design of Xen with respect taisted
computing base (Subsection 2.3).

2.1 Xen architecture

The traditional representation of a Xen-based system sisews
eral virtual machines, drawn separately and side-by-sid®op of
the Xen VMM (hypervisor), which itself is positioned aboveet
platform hardware [4]. A single VMDomQ is distinguished as a
management or control VM, which is always booted by the hyper
visor, and contains the control plane software. Howevés icture
ignores the trust relationships between DomO0 and the réngain
VMs. In our work we aim to reduce and bound these trust refatio
ships, so that DomO can accurately be positioned sided®yvsith
other VMs.

Xen makes extensive use @aravirtualisation in order to
achieve good performance. This process entails porting éM k
nels to run on a new machine architecture that correspontieto
support provided by the VMM. On the x86 architecture, fous-pr
cessor rings are used to define privilege levels. In most camm
operating systems, the kernel runs in ring O (the highestigge
level), and user processes run in ring 3 (the lowest prigilegel).
Xen must have full control over and protection from the VMatth
it hosts, so it runs in ring 0. VM kernels are paravirtualigedrder
toruninring 1. User processes continue to run in ring 3.

Xen provides many mechanisms for communication. The most
primitive is thehypercall which is an invocation of the hypervisor
by a guest VM. A hypercall is analogous to a system call in con-
ventional operating systems, and is also implemented ussujt-
ware trap to transfer control to the hypervisor. Hypercailislever-
aged to build higher level communication primitives. Intmardar,
in order to facilitate inter-VM communication, Xen provilevent
channelsand a mechanism to establish shared memory regions [4].
Shared memory can be established viaghant tableinterface or
usingdirect foreign mapping§l4].

Event channels are a lightweight event delivery mechariism t
may be used both to virtualise interrupts and enable contatiah
between VMs. They may be used to send only a single bit of
information, and are typically employed to synchronisedpicers
and consumers in virtual device drivers.

A grant reference is the index of an entry in a VM-owned grant
table. Each entry contains the physical address of the page t
granted, the ID of the VM to which access is granted, and acces

[Load kernel image fromdisk | f-------------
v
l—l Allocate physical memory map
Yy

4—[Copy kernel image into new VM
Y
4—[Set up initial page tables for new VM

L]
4—[Launch new VM
Figure 1. Outline of the steps involved in building a new VM

(DomUu). Privileged operations are shown as bold arrowsadir
foreigh mappings are shown as dotted lines.

Xen

)
}C/'
)

robustness [4]. However, the delegation of this task to-space
processes exposes the special privileges to all user-ppacesses
in DomO, which has implications for the trusted computingéa
(see§2.3). In this subsection, we describe the process of byjldin
paravirtualised VM. Thanks to paravirtualisation, manytaf low-
level steps involved in a conventional x86 OS boot procassh(as
interactions with the BIOS, and the use of 16-bit real mode) lne
elided.

The main steps in the domain building process are shown in Fig
ure 1, with privileged operations (as defined late§3nl) shown as
bold arrows. Firstly, the kernel image (and, optionally, iaitial
ramdisk) are loaded from disk into the domain builder's mgmo
The image is parsed in order to extract the executable caieme
and obtain any parameter values. Following this, the buitde
quests that the hypervisor allocates physical memory femgw
VM. This is not depicted as a privileged operation, becatideés
not affect the confidentiality or integrity of any VM, but ian lead
to denial of service, so its use should be restricted. Thedtém-
age is then loaded into the new VM, using a direct foreign rnrapp
Following this, the initial page tables for the new VM arectdhted
and written into the new VM, using multiple direct foreign paa
pings. Finally, the new VM is launched, by setting the vitGRU
registers to a start-of-day configuration, and unpausiag/i.

The domain builder is implemented by the_linux_build
function and its callees ihibxc, a C library that provides low-level
control over VMs. It is implemented in an object-orientedH@n,
passing astruct xc_dom_image Object between steps to com-
municate intermediate results. Direct foreign mappingsieple-
mented by thexc_map_foreign_range function, and setting the
virtual CPU registers is performed by the_set_vcpucontext

control flags. When the grantee wants to map a granted page, itfunction. Thelibxc library is linked into thexend management

makes a hypercall, specifying the grant reference, grgiviM 1D,
and instructions for where to map the granted page.

Direct foreign mappings are only possible in a privileged VM
typically only Dom0O, and are used for platform management. A
privileged VM can request that the hypervisor maps a specific
physical frame of memory from a specific VM into one of its page
tables. It is possible to make direct foreign mappings intthb
the kernel and user-space. User-space mappings are made by
privileged command drivepgivcmd), the use of which is typically
restricted to the administrator using file permissions.

2.2 Building a new VM

In the Xen architecture, the creation of new VMs (knowilasain
building) is carried out by management software in Dom0, which
uses its special privileges in order to access the addrese smd
processor state of the new VM. The original design decisias w
that the domain building code is relatively complicated ahduld

be omitted from the hypervisor for reasons of compactness an

daemon, which is implemented in Pythatend implements the
Xen API, which is an XML-RPC-based API that several tools use
to manage a Xen-based system [35].

2.3 The TCB of a guest VM

We analyse the trusted computing base (TCB) of Xen for twe rea
sons. Firstly, it is received wisdom that a smaller TCB cgprnds
b more trustworthy code [15, 17, 30]; therefore demorisigethe
large size of the TCB gives motivation to our work. Secondly,
is necessary to enumerate and measure the TCB in order tb buil
trusted virtualisation systems, which we discuss in Sadio

The term “Trusted Computing Base” is defined variously in the
literature, so it is useful to agree on a definition at the etuts
this discussion. Hohmutgt al refer to “the set of components on
which a subsystem S depends asT@&B of S’ [17]. We refine this
and define the TCB as “the set of components which a subsystem
S trusts not to violate the security of S”. We draw this distiion
because, although S may depend on the piece of code which, for

example, loads it from disk into memory, that piece of codg be
unable to violate the confidentiality or integrity of S, ahétefore
should not be considered part of the TCB.

We now turn to analysing the TCB of a guest virtual machine.
The TCB must include Xen itself, because the hypervisor mns
a more privileged processor ring than the guest, and so itanay
cess all memory and processor state. The Dom0 kernel igliedlu
in the TCB, because Domo0 is privileged, and the kernel caremak
privileged hypercalls. The domain builder process must bésin-
cluded in the TCB, because it writes to the address spaceeof th
guest VM and configures its processor state: if it should omaif
tion, the security of S could be compromised. The domairdeuil
code is dynamically linked into the Python interpreter thats
xend, SOxend and the interpreter must be included in the TCB.
However, the domain builder accesses the guest address spac
ing the privileged command driver, which is exposed to adl-pr
cesses that run with administrator privileges in Dom0. €fae,
all such processes must be included within the TCB.

This poses a challenge when building trusted virtualisesigs-
tems. A trusted computing system relies on a chain of integri
measurements that inductively guarantees system intefgjt
Therefore, it is necessary to communicate the integrithefthys-
ical platform to each VM. However, if arbitrary software cha
run in DomO at the discretion of the platform administratbe
integrity chain may be undermined at any point while a VM is-ru
ning. For example, the integrity of the virtual platform nmas/used
to decrypt a secret, after which the TCB may be altered byingnn
some malicious software in DomO. The secret now exists as-pla
text in the memory of the guest virtual machine, and the rmli
software may read it by performing a direct foreign mappifg o
the relevant page frames. We discuss this example in moaé ohet
Subsection 5.1.

Therefore, we have shown that the TCB of a guest virtual
machine running on Xen is both indefinitely large and dynamic
This raises questions about the robustness of such a syatem,
further precludes the use of Xen for trusted virtualisgtiohere
the system administrator is not trusted.

3. Selecting the TCB

The goal of our disaggregation is to reduce the TCB of a Xesetha
system. Therefore, in order to make an appropriate partéfdhe
code base, it is necessary to determine which sections efroogt
be trusted, and which may be untrusted. In this section, weige
definitions that motivate our discussion of the TCB of a gyste
(Subsection 3.1). We then argue that the “lines of code” imetr
for determining trustworthiness is insufficient, and indfwoe two
new criteria (Subsection 3.2). Finally, we illustrate tise wf these
definitions for our disaggregation of the domain builder iKem-
based system (Subsection 3.3).

3.1 Definitions
We want to be able to identify trusted and untrusted coderéFhe
fore, we make the following definitions:

Privileged Operation An operation that can be used to subvert
the confidentiality or integrity of a system or subsystenhi¢T
differs from the definition of a privileged operation in Xen,

which is broader, and includes all management tasks, such as

creating and destroying VMs.)

Sanitising Operation An operation that checks that all potentially-
untrusted inputs it receives are valid.

Invokable Operation An operation that may be invoked (from a
particular position in the code base) without indirectioa &
sanitising operation. An operation is invokable from pqirif

it is implemented in the same address space asd in the
same or a less-privileged protection ring. An operationiss a
invokable from pointp if there is a call path to that operation
that does not include a sanitising operation.

Using these the definitions, it is clear that privileged agiens
must be implemented in a separate address space and/artjomote
ring from untrusted code. The TCB may alternatively be defiae
the set of code positions for which any privileged operat®an
invokable operation.

3.2 Criteria

Itis commonly held that the trustworthiness of a TCB is a fiorc

of the number of lines of code that it comprises [15, 17, 3@, 31
This assumption is typically based on studies that relafisvace

size to the number of bugs [5, 24]. Furthermore, it is ativact
because it yields a metric that can be used to compare swutio
Whilst we accept that a smaller code base can be easier to com-
prehend, we believe there are scenarios in whidtingcode can
improve trustworthiness. Therefore, in this section, weoitiuce

two new criteria for evaluating the trustworthiness of a T

size of the interface and the size of the TCB state space.

As we have stated in the previous subsection, it is necessary
to sanitise the untrusted inputs to trusted, privilegedecdds the
number of interface functions in the TCB increases, so dbes t
amount of sanitising code. Similarly, a less constrainge fe.g. a
pointer to a region of memory that is used as an input) mayirequ
more complicated sanitisation than a more constrained(g/gean
integer ID value).

An error in the sanitising code is likely to allow a malicidys
constructed input to compromise the TCB. For example, Sdraatk
al observe a large number of security vulnerabilities thatltéom
using an unsanitised string as the first argumergrtintf [29].
Therefore, minimising the complexity of the sanitising eoid
more important than doing the same for other trusted codsiliBa
and Perricone revealed the unexpected result that, aszbheta
module increases, its error rate decreases [5]. They paithis
may be due to a uniform distribution of “interface errorsta@s all
modules. This agrees with our intuition that the interfdoewd be
minimised, as interfacing code is the main source of ciligceors.
Furthermore, an increase in the size of the TCB should bestele,
if it reduces the size or complexity of the interface.

Our second criterion is the size of the state space. We sugges
that, where possible, TCB interface functions should benato
operations, and, if they modify global state, this shoulthave an
effect on thebehaviourof subsequent invocations. In particular, we
discourage a TCB design whereby it is necessary to pair ipesa
together (such as lock and unlock operations), or where tisean
assumed ordering to the operations. As such operationiégoaé,
the number of possible test cases increases factorialty,tlad
likelihood of making an obscure error also increases. Theze
if it is possible to create an atomic operation by includingns
previously-untrusted code in the TCB, we would prefer toisat
smaller TCB.

We can illustrate our two criteria using the following sirapl
example:

1. Invoke privileged operatiof;

2. Perform untrusted calculatiofi, based on the result d@?;.
3. Invoke privileged operatiof?, based on the results & and
U.

ShouldU be implemented inside or outside the TCB? Its size
(number of lines of code) and ability to run arbitrary instians
should first be considered.

[Load kernel image from disk

v (a)
G [Allocate physical memory map
|
L (b)
[Copy kernel image into new VM
v :[Map foreign pages]

[Set up initial page tables for new VM

v
[Launch new VM

(a) U outside TCB (b) U inside TCB

()

IRVAN

-P{ Set virtual CPU registers]

Figure 3. Three possible TCBs for the domain buildstB. This
diagram only shows which parts of the domain builder (from
libxc) are part of the TCB, and omits lower-level code for clar-

ity.

Figure 2. Location of data paths (black arrows) and sanitising code
(bold lines) depending on the position@frelative to the TCB.

Figure 2 illustrates the data paths between the three apesat
and the location of sanitising code for each case. When Utgsdri
the TCB (Figure 2(a)), it is necessary to sanitise the inpiit the
external input taP, and the output ofy andU. The output ofP; is
generated by the TCB, and so we know that it is valid; however,
has left the TCB and must be sanitised, because the untrcmsted
could have modified it. If U is moved inside the TCB (Figure)2(b
it is only necessary to sanitise the external input®tpU and Ps.

The outputs ofP; andU need no longer be sanitised, because they
never leave the TCB.

In terms of the state space, our decision depends on whEther
andP; have an effect on the state of the system. For example, are all
callstoP; andP» paired? What happensh is invoked beforeP; ,
or if P is invoked without invokingP,? What happens if another
operation is invoked between the invocationsFaf and P>? An
incorrect implementation of mutual exclusion in this comteould
lead to liability inversion or deadlock. If th&;; U; P> sequence
were implemented as an atomic operation within the TCB,ethes
problems would not arise.

Obvious tensions exist between the criteria that we have de-
scribed here. For example, as one incorporates all possibfeic
sequences of privileged operations into the TCB, the sizéhef
TCB interface grows, and the number of lines of code in the TCB
also grows. As the size of the TCB interface is reduced, timetau
of lines of code in the TCB may grow. Neither of our suggested
criteria are intended as a panacea for choosing an app@piGB,
but we believe that they should be considered as part of ttedewh
picture when designing a secure system.

trusted virtualisation, which we discuss further in Sattto The
remaining question is where to place the sanitising code.

Figure 3 shows the domain builder process, annotated witke th
possible TCB demarcations. We determined that TCB (a), lwhic
places the entire domain building process (as describedbgeg-
tion 2.2) inside the TCB, was the best solution. The interfae-
tween trusted and untrusted code istlkel inux_build function,
which is called by the Python-based tool stack to performdhe
level build process (as opposed to the high-level configumatf
virtual devices, which remains in Dom0).

This approach has two main advantages. First, the size afthe
terface is reduced to a single function, which has no argtsrbat
are used as arguments to privileged operations (exclutimy M
ID, which is straightforwardly validated). Therefore, thecessary
amount and complexity of sanitising code is minimised, aitte
errors here are critical, this improves our confidence irstwirity
of the partitioning. Furthermore, the interface to the TGBarts a
single, atomic function, which encapsulates all of itses&ther on
its stack, or on the heap in regions referenced only by statk
ers. Therefore the TCB is effectively stateless, and it tpogsible
to use the interface to manipulate the TCB into an unexpesttgd.

Note that we include the “Load kernel image from disk” step
inside the TCB. At first, it appear that we must trust the syste
call, file system and block device code that fulfil such a regue
However, it is possible to include this step inside the TCB by
using atrusted wrapper as described by Singaravedt al [30],
around the file-handling code. We use an approach called “I/O
. forwarding”, which is described in Subsection 4.1.

3.3 Redrawing the TCB of a guest VM We now consider the alternative approaches depicted in Fig-
In this subsection, we present our redrawn TCB for a disagdeel ure 3. The domain builder process incorporates five mairsstep
Xen-based system. We concentrate on the domain builderjss i which three use privileged operations. TCB (b) places ohésé

the fundamental operation that has led to a large TCB for Xen- three steps inside the TCB, which is therefore smaller (iadiof
based systems. In order to reduce the size of the TCB, it is nec code) than TCB (a). The TCB is then responsible for copyirgg th

essary to ensure that privileged operations are not invekiatm kernel image into the new VM, building the initial page tahland
untrusted code. In a VMM-based system, this is possible byimgo launching the VM. However, the second step in the build psce
the privileged operations to another VM, and interposingrats- (“Allocate physical memory map”) generates a potentitaige
ing operation on all call paths between untrusted and tusbele. amount of data that must be validated before it is used irtside
In this subsection, we concentrate on the functionality thalis- TCB. These data originate in the (trusted) hypervisor, aedlly
aggregated; Section 4 concentrates on the practical ingpltation would not require validation. The process of validation idobe
of disaggregation. so similar to the original process of retrieval, that it iduadant to
By placing a sanitising operation (s€8.1) between DomO perform this step outside the TCB.
user-space and the privileged operations in the domairldmiit Minimising the number of lines of code yields TCB (c) in

is possible to remove DomO user-space from the TCB. Theaxefor Figure 3. Here, the TCB includes only the implementationmép
since only the hypervisor, DomO kernel and part of the domain foreign pages” and “set virtual CPU registers”, and the asagy
builder remain in the TCB, it is possible to measure the TCB at sanitising code that is required to ensure that these fumstire not
boot and be confident that it will not change. This is crucal f abused. However, because of the flexibility of these funstithe

sanitising code would have to be almost as complex as thestatt
code from which it has been partitiori'e(As we have stated, the
amount and complexity of sanitising code should be minithiss
any error here could result in a security vulnerability.

In conclusion, choosing our disaggregation gives a useful e
ample of the criteria for a trustworthy TCB that we preserited
the previous subsection. We chose the largest of the thr&s DE-
cause this minimises the size of the interface (and hencntiogint
of sanitising logic), and introduces only a single, atonpemtion
to the TCB interface.

4. Implementation

In this section, we describe the implementation of the rediicCB
that we chose in the previous section. The principal compbise
the domain builder service (Subsection 4.1). In order tqetp
the domain builder, we also implemented a lightweight remot
procedure call mechanism (Subsection 4.2) and a user-gpiaee
for accessing granted memory (Subsection 4.3).

4.1 The domain builder

We ported the domain builder to a minimal paravirtualisedrap
ing system, called MiniOS. MiniOS was developed as an exampl
of how to implement the various features of paravirtualsatn
Xen, such as event channels, granted pages and hypertétfis. |
cludes no physical device drivers or file systems. A rudiment
virtual network driver is included, but there is no TCP/IBcH in
the standard version. The small code base and the absenampf m
common exploit vectors make MiniOS a suitable basis fording

a trusted service on Xen. However, the lack of functionglibges
some problems, which we will address in this section.

The main challenge when implementing the disaggregated do-
main builder was that the existing code relies on file system a
cess, in order to load kernel images and, optionally, iméedisks
for a new guest. However, it is difficult to load a file into owr-d
main builder, because, as we have already remarked, Min©S i
cludes no physical device drivers, file systems or netwarkiack.
We have rejected adding any of these to MiniOS, because teey a
non-essential, complex pieces of code, which constitutensec-
essary burden on the TCB. Instead, we forward the file sysidis) ¢
such afopen andfread, to Dom0. Dom0O runs an I/O forwarding
service, calledrfsback, which receives the requests and executes
them locally, returning the results to the domain builder.

Figure 4 illustrates how the various processes communinate
the disaggregated domain building process. To begin theeps
xend, through the linkedlibxc, makes an IVMC request (de-
scribed in§4.2) to the domain builder (known d3omB), speci-
fying the filenames of the kernel and initial ramdisk, the @m
ID and the amount of memory to be allocated. The domain builde
loads the kernel and initial ramdisk by forwarding 1/O catishe
vEsback daemon in DomO0. The domain builder allocates a phys-
ical memory map as before, then installs the kernel imagdgalin
ramdisk and initial page tables in the new VM. Finally, thenddn
builder launches the new VM, and returns contratéad in Dom0O.

4.2

In order for the management software to control the domaidé

it is necessary for Dom0O and DomB to communicate. However, as
we do not want to introduce a TCP/IP stack into MiniOS, it i$ no
possible to use existing network-based mechanisms torpetfos
communication. Instead, we have borrowed the concept ef-int
process communication (IPC) from the microkernel comnynit

Inter-VM Communication

11t must effectively ensure that the sequence of invocatiotsparameters
correspond to the correct domain-building procedure.

DomO DomB

IVMC call

v
Load kernel image from disk
v

Allocate physical memory map

v
Copy kernel image into new VM
v
Set up initial page tables for new VM

L]

Launch new VM

File request

vis File data

back

xend

)
)
it
}\,

)

< I

IVMC return

Figure 4. Communication relationship between the control soft-
ware in DomO and the disaggregated domain builder (DomB3. Th
IVMC mechanism is described §#.2.

and implemented synchronous procedure call semanticg asig
the facilities present in a VMM-based system.

IPC is often highlighted as a method of communication be-
tween trusted and untrusted components in a microkerrssdeba
system [17, 30]. The use of a VMM as the basis of a secure system
is frequently criticised, because VMMs lack, as a primitiaay
notion of inter-process communication. Indeed, it is sste[17]
that the only way to emulate IPC is using a remote procedute ca
(RPC) protocol [8] over a virtual network. Whilst this appoh is
feasible between full operating systems, it is not suit&iemall-
TCB applications that might lack a networking stack. Thigegi
rise to our inter-VM communication (IVMC) implementation.

What do we mean by inter-VM communication? Clearly, a
combination of the mechanisms in Subsection 2.1 can be used
by two VMs in order to communicate: in fact, this is how the
virtual devices in Xen are implemented [14]. We assume that t
IPC advocated by Hohmutht al is “message transfer between
threads” [21], using which synchronous procedure calls lsan
developed.

We were inspired by the use of an Interface Definition Languag
(IDL) in the applications built on the L4/Fiasco microkerfi7].

The Dresden IDL Compiler (DICE) obviates the need to write-lo
level communication code, and presents a C or C++ procedural
interface for IPC [1]. It contains front-ends for parsing B@nd
CORBA IDL, and back-ends that generate code for the L4/Biasc
API and Linux Sockets. Although the interface to the domain
builder is relatively small and simple, an IDL compiler elezb
rapid experimentation with different interfaces, and carubed in

the disaggregation of other functionality. Furthermoteaises the
possibility of portable applications running on both XemiMDS

and L4/Fiasco.

We developed a new back-end for DICE that can be used on
a Xen system. The generated code uses a generic communicatio
object that encapsulates a shared buffer and user-pronmtéita-
tion function. The shared buffer is created by the clieraaiting
a page and using its grant table to grant access to the séneer;
notification is handled using an inter-VM event channel.

An IVMC end-point is identified by the ID of the server VM,

a grant reference for the shared buffer, and the ID of the-inte
VM event channel. These numbers may potentially changedmsstw
boots of the physical platform, and so some mechanism isrestju

to bind the name “DomB?” to the correct endpoint. In the sirsple
case, the identity of the DomB virtual machine is known to the
VMM at boot. DomB can then make a hypercall to set the grant
reference and event channel ID after it has booted. Dom@jrgge

the endpoint details, can then make a hypercall to discdweset
details. Since the VMM is part of the TCB, the correctnesshef t
details can be trusted.

4.3 The user-space grant table device

In order to complete our disaggregation, and disable thélgged
operations in DomoO, it is necessary to remove all uses ofitieetd
foreign mapping operation from DomO user-space. The gedoie t
concept (sed2.1) provides a mechanism for controlled sharing —
akin to capabilities — but this has hitherto only been atééién the
kernel. Therefore, we implemented a user-space grant dabliee
(gntdev), which provides a means of mapping one or more granted
pages directly into the user-space of a virtual machine.

We implemented gntdev as a Linux kernel driver, which is ma-
nipulated using the sanamap andioctl system calls that are used
with the privemd driver. In addition, we provide library functions
in 1ibxc for performing common operations, such as mapping a
single grant reference from another VM. These library fiomg
are used to replace instances of the direct foreign mappegae
tion, and to map the shared buffer used for IVMC.

The principal challenge in developingntdev was the tran-
sience of user processes, when compared with virtual meshin
It was necessary to make a slight modification to the Linutueir

memory subsystem, adding a hook that is called when a page ta-

ble is cleared, in order to unmap grant references corradign a
process crashes. Furthermore, it was necessary to addeesase

where pages are granted by a user-space process, mappesd by arny.

other VM, and not unmapped before the process dies. In this, ca
we ensure that the granter operating system does not reake su
pages until they are unmapped, in order that no informathmug
other processes is leaked.

5. Trusted virtualisation

Our work in this paper lays a foundation fiousted virtualisation

By bounding the TCB of a Xen-based system, we have made it
possible for the hypervisor and DomO to take their place iharc

of trust that extends from the hardware Trusted Platform tod
(TPM) into each VM. In this section, we address the problems
with the status quo in trusted virtualisation (Subsectial) Bnd
present our design for a trusted VMM using disaggregatiarb{S
section 5.2).

5.1 Problems with the status quo

Xen already incorporates virtual TPM (VTPM) software thaym
be used for trusted virtualisation. It was developed with stated
requirement of a “Strong association of the Virtual TPM wiitie
Underlying TCB” [7]. The VTPM is implemented as a virtual
driver, with a front end that matches the interface of a ptalsi
TPM, and a back end in Dom0 that performs TPM emulation and
multiplexing of requests to the real physical TPM. For addil
security, the authors show that the back end can be impleent

a secure CoOprocessor.

Two issues with the implementation of the virtual TPM under-
mine its effectiveness, however. The first is that there isom-
munication between th&ibxc domain builder and the VTPM
software. Therefore, any attempt to measure the kernel @ind i
tial ramdisk, then store it in the VTPM, is vulnerable to a&im
of-check-to-time-of-use (TOCTOU) attack [9].

DomB DomU
(::)_“
HW TPM VTPM — | [Idevitom i
Driver Manager | P

I

v
Figure 5. Design of a trusted virtualisation system, using the dis-
aggregated domain builder (DomB).

1. The hypervisor and DomO0 are measured on boot, and the plat-
form is brought into a trustworthy state. A new VM, DomU, is
created.

. DomU decrypts some data, based on the virtual platform con
figuration. The data now exists as plaintext in DomU’s memory

A new executablememorysniffer, is run in DomO, which
modifies the physical platform configuration (and, hence, th
virtual platform configuration of DomU) to a no-longer-ttwsrthy
state.

3.

memorysniffer maps each page of DomU’s physical memory
until it finds the unencrypted secret.

At no point in the above steps does any component malfunction
yet it is possible for Dom0 to compromise the confidentiatfy
DomU. A similar argument can be made for integrity.

5.2 Trusted VMM using disaggregation

In this subsection, we present an improved design for Jiging
the TPM, using the disaggregated domain builder.

Figure 5 illustrates our design for the trusted virtualmasys-
tem. DomB is expanded to include a VTPM Manager, a hardware
TPM driver and virtual platform configuration storage. Aretm
et al previously ported the VTPM Manager to MiniOS [2]. The
VTPM front end (dev/tpm) is unchanged, but now connects to
the VTPM Manager in DomB.

The build process is modified so that an integrity measurémen
of the kernel, initial ramdisk and any configuration optiimtaken
after the relevant files have been loaded into DomB’s memory.
At this point, a new VTPM instance is created for the domain,
and the measurements are stored in one or more virtual PGRs. B
performing the measurement here, the VTPM is not vulnerable
a TOCTOU attack, as the kernel that is measured is guaratdeed
be the same as the one that is loaded. As in the existing VTPM
implementation, the first nine physical PCRs are mappedahto
virtual TPMs. In order to associate the virtual platform twihe
physical platform, a driver for the hardware TPM is includad
DomB, and Xen gives DomB exclusive control over the device.

The physical platform configuration is measured by a trusted
bootloader, such as the OSLO bootloader developed by Betnha
Kauer [18]. This loads and measures the hypervisor, Domieker
and domain builder, and stores the measurements in the agrdw
TPM.

Itis possible to refine this model in order to allow dynamic-ke

The second issue is that the TCB may change at any time, due tonel module loading in Dom0. The DomO kernel must be modified

the administrator running a new executable in Dom0. Theeissu
not mitigated by using a DomO operating system that is matitéie
measure all of its executables as they are run, such as tigasted

by Saileret al [28]. Consider the following series of events:

to make an IVMC call to DomB before a new module is loaded.
The IVMC call would contain a measurement of the loaded mod-
ule, and DomB would update the physical platform configorati

on DomQ’s behalf. DomB would only perform the extension, and

dom0 domO dom0
User User User
I"domB domB
Kernel Kernel | | Kernel | |
Xen | Xen | | Xen |
(a) Existing (b) Disaggregated (c) Ideal

1000s of lines of code

Component - —=———7xsp T Python
Hypervisor 98 3 -
DomO kernel 1500 9.6 —
Dom0O drivers| <2400 | < 2.6 -

+ DomB 9.2 0.5 -
— libc 690 15 -
- Python 220 - 140
- libxc 9.9 - -
- xend 2.4 - 17
+ Added 9.2 0.5 -
- Removed 920 15 160

Figure 6. lllustration of the TCB contents for the existing, disag-
gregated and ideal Xen-based systems.

return a successful response, if no guest VMs were curremtly
ning on the physical machine. Otherwise, loading the mocioilgd
potentially compromise the running VMs, so the extensiomiidio
not be performed, and DomO would be instructed not to load the
module. As the DomO kernel is part of the TCB, it could be &dst

to respect the decision of DomB.

6. Evaluation

In this work, we aimed to improve the trustworthiness of a Xen
based system. In this section, we evaluate our solutiondpedhti-
tatively and qualitatively, by enumerating the contentshef TCB
before and after disaggregation (Subsection 6.1), peifoya se-
curity analysis of a disaggregated system (Subsection@n@)dis-
cussing the limitations of our approach (Subsection 6.3).

6.1 Reducingthe TCB

Figure 6 shows three illustrations of the TCB in a Xen-based
system, representing the existing, disaggregated antiddses.

The existing case (Figure 6(a)) shows the TCB of a system
running the current version of Xen (versidr). The TCB of every
guest VM includes the hypervisor, the DomO kernel, and ar-us
space code that the administrator runs in Dom0. This include
Python interpreter that runs thend control daemon, th@ibxc
low-level control library, and a C librarnfbc).

The disaggregated case (Figure 6(b)) shows the curreetaftat
our work. The TCB of every guest VM includes the hypervisoe, t
DomO kernel, and a MiniOS-based version of ii®xc low-level
control library. The DomO kernel is included in the TCB besau
it is responsible for interaction with physical input/outplevices;
however, it no longer exports privileged operations to {sg&rce.
Thexend control daemon and the Python interpreter are no longer

Table 1. Changes to the TCB between the existing and disaggre-
gated approaches. Rows beginning witindicate where code was
added to the TCB; rows beginning with indicate where it has
been removed.

the privemd driver, which enables user-space processes run by
the administrator to make privileged hypercalls. By remguihis
feature from the driver, it is no longer possible for usesesp
processes to perform a direct foreign mapping, or alter thiaal
CPU state. This step removes DomO user-space from the TCB.
Figure 6(c) illustrates the ideal TCB. At present, this i$ fea-
sible. Several authors have commented that a malconfigeseded
that can perform Direct Memory Access (DMA) can access any
part of physical memory [14, 15, 17], and its driver must ¢fiere
be included in the TCB. The introduction of Input/Output Mam
Management Units (IOMMUSs), which in effect create virtudra
dress spaces for DMA, should help to mitigate this probleml{6
will be necessary to add code that controls the IOMMU, eitber
the hypervisor, or in a small, trusted VM that runs beside Bom
Without an IOMMU, we must trust the physical device drivensd
since these run within a Linux kernel, we must trust the Keitne
self.

6.2 Security analysis

In this subsection, we evaluate a disaggregated Xen-baséehs
in terms of two security propertiesonfidentialityandintegrity. We
consider two unauthorised sources of attacks: the admatastof
the physical platform (hereafter abbreviated to DomO-ajnand
other unprivileged VMs on the same physical host.

We take the definitions of confidentiality and (data) intggri
from the NIST Handbook on Computer Security [23]:

Confidentiality “A requirement that private or confidential infor-
mation not be disclosed to unauthorized individuals.”

part of the TCB, because they cannot be used to undermine the

confidentiality of a VM, and any attempt to undermine intggri
would be detected (s&®.2 for details).

Table 1 compares the TCB contents for the existing and disag-
gregated cases. The following software was analysed: Xesiore
3.1 (for the hypervisor, DomO kernel (versi@n6.18-xen), DomO0
kernel drivers, libxc and xend), Python versiad.4 and glibc ver-
sion 2.6. We used versior2.26 of the SLOCCount tool [34] to
perform the analysis. We analysed only platform-indepahdede
and platform-specific code for the86_32 architecture. We did not
analyse testing code. The table does not include otherspsere
code in DomO that would be counted as part of the TCB in the
existing version, but instead concentrates on a minimal ®oom-
figuration.

In addition to the amount of code in the TCB, the size of
the interface must be considered. The existing versiorudes

Integrity “[A] requirement that information and programs are
changed only in a specified and authorized manner.”

In our analysis, we use a physical host as the benchmark for ou
security properties. We do not consider #hailability of a VM,
because, if it were a physical machine in a managed datarcthge
machine could be powered down arbitrarily, and it is not jlibss
for software to prevent this. Therefore, thend operations of cre-
ating and destroying VMs are not considered privileged apens.
Similarly, we assume that all input/output channels andiséary
storage are insecure, because on a physical machine thddéeo
intercepted by, for example, wiretapping a physical cablgans-
planting a hard drive into another machine. Finally, we assthat
encryption is unbreakable and we do not consider timinglestan
this analysis.

We describe the results of our analysis for the virtual CPU
(6.2.1), physical RAM (6.2.2), secondary storage (6.h&jwork
(6.2.4) and kernel image (6.2.5).

6.2.1 Virtual CPU

Each VM has one or more virtual CPUs (VCPUSs), which are stored
in a hypervisor data structure when not in use by the phy€ieaJ.
The confidentiality of a VCPU may be attacked by a hypercait th
gets the contents of that VCPU. The integrity of a VCPU may be
attacked by a hypercall that sets the contents of that VCPU.
Neither Dom0O-admin, nor an unprivileged VM has access to
either hypercall, and so neither can undermine the confalipt
or integrity of a VCPU. Only DomB can use the “set” hyperca,
part of the build process.

6.2.2 Physical RAM

In order to map a page of RAM from another VM, it is necessary to
create a mapping to that page in the attacking VM'’s page table

However, all active page tables are protected by Xen, and any

physical network interface. The confidentiality of netwdr&ffic
may be attacked by attaching a packet sniffer to the virteadark.
The integrity of network traffic may be attacked by modifying
the bridge software to change the contents of packets asatieey
forwarded, or injecting false packets into the network.

An unprivileged VM will only see packets that are addressed t
it, and it cannot send packets with false headers that appdzr
from another VM, because Dom0O will reject them. Therefore, a
unprivileged VM cannot undermine the confidentiality oexgtity
of the network.

As is the case for secondary storage, all network trafficgsass
through DomO. A packet sniffer, run in DomO, could therefbee
used to undermine the confidentiality of the network. An gper
tion scheme, such as TLS [11] or IPSec [19] may be used togirote
confidentiality. In order to modify packet data, it would beces-
sary to modify the DomO kernel code that controls the soféwar
bridge: since this is part of the TCB, it would be reflectednin i
tegrity measurements. However, encryption provides aitiaddl
defence against attacks on the integrity of the network. (geeof

update that refers to a page that belongs to another VM must be Virtual Private Networking [16] software in the guest VM widibe

made using a hypercall. The confidentiality of physical RAMym
be attacked by mapping a page for read access. The intedrity o
physical RAM may be attacked by mapping a page for write acces

An unprivileged VM may only update its page table to include
pages that it owns, or to which it has been granted expliciess
Therefore, it cannot undermine the confidentiality or initygof
physical RAM.

The DomO kernel may, in effect, access any page of physical
memory, because it controls devices that may perform DMmfro
any address. However, the Dom0 kernel does not propagate thi
control to user-space; therefore Dom0O-admin cannot ugespsee
software in DomO to undermine the confidentiality or integof
physical RAM.

6.2.3 Secondary storage

The contents of secondary storage may be held directly ogysi-ph
cal backing store, or in a file in DomO. Because the virtuatbige-
vice back-end is typically implemented there, DomO recquiead-
and write-access to the secondary storage. The confidgntiél
secondary storage may be attacked by inspecting the caftde
physical backing store or file. The integrity of secondayrage
may be attacked by overwriting the content of the physicekivey
store or file.

An unprivileged VM has no direct access to hardware, and can-
not directly access a file in Dom0 that contains another VM s
ondary storage. Therefore, it cannot undermine the cortfalin
or integrity of secondary storage, unless aided by DomO.

Clearly, Dom0-admin can read any unencrypted contentsef se
ondary storage, and can make arbitrary changes. In ordeoteqgd
confidentiality, it is necessary for the guest to encryptags us-
ing, for example, the dm-crypt APl in Linux [32] or the BitLker
feature in Microsoft Windows Vista [22]. Keys can be proestt
using the sealing functionality of the virtual TPM. Encrigpt can
also be used to preserve integrity, though this does notautie
destructive attack on the data in secondary storage.

We note that the protection given to secondary storage is&qu
lent to that provided by a physical host, as a physical have: dan
be transplanted into an untrusted computer, in order taigivent
access control.

6.2.4 Network

The virtual network driver is implemented as a virtual sgkvice

that has a front end in the guest VM and a back end in DomO.
In the most common Xen network topology, the back ends are
connected to a software bridge, which is then connected €o th

sufficient to protect the confidentiality and integrity oéthetwork
from DomO-admin.

We note that the protection given to network connections is
equivalent to that provided by a physical host, when it isnemted
to an untrusted network.

6.2.5 Kernelimage

The kernel image (and optionally, the initial ramdisk) €xis
unencrypted files in the DomO file system, which are transéerr
to the domain builder when a VM is created. We do not consider
the confidentiality of a kernel image, because this is incatibfe
with an “open trusted computing” approach: it should be jbss

to inspect the contents of the kernel and be confident thatribt
carrying out any malicious activities [20]. The integritf/aokernel
image may be attacked by modifying the relevant file or files.

An unprivileged VM cannot access the file containing the &krn
image unless it is granted access by Dom0, and it cannoteyer
the IVMC channel used to transfer the file to DomB, because thi
channel uses explicit granted access from DomB to DomO.

Dom0O-admin may modify the contents of the kernel image.
However, the trusted VMM architecture (sg&.2) stipulates that
the integrity of the kernel image is measured before bood, an
this measurement is stored in the virtual TPM. If Dom0-admin
compromises the integrity of the kernel image, the guest lveil
able to detect this by performing attestation, or trying ¢éargpt a
secret that has been sealed to the platform configuration.

6.3 Limitations

As discussed in Subsection 6.1, one major limitation of qur a
proach is that the DomO kernel must be included in the TCB, and
it is by far the largest TCB component. It is included in theBIrC
because it controls physical hardware that may perform D&,
without an IOMMU, may therefore read or write to any location
physical memory. Why, in that case, did we not include the @iom
builder code in the DomO kernel, and retain the aggregatipnio-
ileges for Dom0? We chose disaggregation because, when IOM-
MUs are commonly available, the disaggregated approadHawil
cilitate a switch to the “ideal” TCB depicted in Figure 6(ahereas
there would be no advantage if the domain builder were iategr

in the DomO kernel.

Duflot et al demonstrated that it is possible to use the Sys-
tem Management Mode on x86 computers to undermine security
policies [12]. The exploit is possible from user-space, mhen-
ning as the administrator, even when using a “secure” OS) suc
as OpenBSD. In order to mitigate the attack, user-spacessitoe

video RAM must be disabled. In this case, it is not possiblese
an X Server, which relies on this access. This is not a conicern
data centre use cases, but it has severe implications fkiogegr-
tualisation. We are currently investigating the use of atligeight
GUI, such as Nitpicker, which is sufficiently small to be indéd
in the TCB [13].

they acknowledge that their implementation, using VMWa&XG
Server and a Debian Linux host OS, is not “suitably high assur
ance for a real TVMM [Trusted VMM]". We develop their work
further by suggesting the mechanisms that can be used ttogdeve
a trustworthy VMM.

Fraseret aldemonstrated the use of virtual machine isolation for

We have analysed the Xen tool stack and found several tools providing safe and reliable access to hardware deviceslfi#jeir

that make use of thec_map_foreign_range function from libxc.
Most of these map single frames for communication with guest
VMs: we have introduced “third-party grants” that enable to-
main builder to insert entries in a new VM's grant table inerd
to share these pages. The user-space grant table devicg(3e

system, each hardware device and the least I/O privilegpsresl
to access it are assigned to an individual Xen VM. Therefibre,
robustness of the system is improved when faced with a mésbeh
ing driver. “I/O Spaces” are used to disaggregate the I/® aod
memory privileges that were previously assigned to a mdhioli

may be used to perform the mappings. The save and restore func DomO0. However, this work differs from ours in that it conasies

tions use direct foreign mappings in order to copy the cdsteh

a VM'’s memory to and from disk, respectively. These may be im-
plemented in a disaggregated fashion, using the same lsa8ie a
domain builder. A final category of mappings are those used fo
debugging: we do not attempt to enable these, because thég wo
undermine the confidentiality and integrity guarantees aba ap-
proach makes.

7. Related Work

Disaggregation is similar to the work carried out by Singataet

al on the Nizza architecture [30]. This work involved extragti
the security-critical components (“AppCores”) of seveledacy
applications, and running these within a kernelised TCBictvh
runs on top of the L4 microkernel. Communication between the
trusted and untrusted components was implemented usingfea i
process communication (IPC). However, the intention of thork
was to protect the security sensitive parts of an applinatiom

the much larger, untrusted segment. The authors did nohptte
protect applications from a malicious administrator.

Disaggregation is also an example of privilege separatien,
scribed by Provost al [25]. They describe an approach whereby
an application containing privileged and unprivileged poments
is divided so that each part runs with the least necessarigue,
and analyse their approach on OpenSSH. In their security-ana
sis, they concentrate on minimising the number of lines afeco
in the privileged components. By contrast, we introducetaml
criteria for qualitatively evaluating the TCB in Subsecti®.2, and
base our separation upon these, in addition to the numbénesf |
of code.

Hohmuthet al criticise the security claims made of virtual ma-
chine monitors and suggest using a small kernel, interga®c
communication and wrappers around untrusted code, in aoder
reduce TCB size [17]. To this end, they demonstrate the abil-
ity to run legacy applications on an‘Linux server, which runs
on top of the L4 microkernel. They propose a new point on the
VMM-microkernel continuum, namely “VM-enabled microker-
nels”, which they conflate with “VMMs with microkernel-likea-
tures”. We believe that the two are actually different, andhis
paper, we present an example of the latter. In particulannidh
et al hold that, in a paravirtualisation-based VMM, such as Xen,
“IPC needs device emulation”, which thereby hinders theptido
of a disaggregated approach. In Subsection 4.2, we deratmstr
that this is not the case.

The Terra architecture for Trusted Computing presentsahe c
cept of “closed box” virtual machines that cannot be inspect
or altered by another virtual machine running on the same pla
form [15]. Such closed boxes could be provided by, for exaymgpl
online game manufacturer, who wants to ensure that playersa
able to cheat whilst playing the game. Although the authocesent
an architecture that could enable closed box operatiog,dbanot
provide details for how these may be isolated from the host op
erating system (analogous to DomO on a Xen platform). Indeed

on driver isolation, and does not attempt to shield guestinaga
malicious administrator.

Two separate projects have implemented socket-like corirmun
cations between virtual machines in a Xen-based systermgZha
et al created “XenSocket”, which provides a “high-throughput in
terdomain transport” between Linux-based VMs [36]. Andearst
al have developed an inter-domain communication (IDC) lgrar
which may be used to communicate between Linux- and MiniOS-
based VMs. In addition, they have ported a minimal C librarg a
development toolchain to MiniOS, which enables trustedliapp
cations to be built straightforwardly [2]. These approachéfer
from ours, because they implement communication in theLinu
kernel, whereas we use the user-space grant table devicgle-i
ment communication in user-space. Furthermore, both appes
assume a trusted DomO.

8. Conclusions

In conclusion, we have demonstrated that it is possible frove
the security of a virtual machine running on the Xen virtua-m
chine monitor, using a process of disaggregation. Our agbro
yields a measurable TCB that can be used with establishstktiu
computing techniques. In redrawing the TCB, we have asbtréd
the number of lines of code is not the sole determinant ofwris
thiness in a TCB, and introduced two new criteria — interfsize
and state space size — for judging trustworthiness. Weegbthiese
criteria to the selection of a TCB for disaggregation.

In order to implement our solution, we have made three main
contributions. The principal contribution is the disaggred do-
main builder service, based on our TCB design. This domain
builder is a small, trusted service, which is given the nsags
privileges in order to build new virtual machines. It themef obvi-
ates the need for a monolithic management domain (DomOM® ha
full privileges. Our other contributions supported the elepment
of the domain builder, but can also be used for other purpases
developed an inter-VM communication mechanism and assatia
IDL compiler. This enables developers to create lightweigide
that communicates between Xen guest VMs without using a net-
working stack, which is particularly useful when develaptrusted
services that run on a minimal operating system (such asOhi
The IDL dialect is compatible with that used for L4/Fiascada
we hope that this will lead to an exchange of solutions betwee
the VMM and microkernel development communities. Finaihg,
developed a user-space grant table driver, which repldeesge
of direct foreign mappings in DomQ. The grant table permits-c
trolled sharing, and the new driver may be used in future teld@
secure user-space management software for Xen guest VMs.

Our design has been informed greatly by developments in mi-
crokernels, especially the privilege separation work tieg been
carried out using the L4 microkernel [17, 30]. We borrow tbe-c
cept of IPC between protection domains, and, indeed, we mnske
of the same IDL compiler front-end that is used to integrate a
plications on L4 [27]. We believe that our approach, “VMMghvi

microkernel-like features”, leads to a satisfactory camkibn of
security and functionality.

Acknowledgments

We would like to thank our colleagues for their comments angt s
gestions. This work was partially supported by EPSRC Gratfiat r
erence EP/D020158/1 (XenSE), and the Open Trusted Congputin
project of the European Commission Sixth Framework Program

References

[1] R. Aigner. DICE User's Manual. Technical report, Tecufie
Universitat Dresden, 2007http://os.inf.tu-dresden.de/
dice/manual.pdf.

M. J. Anderson, M. Moffie, and C. I. Dalton. Towards Trustthy
Virtualisation Environments: Xen Library OS Security Seev
Infrastructure. Technical Report HPL-2007-69, Hewleitikard
Development Company, L.P., April 2007.

W. Arbaugh, D. Farber, and J. Smith. A secure and relidbletstrap
architecture.Proceedings of the 1997 IEEE Symposium on Security
and Privacy 1997.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, H

R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of

virtualization. InProceedings of the nineteenth ACM symposium
on operating systems principlepages 164-177. ACM Press New
York, NY, USA, 2003.

V. R. Basili and B. T. Perricone. Software errors and ctexity: an
empirical investigationCommun. ACM27(1):42-52, 1984.

M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis, L. V. Doo

A. Mallick, J. Nakajima, and E. Wahlig. Utilizing IOMMUs for
Virtualization in Linux and Xen. IrProceedings of the 2006 Ottawa
Linux Symposiun006.

S. Berger, R. Caceres, K. A. Goldman, R. Perez, R. Sailed

L. van Doorn. vTPM: virtualizing the trusted platform modulln
Proceedings of the 15th USENIX Security Sympospages 21-21,
Berkeley, CA, USA, 2006. USENIX Association.

A. Birrell and B. Nelson. Implementing remote proceduadls. ACM
Transactions on Computer Systergl):39-59, 1984.

[9] M. Bishop and M. Dilger. Checking for race conditions ifefi
accessesComputing System8(2):131-152, Spring 1996.

[10] P. M. Chen and B. D. Noble. When virtual is better than.rda
Proceedings of the 8th Workshop on Hot Topics in Operatirsjefys
page 133, Washington, DC, USA, 2001. IEEE Computer Society.

[11] T. Dierks and C. Allen. The TLS Protocol Version 1.0. REZA6,
IETF, Jan. 1999.

[12] L. Duflot, D. Etiemble, and O. Grumelard. Using CPU Syste
Management Mode to Circumvent Operating System Security
Functions. InProceedings of the 7th CanSecWest confere?@el.

N. Feske and C. Helmuth. A nitpicker’s guide to a minimal

complexity secure GUI. IPACSAC '05: Proceedings of the 21st
Annual Computer Security Applications Confergnoages 85—94,
Washington, DC, USA, 2005. IEEE Computer Society.

K. Fraser, S. Hand, R. Neugebauer, |. Pratt, A. Warfialad

M. Williamson. Safe hardware access with the Xen virtual nirze
monitor. InProceedings of the 1st Workshop on Operating System
and Architectural Support for the on demand IT InfraStruet2004.

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Bbon&erra: a
virtual machine-based platform for trusted computing?taceedings
of the 19th ACM Symposium on Operating Systems Principégses
193-206. ACM Press New York, NY, USA, 2003.

B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. MaliA
Framework for IP Based Virtual Private Networks. RFC 27&F,
Feb. 2000.

(2]

13

—

[4

fla.aer

5

—

[6

—_

[7

—

[8

—_

(23]

[14]

[15]

[16]

[17] M. Hohmuth, M. Peter, H. Hartig, and J. Shapiro. RedgcTCB size
by using untrusted components: small kernels versus Viniaghine
monitors. InProceedings of the 11th ACM SIGOPS European
workshop: beyond the P@QCM Press New York, NY, USA, 2004.

[18] B. Kauer. OSLO: Improving the Security of Trusted Cortipg.
In Proceedings of the 16th USENIX Security SymposWS8ENIX
Association, 2007.

[19] S. Kent and K. Seo. Security Architecture for the In&trRrotocol.
RFC 4301, IETF, Dec. 2005.

[20] D. Kuhlmann, R. Landfermann, H. Ramasamy, M. Schunter,
G. Ramunno, and D. Vernizzi. An Open Trusted Computing
Architecture: Secure virtual machines enabling user-édfipol-
icy enforcement. Technical report, OpenTC consortium,6200
https://secure.opentc.net/otc_HighLevelOverview/0TC_
Architecture_High_level_overview.pdf.

[21] J. Liedtke. On micro-kernel constructioACM SIGOPS Operating
Systems Revigw®9(5):237-250, 1995.

[22] Microsoft Corporation. BitLocker Drive Encryption0R7. http:
//technet.microsoft.com/en-us/windowsvista/aa905065.
aspx.

[23] National Institute of Standards and Technology. Amddtction to
Computer Security: the NIST Handbook. Technical Report 890
National Institute of Standards and Technology, Octob&519

[24] T. J. Ostrand and E. J. Weyuker. The distribution oftaid a large
industrial software systen8IGSOFT Softw. Eng. Note&7(4):55-64,
2002.

[25] N. Provos, M. Friedl, and P. Honeyman. Preventing fgge
escalation. IrProceedings of the 12th USENIX Security Symposium
pages 16-16, Berkeley, CA, USA, 2003. USENIX Association.

D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratfofehoservers:
Accountable execution of untrusted programs. Phaceedings of
the 7th Workshop on Hot Topics in Operating Systepagie 136,
Washington, DC, USA, 1999. IEEE Computer Society.

L. Reuther, V. Uhlig, and R. Aigner. Component Intedadn a
Microkernel-based System. Rroceedings of the 3rd Workshop on
System Design Automation (SDAjarch 2000.

R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Desigd a
Implementation of a TCG-based Integrity Measurement Aechire.
In Proceedings of the 13th USENIX Security Sympospages 223—
238, 2004.

U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Dietgdormat
string vulnerabilities with type qualifiers. Iroceedings of the 10th
USENIX Security Symposiurerkeley, CA, USA, 2001. USENIX
Association.

L. Singaravelu, C. Pu, H. Hartig, and C. Helmuth. RedgciCB
complexity for security-sensitive applications: Threseatudies. In
Proceedings of EuroSys 2008006.

[31] A. Tanenbaum, J. Herder, and H. Bos. Can we make opgratin
systems reliable and secur€dmputer 39(5):44-51, 2006.

[32] (Unattributed). dm-crypt - a device-mapper cryptogédr 2007.
http://www.saout.de/misc/dm-crypt/.

[33] (Unattributed). TPM Main Part 1 Design Principles. feE
cal report, Trusted Computing Group, 200https://wuw.
trustedcomputinggroup.org/specs/TPM/mainP1DPrev103.
zip.

[34] D. A. Wheeler. SLOCCount, 200http://www.dwheeler.com/
sloccount/.

[35] XenSource. XenApi - Xen Wiki, 200%http://wiki.xensource.
com/xenwiki/XenApi.

[36] X. Zhang, S. Mclntosh, P. Rohatgi, and J. Griffin. Xenl8zic A
high-throughput interdomain transport for VMs. Broceedings of
Middleware 2007 Secaucus, NJ, USA, 2007. Springer-Verlag New
York, Inc.

[26]

[27]

(28]

[29]

(30]

