
Improving Xen Security through Disaggregation

Derek G. Murray Grzegorz Milos Steven Hand
University of Cambridge Computer Laboratory

[Firstname.Lastname]@cl.cam.ac.uk

Abstract
Virtual machine monitors (VMMs) have been hailed as the basis for
an increasing number of reliable or trusted computing systems. The
Xen VMM is a relatively small piece of software – ahypervisor
– that runs at a lower level than a conventional operating system
in order to provide isolation between virtual machines: itssize
is offered as an argument for its trustworthiness. However,the
management of a Xen-based system requires a privileged, full-
blown operating system to be included in the trusted computing
base (TCB).

In this paper, we introduce our work todisaggregatethe man-
agement virtual machine in a Xen-based system. We begin by
analysing the Xen architecture and explaining why the status quo
results in a large TCB. We then describe our implementation,which
moves thedomain builder, the most important privileged compo-
nent, into a minimal trusted compartment. We illustrate howthis
approach may be used to implement “trusted virtualisation”and
improve the security of virtual TPM implementations. Finally, we
evaluate our approach in terms of the reduction in TCB size, and
by performing a security analysis of the disaggregated system.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Information flow controls

General Terms Design, Security

Keywords Disaggregation, trusted computing base, virtual ma-
chines

1. Introduction
Many researchers have proposed using virtual machine monitors
(VMMs) to improve the reliability, security or assurance ofcom-
puting systems [10]. They argue that the small code-base of aVMM
can be used as justification for trusting its correct operation; this
same argument has been applied to microkernels [31]. The assump-
tion is made that the integrity of the lower layers (including the
VMM) is axiomatic, therefore it is possible to infer the integrity of
components (individual virtual machines) running above [3, 7]. We
aim to use the Xen hypervisor [4] as the basis of an “open trusted
computing” system [20]. Such an approach extends the purview of
trusted computing hardware into virtual machines (VMs); italso
allows the user discretion over when to use this hardware, and en-
ables the use of trusted and untrusted software side-by-side.

This is the author’s version of the work. It is available hereby permission of ACM for
your personal use. Not for redistribution. The definitive version was published in VEE
’08. http://doi.acm.org/10.1145/1346256.1346278

VEE’08, March 5–7, 2008, Seattle, Washington, USA
Copyright c© 2008 ACM 978-1-59593-796-4/08/03. . . $5.00

In order to evaluate the trustworthiness of a software system,
it is necessary to identify its trusted computing base (TCB). The
integrity of the TCB may then be measured, and this unforgeable
measurement can be used to generate a key that may be used for at-
testation, encryption and decryption operations [33]. However, the
TCB of a current Xen-based system comprises, in addition to the
VMM, a fully-fledged operating system (known asDom0) and a
set of user-space tools. These tools are used to perform several tasks
that require elevated privileges, including the creation of new VMs.
Due to the inclusion of user-space software in the TCB, the size of
the TCB is practically unbounded, as it can include any software
that may be run by the administrator of the physical platform. Fur-
thermore, any measurement of the TCB cannot be used to guarantee
the integrity of a virtual machine, because the system administrator
may run arbitrary privileged code at any time. In effect, this im-
plies that the system administrator must be trusted, which impairs
the usefulness of Xen in utility computing scenarios [26].

In this paper, we demonstrate the use ofdisaggregationto shrink
the TCB of a virtual machine in a Xen-based system. We have
transferred the VM-building functionality into a small, trusted VM
that runs alongside Dom0. We had two main goals in this work.
The primary goal was to reduce and bound the TCB of a Xen-based
system, in order to improve its security. In particular, by removing
Dom0 user-space from the TCB, we would remove the require-
ment that the administrator of the physical platform be trusted. We
anticipate that this will be relevant for the users of virtualisation in
utility computing. A closely-related goal was to demonstrate that a
VM running on a disaggregated system maintains the same confi-
dentiality and integrity properties as a physical machine,assuming
the inviolability of the TCB. This should allay many concerns over
switching to a virtualised approach.

We begin by introducing the Xen architecture, the domain build-
ing process, and how these relate to the TCB of a Xen-based sys-
tem (Section 2). We then describe our framework for selecting a
TCB for the disaggregated solution, and introduce new criteria for
evaluating a TCB that should be considered in addition to theraw
number of lines of code (Section 3). We discuss the implementation
of our disaggregated domain builder design, which has also neces-
sitated the development of a lightweight inter-VM communication
mechanism (Section 4). We evaluate our disaggregated approach
against our primary goals by enumerating the contents of theTCB
and performing a security analysis (Section 6). Finally, weconsider
related work (Section 7) and draw conclusions (Section 8).

2. Background
The existing Xen VMM architecture and privilege model have
implications for security, and enable an administrator to take full
control of all virtual machines running on the same host. It is
therefore impossible for the users of a virtual machine to trust
in the confidentiality and integrity of that virtual machine. This

may inhibit the uptake of virtualisation, especially in theclass of
applications where confidentiality is required by law.

In this section, we provide a brief overview of the Xen architec-
ture (Subsection 2.1), describe the domain building process (Sub-
section 2.2), and discuss the design of Xen with respect to its trusted
computing base (Subsection 2.3).

2.1 Xen architecture

The traditional representation of a Xen-based system showssev-
eral virtual machines, drawn separately and side-by-side on top of
the Xen VMM (hypervisor), which itself is positioned above the
platform hardware [4]. A single VM,Dom0, is distinguished as a
management or control VM, which is always booted by the hyper-
visor, and contains the control plane software. However, this picture
ignores the trust relationships between Dom0 and the remaining
VMs. In our work we aim to reduce and bound these trust relation-
ships, so that Dom0 can accurately be positioned side-by-side with
other VMs.

Xen makes extensive use ofparavirtualisation in order to
achieve good performance. This process entails porting VM ker-
nels to run on a new machine architecture that corresponds tothe
support provided by the VMM. On the x86 architecture, four pro-
cessor rings are used to define privilege levels. In most common
operating systems, the kernel runs in ring 0 (the highest privilege
level), and user processes run in ring 3 (the lowest privilege level).
Xen must have full control over and protection from the VMs that
it hosts, so it runs in ring 0. VM kernels are paravirtualisedin order
to run in ring 1. User processes continue to run in ring 3.

Xen provides many mechanisms for communication. The most
primitive is thehypercall, which is an invocation of the hypervisor
by a guest VM. A hypercall is analogous to a system call in con-
ventional operating systems, and is also implemented usinga soft-
ware trap to transfer control to the hypervisor. Hypercallsare lever-
aged to build higher level communication primitives. In particular,
in order to facilitate inter-VM communication, Xen provides event
channelsand a mechanism to establish shared memory regions [4].
Shared memory can be established via thegrant tableinterface or
usingdirect foreign mappings[14].

Event channels are a lightweight event delivery mechanism that
may be used both to virtualise interrupts and enable communication
between VMs. They may be used to send only a single bit of
information, and are typically employed to synchronise producers
and consumers in virtual device drivers.

A grant reference is the index of an entry in a VM-owned grant
table. Each entry contains the physical address of the page to be
granted, the ID of the VM to which access is granted, and access
control flags. When the grantee wants to map a granted page, it
makes a hypercall, specifying the grant reference, granting VM ID,
and instructions for where to map the granted page.

Direct foreign mappings are only possible in a privileged VM,
typically only Dom0, and are used for platform management. A
privileged VM can request that the hypervisor maps a specific
physical frame of memory from a specific VM into one of its page
tables. It is possible to make direct foreign mappings into both
the kernel and user-space. User-space mappings are made by a
privileged command driver (privcmd), the use of which is typically
restricted to the administrator using file permissions.

2.2 Building a new VM

In the Xen architecture, the creation of new VMs (known asdomain
building) is carried out by management software in Dom0, which
uses its special privileges in order to access the address space and
processor state of the new VM. The original design decision was
that the domain building code is relatively complicated andshould
be omitted from the hypervisor for reasons of compactness and

D o m UL o a d k e r n e l i m a g e f r o m d i s kA l l o c a t e p h y s i c a l m e m o r y m a pC o p y k e r n e l i m a g e i n t o n e w V MS e t u p i n i t i a l p a g e t a b l e s f o r n e w V ML a u n c h n e w V MX e n
Figure 1. Outline of the steps involved in building a new VM
(DomU). Privileged operations are shown as bold arrows; direct
foreign mappings are shown as dotted lines.

robustness [4]. However, the delegation of this task to user-space
processes exposes the special privileges to all user-spaceprocesses
in Dom0, which has implications for the trusted computing base
(see§2.3). In this subsection, we describe the process of building a
paravirtualised VM. Thanks to paravirtualisation, many ofthe low-
level steps involved in a conventional x86 OS boot process (such as
interactions with the BIOS, and the use of 16-bit real mode) can be
elided.

The main steps in the domain building process are shown in Fig-
ure 1, with privileged operations (as defined later in§3.1) shown as
bold arrows. Firstly, the kernel image (and, optionally, aninitial
ramdisk) are loaded from disk into the domain builder’s memory.
The image is parsed in order to extract the executable code region,
and obtain any parameter values. Following this, the builder re-
quests that the hypervisor allocates physical memory for the new
VM. This is not depicted as a privileged operation, because it does
not affect the confidentiality or integrity of any VM, but it can lead
to denial of service, so its use should be restricted. The kernel im-
age is then loaded into the new VM, using a direct foreign mapping.
Following this, the initial page tables for the new VM are calculated
and written into the new VM, using multiple direct foreign map-
pings. Finally, the new VM is launched, by setting the virtual CPU
registers to a start-of-day configuration, and unpausing the VM.

The domain builder is implemented by thexc linux build
function and its callees inlibxc, a C library that provides low-level
control over VMs. It is implemented in an object-oriented fashion,
passing astruct xc dom image object between steps to com-
municate intermediate results. Direct foreign mappings are imple-
mented by thexc map foreign range function, and setting the
virtual CPU registers is performed by thexc set vcpucontext
function. Thelibxc library is linked into thexend management
daemon, which is implemented in Python.xend implements the
Xen API, which is an XML-RPC-based API that several tools use
to manage a Xen-based system [35].

2.3 The TCB of a guest VM

We analyse the trusted computing base (TCB) of Xen for two rea-
sons. Firstly, it is received wisdom that a smaller TCB corresponds
to more trustworthy code [15, 17, 30]; therefore demonstrating the
large size of the TCB gives motivation to our work. Secondly,it
is necessary to enumerate and measure the TCB in order to build
trusted virtualisation systems, which we discuss in Section 5.

The term “Trusted Computing Base” is defined variously in the
literature, so it is useful to agree on a definition at the outset of
this discussion. Hohmuthet al refer to “the set of components on
which a subsystem S depends as theTCB of S.” [17]. We refine this
and define the TCB as “the set of components which a subsystem
S trusts not to violate the security of S”. We draw this distinction
because, although S may depend on the piece of code which, for

example, loads it from disk into memory, that piece of code may be
unable to violate the confidentiality or integrity of S, and therefore
should not be considered part of the TCB.

We now turn to analysing the TCB of a guest virtual machine.
The TCB must include Xen itself, because the hypervisor runsin
a more privileged processor ring than the guest, and so it mayac-
cess all memory and processor state. The Dom0 kernel is included
in the TCB, because Dom0 is privileged, and the kernel can make
privileged hypercalls. The domain builder process must also be in-
cluded in the TCB, because it writes to the address space of the
guest VM and configures its processor state: if it should malfunc-
tion, the security of S could be compromised. The domain builder
code is dynamically linked into the Python interpreter thatruns
xend, so xend and the interpreter must be included in the TCB.
However, the domain builder accesses the guest address space us-
ing the privileged command driver, which is exposed to all pro-
cesses that run with administrator privileges in Dom0. Therefore,
all such processes must be included within the TCB.

This poses a challenge when building trusted virtualisation sys-
tems. A trusted computing system relies on a chain of integrity
measurements that inductively guarantees system integrity [3].
Therefore, it is necessary to communicate the integrity of the phys-
ical platform to each VM. However, if arbitrary software canbe
run in Dom0 at the discretion of the platform administrator,the
integrity chain may be undermined at any point while a VM is run-
ning. For example, the integrity of the virtual platform maybe used
to decrypt a secret, after which the TCB may be altered by running
some malicious software in Dom0. The secret now exists as plain-
text in the memory of the guest virtual machine, and the malicious
software may read it by performing a direct foreign mapping of
the relevant page frames. We discuss this example in more detail in
Subsection 5.1.

Therefore, we have shown that the TCB of a guest virtual
machine running on Xen is both indefinitely large and dynamic.
This raises questions about the robustness of such a system,and
further precludes the use of Xen for trusted virtualisation, where
the system administrator is not trusted.

3. Selecting the TCB
The goal of our disaggregation is to reduce the TCB of a Xen-based
system. Therefore, in order to make an appropriate partition of the
code base, it is necessary to determine which sections of code must
be trusted, and which may be untrusted. In this section, we provide
definitions that motivate our discussion of the TCB of a system
(Subsection 3.1). We then argue that the “lines of code” metric
for determining trustworthiness is insufficient, and introduce two
new criteria (Subsection 3.2). Finally, we illustrate the use of these
definitions for our disaggregation of the domain builder in aXen-
based system (Subsection 3.3).

3.1 Definitions

We want to be able to identify trusted and untrusted code. There-
fore, we make the following definitions:

Privileged Operation An operation that can be used to subvert
the confidentiality or integrity of a system or subsystem. (This
differs from the definition of a privileged operation in Xen,
which is broader, and includes all management tasks, such as
creating and destroying VMs.)

Sanitising Operation An operation that checks that all potentially-
untrusted inputs it receives are valid.

Invokable Operation An operation that may be invoked (from a
particular position in the code base) without indirection via a
sanitising operation. An operation is invokable from pointp if

it is implemented in the same address space asp and in the
same or a less-privileged protection ring. An operation is also
invokable from pointp if there is a call path to that operation
that does not include a sanitising operation.

Using these the definitions, it is clear that privileged operations
must be implemented in a separate address space and/or protection
ring from untrusted code. The TCB may alternatively be defined as
the set of code positions for which any privileged operationis an
invokable operation.

3.2 Criteria

It is commonly held that the trustworthiness of a TCB is a function
of the number of lines of code that it comprises [15, 17, 30, 31].
This assumption is typically based on studies that relate software
size to the number of bugs [5, 24]. Furthermore, it is attractive
because it yields a metric that can be used to compare solutions.
Whilst we accept that a smaller code base can be easier to com-
prehend, we believe there are scenarios in whichaddingcode can
improve trustworthiness. Therefore, in this section, we introduce
two new criteria for evaluating the trustworthiness of a TCB: the
size of the interface and the size of the TCB state space.

As we have stated in the previous subsection, it is necessary
to sanitise the untrusted inputs to trusted, privileged code. As the
number of interface functions in the TCB increases, so does the
amount of sanitising code. Similarly, a less constrained type (e.g. a
pointer to a region of memory that is used as an input) may require
more complicated sanitisation than a more constrained type(e.g. an
integer ID value).

An error in the sanitising code is likely to allow a maliciously-
constructed input to compromise the TCB. For example, Shankaret
al observe a large number of security vulnerabilities that result from
using an unsanitised string as the first argument toprintf [29].
Therefore, minimising the complexity of the sanitising code is
more important than doing the same for other trusted code. Basili
and Perricone revealed the unexpected result that, as the size of a
module increases, its error rate decreases [5]. They posit that this
may be due to a uniform distribution of “interface errors” across all
modules. This agrees with our intuition that the interface should be
minimised, as interfacing code is the main source of critical errors.
Furthermore, an increase in the size of the TCB should be tolerated,
if it reduces the size or complexity of the interface.

Our second criterion is the size of the state space. We suggest
that, where possible, TCB interface functions should be atomic
operations, and, if they modify global state, this should not have an
effect on thebehaviourof subsequent invocations. In particular, we
discourage a TCB design whereby it is necessary to pair operations
together (such as lock and unlock operations), or where there is an
assumed ordering to the operations. As such operations proliferate,
the number of possible test cases increases factorially, and the
likelihood of making an obscure error also increases. Therefore,
if it is possible to create an atomic operation by including some
previously-untrusted code in the TCB, we would prefer this to a
smaller TCB.

We can illustrate our two criteria using the following simple
example:

1. Invoke privileged operationP1

2. Perform untrusted calculation,U , based on the result ofP1.

3. Invoke privileged operationP2, based on the results ofP1 and
U .

ShouldU be implemented inside or outside the TCB? Its size
(number of lines of code) and ability to run arbitrary instructions
should first be considered.

P 1
P 2U

(a) U outside TCB

P 1
P 2U

(b) U inside TCB

Figure 2. Location of data paths (black arrows) and sanitising code
(bold lines) depending on the position ofU relative to the TCB.

Figure 2 illustrates the data paths between the three operations,
and the location of sanitising code for each case. When U is outside
the TCB (Figure 2(a)), it is necessary to sanitise the input to P1, the
external input toP2 and the output ofP1 andU . The output ofP1 is
generated by the TCB, and so we know that it is valid; however,it
has left the TCB and must be sanitised, because the untrustedcode
could have modified it. If U is moved inside the TCB (Figure 2(b)),
it is only necessary to sanitise the external inputs toP1, U andP2.
The outputs ofP1 andU need no longer be sanitised, because they
never leave the TCB.

In terms of the state space, our decision depends on whetherP1

andP2 have an effect on the state of the system. For example, are all
calls toP1 andP2 paired? What happens ifP2 is invoked beforeP1,
or if P1 is invoked without invokingP2? What happens if another
operation is invoked between the invocations ofP1 and P2? An
incorrect implementation of mutual exclusion in this context could
lead to liability inversion or deadlock. If theP1; U ; P2 sequence
were implemented as an atomic operation within the TCB, these
problems would not arise.

Obvious tensions exist between the criteria that we have de-
scribed here. For example, as one incorporates all possibleatomic
sequences of privileged operations into the TCB, the size ofthe
TCB interface grows, and the number of lines of code in the TCB
also grows. As the size of the TCB interface is reduced, the number
of lines of code in the TCB may grow. Neither of our suggested
criteria are intended as a panacea for choosing an appropriate TCB,
but we believe that they should be considered as part of the whole
picture when designing a secure system.

3.3 Redrawing the TCB of a guest VM

In this subsection, we present our redrawn TCB for a disaggregated
Xen-based system. We concentrate on the domain builder, as it is
the fundamental operation that has led to a large TCB for Xen-
based systems. In order to reduce the size of the TCB, it is nec-
essary to ensure that privileged operations are not invokable from
untrusted code. In a VMM-based system, this is possible by moving
the privileged operations to another VM, and interposing a sanitis-
ing operation on all call paths between untrusted and trusted code.
In this subsection, we concentrate on the functionality that is dis-
aggregated; Section 4 concentrates on the practical implementation
of disaggregation.

By placing a sanitising operation (see§3.1) between Dom0
user-space and the privileged operations in the domain builder, it
is possible to remove Dom0 user-space from the TCB. Therefore,
since only the hypervisor, Dom0 kernel and part of the domain
builder remain in the TCB, it is possible to measure the TCB at
boot and be confident that it will not change. This is crucial for

L o a d k e r n e l i m a g e f r o m d i s kA l l o c a t e p h y s i c a l m e m o r y m a pC o p y k e r n e l i m a g e i n t o n e w V MS e t u p i n i t i a l p a g e t a b l e s f o r n e w V ML a u n c h n e w V M M a p f o r e i g n p a g e sS e t v i r t u a l C P U r e g i s t e r s
(a)(b)(c)

Figure 3. Three possible TCBs for the domain builder.N.B. This
diagram only shows which parts of the domain builder (from
libxc) are part of the TCB, and omits lower-level code for clar-
ity.

trusted virtualisation, which we discuss further in Section 5. The
remaining question is where to place the sanitising code.

Figure 3 shows the domain builder process, annotated with three
possible TCB demarcations. We determined that TCB (a), which
places the entire domain building process (as described in Subsec-
tion 2.2) inside the TCB, was the best solution. The interface be-
tween trusted and untrusted code is thexc linux build function,
which is called by the Python-based tool stack to perform thelow-
level build process (as opposed to the high-level configuration of
virtual devices, which remains in Dom0).

This approach has two main advantages. First, the size of thein-
terface is reduced to a single function, which has no arguments that
are used as arguments to privileged operations (excluding the VM
ID, which is straightforwardly validated). Therefore, thenecessary
amount and complexity of sanitising code is minimised, and,since
errors here are critical, this improves our confidence in thesecurity
of the partitioning. Furthermore, the interface to the TCB exports a
single, atomic function, which encapsulates all of its state either on
its stack, or on the heap in regions referenced only by stack point-
ers. Therefore the TCB is effectively stateless, and it is not possible
to use the interface to manipulate the TCB into an unexpectedstate.

Note that we include the “Load kernel image from disk” step
inside the TCB. At first, it appear that we must trust the system
call, file system and block device code that fulfil such a request.
However, it is possible to include this step inside the TCB by
using atrusted wrapper, as described by Singaraveluet al [30],
around the file-handling code. We use an approach called “I/O
forwarding”, which is described in Subsection 4.1.

We now consider the alternative approaches depicted in Fig-
ure 3. The domain builder process incorporates five main steps, of
which three use privileged operations. TCB (b) places only these
three steps inside the TCB, which is therefore smaller (in lines of
code) than TCB (a). The TCB is then responsible for copying the
kernel image into the new VM, building the initial page tables, and
launching the VM. However, the second step in the build process
(“Allocate physical memory map”) generates a potentially-large
amount of data that must be validated before it is used insidethe
TCB. These data originate in the (trusted) hypervisor, and ideally
would not require validation. The process of validation would be
so similar to the original process of retrieval, that it is redundant to
perform this step outside the TCB.

Minimising the number of lines of code yields TCB (c) in
Figure 3. Here, the TCB includes only the implementation of “map
foreign pages” and “set virtual CPU registers”, and the necessary
sanitising code that is required to ensure that these functions are not
abused. However, because of the flexibility of these functions, the

sanitising code would have to be almost as complex as the untrusted
code from which it has been partitioned1. As we have stated, the
amount and complexity of sanitising code should be minimised, as
any error here could result in a security vulnerability.

In conclusion, choosing our disaggregation gives a useful ex-
ample of the criteria for a trustworthy TCB that we presentedin
the previous subsection. We chose the largest of the three TCBs be-
cause this minimises the size of the interface (and hence theamount
of sanitising logic), and introduces only a single, atomic operation
to the TCB interface.

4. Implementation
In this section, we describe the implementation of the reduced TCB
that we chose in the previous section. The principal component is
the domain builder service (Subsection 4.1). In order to support
the domain builder, we also implemented a lightweight remote
procedure call mechanism (Subsection 4.2) and a user-spacedriver
for accessing granted memory (Subsection 4.3).

4.1 The domain builder

We ported the domain builder to a minimal paravirtualised operat-
ing system, called MiniOS. MiniOS was developed as an example
of how to implement the various features of paravirtualisation in
Xen, such as event channels, granted pages and hypercalls. It in-
cludes no physical device drivers or file systems. A rudimentary
virtual network driver is included, but there is no TCP/IP stack in
the standard version. The small code base and the absence of many
common exploit vectors make MiniOS a suitable basis for building
a trusted service on Xen. However, the lack of functionalityposes
some problems, which we will address in this section.

The main challenge when implementing the disaggregated do-
main builder was that the existing code relies on file system ac-
cess, in order to load kernel images and, optionally, initial ramdisks
for a new guest. However, it is difficult to load a file into our do-
main builder, because, as we have already remarked, MiniOS in-
cludes no physical device drivers, file systems or networking stack.
We have rejected adding any of these to MiniOS, because they are
non-essential, complex pieces of code, which constitute anunnec-
essary burden on the TCB. Instead, we forward the file system calls,
such asfopen andfread, to Dom0. Dom0 runs an I/O forwarding
service, calledvfsback, which receives the requests and executes
them locally, returning the results to the domain builder.

Figure 4 illustrates how the various processes communicatein
the disaggregated domain building process. To begin the process,
xend, through the linkedlibxc, makes an IVMC request (de-
scribed in§4.2) to the domain builder (known asDomB), speci-
fying the filenames of the kernel and initial ramdisk, the domain
ID and the amount of memory to be allocated. The domain builder
loads the kernel and initial ramdisk by forwarding I/O callsto the
vfsback daemon in Dom0. The domain builder allocates a phys-
ical memory map as before, then installs the kernel image, initial
ramdisk and initial page tables in the new VM. Finally, the domain
builder launches the new VM, and returns control toxend in Dom0.

4.2 Inter-VM Communication

In order for the management software to control the domain builder,
it is necessary for Dom0 and DomB to communicate. However, as
we do not want to introduce a TCP/IP stack into MiniOS, it is not
possible to use existing network-based mechanisms to perform this
communication. Instead, we have borrowed the concept of inter-
process communication (IPC) from the microkernel community,

1 It must effectively ensure that the sequence of invocationsand parameters
correspond to the correct domain-building procedure.

L o a d k e r n e l i m a g e f r o m d i s kA l l o c a t e p h y s i c a l m e m o r y m a pC o p y k e r n e l i m a g e i n t o n e w V MS e t u p i n i t i a l p a g e t a b l e s f o r n e w V ML a u n c h n e w V Mx e n d v f sb a c k I V M C c a l lF i l e r e q u e s tF i l e d a t a
I V M C r e t u r n

D o m 0 D o m B

Figure 4. Communication relationship between the control soft-
ware in Dom0 and the disaggregated domain builder (DomB). The
IVMC mechanism is described in§4.2.

and implemented synchronous procedure call semantics using only
the facilities present in a VMM-based system.

IPC is often highlighted as a method of communication be-
tween trusted and untrusted components in a microkernel-based
system [17, 30]. The use of a VMM as the basis of a secure system
is frequently criticised, because VMMs lack, as a primitive, any
notion of inter-process communication. Indeed, it is suggested [17]
that the only way to emulate IPC is using a remote procedure call
(RPC) protocol [8] over a virtual network. Whilst this approach is
feasible between full operating systems, it is not suitablefor small-
TCB applications that might lack a networking stack. This gives
rise to our inter-VM communication (IVMC) implementation.

What do we mean by inter-VM communication? Clearly, a
combination of the mechanisms in Subsection 2.1 can be used
by two VMs in order to communicate: in fact, this is how the
virtual devices in Xen are implemented [14]. We assume that the
IPC advocated by Hohmuthet al is “message transfer between
threads” [21], using which synchronous procedure calls canbe
developed.

We were inspired by the use of an Interface Definition Language
(IDL) in the applications built on the L4/Fiasco microkernel [27].
The Dresden IDL Compiler (DICE) obviates the need to write low-
level communication code, and presents a C or C++ procedural
interface for IPC [1]. It contains front-ends for parsing DCE and
CORBA IDL, and back-ends that generate code for the L4/Fiasco
API and Linux Sockets. Although the interface to the domain
builder is relatively small and simple, an IDL compiler enables
rapid experimentation with different interfaces, and can be used in
the disaggregation of other functionality. Furthermore, it raises the
possibility of portable applications running on both Xen/MiniOS
and L4/Fiasco.

We developed a new back-end for DICE that can be used on
a Xen system. The generated code uses a generic communication
object that encapsulates a shared buffer and user-providednotifica-
tion function. The shared buffer is created by the client allocating
a page and using its grant table to grant access to the server;the
notification is handled using an inter-VM event channel.

An IVMC end-point is identified by the ID of the server VM,
a grant reference for the shared buffer, and the ID of the inter-
VM event channel. These numbers may potentially change between
boots of the physical platform, and so some mechanism is required
to bind the name “DomB” to the correct endpoint. In the simplest
case, the identity of the DomB virtual machine is known to the
VMM at boot. DomB can then make a hypercall to set the grant
reference and event channel ID after it has booted. Dom0, seeking

the endpoint details, can then make a hypercall to discover these
details. Since the VMM is part of the TCB, the correctness of the
details can be trusted.

4.3 The user-space grant table device

In order to complete our disaggregation, and disable the privileged
operations in Dom0, it is necessary to remove all uses of the direct
foreign mapping operation from Dom0 user-space. The grant table
concept (see§2.1) provides a mechanism for controlled sharing –
akin to capabilities – but this has hitherto only been available in the
kernel. Therefore, we implemented a user-space grant tabledevice
(gntdev), which provides a means of mapping one or more granted
pages directly into the user-space of a virtual machine.

We implemented gntdev as a Linux kernel driver, which is ma-
nipulated using the samemmap andioctl system calls that are used
with theprivcmd driver. In addition, we provide library functions
in libxc for performing common operations, such as mapping a
single grant reference from another VM. These library functions
are used to replace instances of the direct foreign mapping opera-
tion, and to map the shared buffer used for IVMC.

The principal challenge in developinggntdev was the tran-
sience of user processes, when compared with virtual machines.
It was necessary to make a slight modification to the Linux virtual
memory subsystem, adding a hook that is called when a page ta-
ble is cleared, in order to unmap grant references correctlywhen a
process crashes. Furthermore, it was necessary to address the case
where pages are granted by a user-space process, mapped by an-
other VM, and not unmapped before the process dies. In this case,
we ensure that the granter operating system does not reuse such
pages until they are unmapped, in order that no information about
other processes is leaked.

5. Trusted virtualisation
Our work in this paper lays a foundation fortrusted virtualisation.
By bounding the TCB of a Xen-based system, we have made it
possible for the hypervisor and Dom0 to take their place in a chain
of trust that extends from the hardware Trusted Platform Module
(TPM) into each VM. In this section, we address the problems
with the status quo in trusted virtualisation (Subsection 5.1) and
present our design for a trusted VMM using disaggregation (Sub-
section 5.2).

5.1 Problems with the status quo

Xen already incorporates virtual TPM (VTPM) software that may
be used for trusted virtualisation. It was developed with the stated
requirement of a “Strong association of the Virtual TPM withthe
Underlying TCB” [7]. The VTPM is implemented as a virtual
driver, with a front end that matches the interface of a physical
TPM, and a back end in Dom0 that performs TPM emulation and
multiplexing of requests to the real physical TPM. For additional
security, the authors show that the back end can be implemented on
a secure coprocessor.

Two issues with the implementation of the virtual TPM under-
mine its effectiveness, however. The first is that there is nocom-
munication between thelibxc domain builder and the VTPM
software. Therefore, any attempt to measure the kernel and ini-
tial ramdisk, then store it in the VTPM, is vulnerable to a time-
of-check-to-time-of-use (TOCTOU) attack [9].

The second issue is that the TCB may change at any time, due to
the administrator running a new executable in Dom0. The issue is
not mitigated by using a Dom0 operating system that is modified to
measure all of its executables as they are run, such as that suggested
by Saileret al [28]. Consider the following series of events:

D o m UD o m B
V T P MM a n a g e rH W T P MD r i v e rH W T P M / d e v / t p m

Figure 5. Design of a trusted virtualisation system, using the dis-
aggregated domain builder (DomB).

1. The hypervisor and Dom0 are measured on boot, and the plat-
form is brought into a trustworthy state. A new VM, DomU, is
created.

2. DomU decrypts some data, based on the virtual platform con-
figuration. The data now exists as plaintext in DomU’s memory.

3. A new executable,memorysniffer, is run in Dom0, which
modifies the physical platform configuration (and, hence, the
virtual platform configuration of DomU) to a no-longer-trustworthy
state.

4. memorysniffer maps each page of DomU’s physical memory
until it finds the unencrypted secret.

At no point in the above steps does any component malfunction,
yet it is possible for Dom0 to compromise the confidentialityof
DomU. A similar argument can be made for integrity.

5.2 Trusted VMM using disaggregation

In this subsection, we present an improved design for virtualising
the TPM, using the disaggregated domain builder.

Figure 5 illustrates our design for the trusted virtualisation sys-
tem. DomB is expanded to include a VTPM Manager, a hardware
TPM driver and virtual platform configuration storage. Anderson
et al previously ported the VTPM Manager to MiniOS [2]. The
VTPM front end (/dev/tpm) is unchanged, but now connects to
the VTPM Manager in DomB.

The build process is modified so that an integrity measurement
of the kernel, initial ramdisk and any configuration optionsis taken
after the relevant files have been loaded into DomB’s memory.
At this point, a new VTPM instance is created for the domain,
and the measurements are stored in one or more virtual PCRs. By
performing the measurement here, the VTPM is not vulnerableto
a TOCTOU attack, as the kernel that is measured is guaranteedto
be the same as the one that is loaded. As in the existing VTPM
implementation, the first nine physical PCRs are mapped intoall
virtual TPMs. In order to associate the virtual platform with the
physical platform, a driver for the hardware TPM is includedin
DomB, and Xen gives DomB exclusive control over the device.

The physical platform configuration is measured by a trusted
bootloader, such as the OSLO bootloader developed by Bernhard
Kauer [18]. This loads and measures the hypervisor, Dom0 kernel
and domain builder, and stores the measurements in the hardware
TPM.

It is possible to refine this model in order to allow dynamic ker-
nel module loading in Dom0. The Dom0 kernel must be modified
to make an IVMC call to DomB before a new module is loaded.
The IVMC call would contain a measurement of the loaded mod-
ule, and DomB would update the physical platform configuration
on Dom0’s behalf. DomB would only perform the extension, and

X e n
U s e r
K e r n e l

d o m 0
(a) Existing

X e n
U s e r
K e r n e l

d o m 0 d o m B
(b) Disaggregated

X e n
U s e r
K e r n e l

d o m 0 d o m B
(c) Ideal

Figure 6. Illustration of the TCB contents for the existing, disag-
gregated and ideal Xen-based systems.

return a successful response, if no guest VMs were currentlyrun-
ning on the physical machine. Otherwise, loading the modulecould
potentially compromise the running VMs, so the extension would
not be performed, and Dom0 would be instructed not to load the
module. As the Dom0 kernel is part of the TCB, it could be trusted
to respect the decision of DomB.

6. Evaluation
In this work, we aimed to improve the trustworthiness of a Xen-
based system. In this section, we evaluate our solution bothquanti-
tatively and qualitatively, by enumerating the contents ofthe TCB
before and after disaggregation (Subsection 6.1), performing a se-
curity analysis of a disaggregated system (Subsection 6.2), and dis-
cussing the limitations of our approach (Subsection 6.3).

6.1 Reducing the TCB

Figure 6 shows three illustrations of the TCB in a Xen-based
system, representing the existing, disaggregated and ideal cases.

The existing case (Figure 6(a)) shows the TCB of a system
running the current version of Xen (version3.1). The TCB of every
guest VM includes the hypervisor, the Dom0 kernel, and all user-
space code that the administrator runs in Dom0. This includes a
Python interpreter that runs thexend control daemon, thelibxc
low-level control library, and a C library (libc).

The disaggregated case (Figure 6(b)) shows the current state of
our work. The TCB of every guest VM includes the hypervisor, the
Dom0 kernel, and a MiniOS-based version of thelibxc low-level
control library. The Dom0 kernel is included in the TCB because
it is responsible for interaction with physical input/output devices;
however, it no longer exports privileged operations to user-space.
Thexend control daemon and the Python interpreter are no longer
part of the TCB, because they cannot be used to undermine the
confidentiality of a VM, and any attempt to undermine integrity
would be detected (see§6.2 for details).

Table 1 compares the TCB contents for the existing and disag-
gregated cases. The following software was analysed: Xen version
3.1 (for the hypervisor, Dom0 kernel (version2.6.18-xen), Dom0
kernel drivers, libxc and xend), Python version2.4.4 and glibc ver-
sion 2.6. We used version2.26 of the SLOCCount tool [34] to
perform the analysis. We analysed only platform-independent code
and platform-specific code for thex86 32 architecture. We did not
analyse testing code. The table does not include other user-space
code in Dom0 that would be counted as part of the TCB in the
existing version, but instead concentrates on a minimal Dom0 con-
figuration.

In addition to the amount of code in the TCB, the size of
the interface must be considered. The existing version includes

Component
1000s of lines of code
C ASM Python

Hypervisor 98 3 –
Dom0 kernel 1500 9.6 –
Dom0 drivers ≤ 2400 ≤ 2.6 –

+ DomB 9.2 0.5 –
− libc 690 15 –
− Python 220 – 140

− libxc 9.9 – –
− xend 2.4 – 17

+ Added 9.2 0.5 –
− Removed 920 15 160

Table 1. Changes to the TCB between the existing and disaggre-
gated approaches. Rows beginning with+ indicate where code was
added to the TCB; rows beginning with− indicate where it has
been removed.

the privcmd driver, which enables user-space processes run by
the administrator to make privileged hypercalls. By removing this
feature from the driver, it is no longer possible for user-space
processes to perform a direct foreign mapping, or alter the virtual
CPU state. This step removes Dom0 user-space from the TCB.

Figure 6(c) illustrates the ideal TCB. At present, this is not fea-
sible. Several authors have commented that a malconfigured device
that can perform Direct Memory Access (DMA) can access any
part of physical memory [14, 15, 17], and its driver must therefore
be included in the TCB. The introduction of Input/Output Memory
Management Units (IOMMUs), which in effect create virtual ad-
dress spaces for DMA, should help to mitigate this problem [6]. It
will be necessary to add code that controls the IOMMU, eitherto
the hypervisor, or in a small, trusted VM that runs beside DomB.
Without an IOMMU, we must trust the physical device drivers,and
since these run within a Linux kernel, we must trust the kernel it-
self.

6.2 Security analysis

In this subsection, we evaluate a disaggregated Xen-based system
in terms of two security properties:confidentialityandintegrity. We
consider two unauthorised sources of attacks: the administrator of
the physical platform (hereafter abbreviated to Dom0-admin), and
other unprivileged VMs on the same physical host.

We take the definitions of confidentiality and (data) integrity
from the NIST Handbook on Computer Security [23]:

Confidentiality “A requirement that private or confidential infor-
mation not be disclosed to unauthorized individuals.”

Integrity “[A] requirement that information and programs are
changed only in a specified and authorized manner.”

In our analysis, we use a physical host as the benchmark for our
security properties. We do not consider theavailability of a VM,
because, if it were a physical machine in a managed data center, the
machine could be powered down arbitrarily, and it is not possible
for software to prevent this. Therefore, thexend operations of cre-
ating and destroying VMs are not considered privileged operations.
Similarly, we assume that all input/output channels and secondary
storage are insecure, because on a physical machine these could be
intercepted by, for example, wiretapping a physical cable or trans-
planting a hard drive into another machine. Finally, we assume that
encryption is unbreakable and we do not consider timing attacks in
this analysis.

We describe the results of our analysis for the virtual CPU
(6.2.1), physical RAM (6.2.2), secondary storage (6.2.3),network
(6.2.4) and kernel image (6.2.5).

6.2.1 Virtual CPU

Each VM has one or more virtual CPUs (VCPUs), which are stored
in a hypervisor data structure when not in use by the physicalCPU.
The confidentiality of a VCPU may be attacked by a hypercall that
gets the contents of that VCPU. The integrity of a VCPU may be
attacked by a hypercall that sets the contents of that VCPU.

Neither Dom0-admin, nor an unprivileged VM has access to
either hypercall, and so neither can undermine the confidentiality
or integrity of a VCPU. Only DomB can use the “set” hypercall,as
part of the build process.

6.2.2 Physical RAM

In order to map a page of RAM from another VM, it is necessary to
create a mapping to that page in the attacking VM’s page table.
However, all active page tables are protected by Xen, and any
update that refers to a page that belongs to another VM must be
made using a hypercall. The confidentiality of physical RAM may
be attacked by mapping a page for read access. The integrity of
physical RAM may be attacked by mapping a page for write access.

An unprivileged VM may only update its page table to include
pages that it owns, or to which it has been granted explicit access.
Therefore, it cannot undermine the confidentiality or integrity of
physical RAM.

The Dom0 kernel may, in effect, access any page of physical
memory, because it controls devices that may perform DMA from
any address. However, the Dom0 kernel does not propagate this
control to user-space; therefore Dom0-admin cannot use user-space
software in Dom0 to undermine the confidentiality or integrity of
physical RAM.

6.2.3 Secondary storage

The contents of secondary storage may be held directly on a physi-
cal backing store, or in a file in Dom0. Because the virtual block de-
vice back-end is typically implemented there, Dom0 requires read-
and write-access to the secondary storage. The confidentiality of
secondary storage may be attacked by inspecting the contentof the
physical backing store or file. The integrity of secondary storage
may be attacked by overwriting the content of the physical backing
store or file.

An unprivileged VM has no direct access to hardware, and can-
not directly access a file in Dom0 that contains another VM’s sec-
ondary storage. Therefore, it cannot undermine the confidentiality
or integrity of secondary storage, unless aided by Dom0.

Clearly, Dom0-admin can read any unencrypted contents of sec-
ondary storage, and can make arbitrary changes. In order to protect
confidentiality, it is necessary for the guest to encrypt itsdata us-
ing, for example, the dm-crypt API in Linux [32] or the BitLocker
feature in Microsoft Windows Vista [22]. Keys can be protected
using the sealing functionality of the virtual TPM. Encryption can
also be used to preserve integrity, though this does not ruleout a
destructive attack on the data in secondary storage.

We note that the protection given to secondary storage is equiva-
lent to that provided by a physical host, as a physical hard drive can
be transplanted into an untrusted computer, in order to circumvent
access control.

6.2.4 Network

The virtual network driver is implemented as a virtual splitdevice
that has a front end in the guest VM and a back end in Dom0.
In the most common Xen network topology, the back ends are
connected to a software bridge, which is then connected to the

physical network interface. The confidentiality of networktraffic
may be attacked by attaching a packet sniffer to the virtual network.
The integrity of network traffic may be attacked by modifying
the bridge software to change the contents of packets as theyare
forwarded, or injecting false packets into the network.

An unprivileged VM will only see packets that are addressed to
it, and it cannot send packets with false headers that appearto be
from another VM, because Dom0 will reject them. Therefore, an
unprivileged VM cannot undermine the confidentiality or integrity
of the network.

As is the case for secondary storage, all network traffic passes
through Dom0. A packet sniffer, run in Dom0, could thereforebe
used to undermine the confidentiality of the network. An encryp-
tion scheme, such as TLS [11] or IPSec [19] may be used to protect
confidentiality. In order to modify packet data, it would be neces-
sary to modify the Dom0 kernel code that controls the software
bridge: since this is part of the TCB, it would be reflected in in-
tegrity measurements. However, encryption provides an additional
defence against attacks on the integrity of the network. Theuse of
Virtual Private Networking [16] software in the guest VM would be
sufficient to protect the confidentiality and integrity of the network
from Dom0-admin.

We note that the protection given to network connections is
equivalent to that provided by a physical host, when it is connected
to an untrusted network.

6.2.5 Kernel image

The kernel image (and optionally, the initial ramdisk) exist as
unencrypted files in the Dom0 file system, which are transferred
to the domain builder when a VM is created. We do not consider
the confidentiality of a kernel image, because this is incompatible
with an “open trusted computing” approach: it should be possible
to inspect the contents of the kernel and be confident that it is not
carrying out any malicious activities [20]. The integrity of a kernel
image may be attacked by modifying the relevant file or files.

An unprivileged VM cannot access the file containing the kernel
image unless it is granted access by Dom0, and it cannot intercept
the IVMC channel used to transfer the file to DomB, because this
channel uses explicit granted access from DomB to Dom0.

Dom0-admin may modify the contents of the kernel image.
However, the trusted VMM architecture (see§5.2) stipulates that
the integrity of the kernel image is measured before boot, and
this measurement is stored in the virtual TPM. If Dom0-admin
compromises the integrity of the kernel image, the guest will be
able to detect this by performing attestation, or trying to decrypt a
secret that has been sealed to the platform configuration.

6.3 Limitations

As discussed in Subsection 6.1, one major limitation of our ap-
proach is that the Dom0 kernel must be included in the TCB, and
it is by far the largest TCB component. It is included in the TCB
because it controls physical hardware that may perform DMA,and,
without an IOMMU, may therefore read or write to any locationin
physical memory. Why, in that case, did we not include the domain
builder code in the Dom0 kernel, and retain the aggregation of priv-
ileges for Dom0? We chose disaggregation because, when IOM-
MUs are commonly available, the disaggregated approach will fa-
cilitate a switch to the “ideal” TCB depicted in Figure 6(c),whereas
there would be no advantage if the domain builder were integrated
in the Dom0 kernel.

Duflot et al demonstrated that it is possible to use the Sys-
tem Management Mode on x86 computers to undermine security
policies [12]. The exploit is possible from user-space, when run-
ning as the administrator, even when using a “secure” OS, such
as OpenBSD. In order to mitigate the attack, user-space access to

video RAM must be disabled. In this case, it is not possible touse
an X Server, which relies on this access. This is not a concernin
data centre use cases, but it has severe implications for desktop vir-
tualisation. We are currently investigating the use of a lightweight
GUI, such as Nitpicker, which is sufficiently small to be included
in the TCB [13].

We have analysed the Xen tool stack and found several tools
that make use of thexc map foreign range function from libxc.
Most of these map single frames for communication with guest
VMs: we have introduced “third-party grants” that enable the do-
main builder to insert entries in a new VM’s grant table in order
to share these pages. The user-space grant table device (see§4.3)
may be used to perform the mappings. The save and restore func-
tions use direct foreign mappings in order to copy the contents of
a VM’s memory to and from disk, respectively. These may be im-
plemented in a disaggregated fashion, using the same basis as the
domain builder. A final category of mappings are those used for
debugging: we do not attempt to enable these, because they would
undermine the confidentiality and integrity guarantees that our ap-
proach makes.

7. Related Work
Disaggregation is similar to the work carried out by Singaravelu et
al on the Nizza architecture [30]. This work involved extracting
the security-critical components (“AppCores”) of severallegacy
applications, and running these within a kernelised TCB, which
runs on top of the L4 microkernel. Communication between the
trusted and untrusted components was implemented using L4 inter-
process communication (IPC). However, the intention of this work
was to protect the security sensitive parts of an application from
the much larger, untrusted segment. The authors did not attempt to
protect applications from a malicious administrator.

Disaggregation is also an example of privilege separation,de-
scribed by Provoset al [25]. They describe an approach whereby
an application containing privileged and unprivileged components
is divided so that each part runs with the least necessary privilege,
and analyse their approach on OpenSSH. In their security analy-
sis, they concentrate on minimising the number of lines of code
in the privileged components. By contrast, we introduce additional
criteria for qualitatively evaluating the TCB in Subsection 3.2, and
base our separation upon these, in addition to the number of lines
of code.

Hohmuthet al criticise the security claims made of virtual ma-
chine monitors and suggest using a small kernel, inter-process
communication and wrappers around untrusted code, in orderto
reduce TCB size [17]. To this end, they demonstrate the abil-
ity to run legacy applications on an L4Linux server, which runs
on top of the L4 microkernel. They propose a new point on the
VMM-microkernel continuum, namely “VM-enabled microker-
nels”, which they conflate with “VMMs with microkernel-likefea-
tures”. We believe that the two are actually different, and,in this
paper, we present an example of the latter. In particular, Hohmuth
et al hold that, in a paravirtualisation-based VMM, such as Xen,
“IPC needs device emulation”, which thereby hinders the adoption
of a disaggregated approach. In Subsection 4.2, we demonstrate
that this is not the case.

The Terra architecture for Trusted Computing presents the con-
cept of “closed box” virtual machines that cannot be inspected
or altered by another virtual machine running on the same plat-
form [15]. Such closed boxes could be provided by, for example, a
online game manufacturer, who wants to ensure that players are un-
able to cheat whilst playing the game. Although the authors present
an architecture that could enable closed box operation, they do not
provide details for how these may be isolated from the host op-
erating system (analogous to Dom0 on a Xen platform). Indeed,

they acknowledge that their implementation, using VMWare GSX
Server and a Debian Linux host OS, is not “suitably high assur-
ance for a real TVMM [Trusted VMM]”. We develop their work
further by suggesting the mechanisms that can be used to develop
a trustworthy VMM.

Fraseret aldemonstrated the use of virtual machine isolation for
providing safe and reliable access to hardware devices [14]. In their
system, each hardware device and the least I/O privileges required
to access it are assigned to an individual Xen VM. Therefore,the
robustness of the system is improved when faced with a misbehav-
ing driver. “I/O Spaces” are used to disaggregate the I/O port and
memory privileges that were previously assigned to a monolithic
Dom0. However, this work differs from ours in that it concentrates
on driver isolation, and does not attempt to shield guests against a
malicious administrator.

Two separate projects have implemented socket-like communi-
cations between virtual machines in a Xen-based system. Zhang
et al created “XenSocket”, which provides a “high-throughput in-
terdomain transport” between Linux-based VMs [36]. Anderson et
al have developed an inter-domain communication (IDC) library,
which may be used to communicate between Linux- and MiniOS-
based VMs. In addition, they have ported a minimal C library and
development toolchain to MiniOS, which enables trusted appli-
cations to be built straightforwardly [2]. These approaches differ
from ours, because they implement communication in the Linux
kernel, whereas we use the user-space grant table device to imple-
ment communication in user-space. Furthermore, both approaches
assume a trusted Dom0.

8. Conclusions
In conclusion, we have demonstrated that it is possible to improve
the security of a virtual machine running on the Xen virtual ma-
chine monitor, using a process of disaggregation. Our approach
yields a measurable TCB that can be used with established trusted
computing techniques. In redrawing the TCB, we have asserted that
the number of lines of code is not the sole determinant of trustwor-
thiness in a TCB, and introduced two new criteria – interfacesize
and state space size – for judging trustworthiness. We applied these
criteria to the selection of a TCB for disaggregation.

In order to implement our solution, we have made three main
contributions. The principal contribution is the disaggregated do-
main builder service, based on our TCB design. This domain
builder is a small, trusted service, which is given the necessary
privileges in order to build new virtual machines. It therefore obvi-
ates the need for a monolithic management domain (Dom0) to have
full privileges. Our other contributions supported the development
of the domain builder, but can also be used for other purposes. We
developed an inter-VM communication mechanism and associated
IDL compiler. This enables developers to create lightweight code
that communicates between Xen guest VMs without using a net-
working stack, which is particularly useful when developing trusted
services that run on a minimal operating system (such as MiniOS).
The IDL dialect is compatible with that used for L4/Fiasco, and
we hope that this will lead to an exchange of solutions between
the VMM and microkernel development communities. Finally,we
developed a user-space grant table driver, which replaces the use
of direct foreign mappings in Dom0. The grant table permits con-
trolled sharing, and the new driver may be used in future to develop
secure user-space management software for Xen guest VMs.

Our design has been informed greatly by developments in mi-
crokernels, especially the privilege separation work thathas been
carried out using the L4 microkernel [17, 30]. We borrow the con-
cept of IPC between protection domains, and, indeed, we makeuse
of the same IDL compiler front-end that is used to integrate ap-
plications on L4 [27]. We believe that our approach, “VMMs with

microkernel-like features”, leads to a satisfactory combination of
security and functionality.

Acknowledgments
We would like to thank our colleagues for their comments and sug-
gestions. This work was partially supported by EPSRC Grant ref-
erence EP/D020158/1 (XenSE), and the Open Trusted Computing
project of the European Commission Sixth Framework Programme.

References
[1] R. Aigner. DICE User’s Manual. Technical report, Technische

Universität Dresden, 2007.http://os.inf.tu-dresden.de/
dice/manual.pdf.

[2] M. J. Anderson, M. Moffie, and C. I. Dalton. Towards Trustworthy
Virtualisation Environments: Xen Library OS Security Service
Infrastructure. Technical Report HPL-2007-69, Hewlett-Packard
Development Company, L.P., April 2007.

[3] W. Arbaugh, D. Farber, and J. Smith. A secure and reliablebootstrap
architecture.Proceedings of the 1997 IEEE Symposium on Security
and Privacy, 1997.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield. Xen and the art of
virtualization. InProceedings of the nineteenth ACM symposium
on operating systems principles, pages 164–177. ACM Press New
York, NY, USA, 2003.

[5] V. R. Basili and B. T. Perricone. Software errors and complexity: an
empirical investigation.Commun. ACM, 27(1):42–52, 1984.

[6] M. Ben-Yehuda, J. Mason, O. Krieger, J. Xenidis, L. V. Doorn,
A. Mallick, J. Nakajima, and E. Wahlig. Utilizing IOMMUs for
Virtualization in Linux and Xen. InProceedings of the 2006 Ottawa
Linux Symposium, 2006.

[7] S. Berger, R. Cáceres, K. A. Goldman, R. Perez, R. Sailer, and
L. van Doorn. vTPM: virtualizing the trusted platform module. In
Proceedings of the 15th USENIX Security Symposium, pages 21–21,
Berkeley, CA, USA, 2006. USENIX Association.

[8] A. Birrell and B. Nelson. Implementing remote procedurecalls.ACM
Transactions on Computer Systems, 2(1):39–59, 1984.

[9] M. Bishop and M. Dilger. Checking for race conditions in file
accesses.Computing Systems, 9(2):131–152, Spring 1996.

[10] P. M. Chen and B. D. Noble. When virtual is better than real. In
Proceedings of the 8th Workshop on Hot Topics in Operating Systems,
page 133, Washington, DC, USA, 2001. IEEE Computer Society.

[11] T. Dierks and C. Allen. The TLS Protocol Version 1.0. RFC2246,
IETF, Jan. 1999.

[12] L. Duflot, D. Etiemble, and O. Grumelard. Using CPU System
Management Mode to Circumvent Operating System Security
Functions. InProceedings of the 7th CanSecWest conference, 2001.

[13] N. Feske and C. Helmuth. A nitpicker’s guide to a minimal-
complexity secure GUI. InACSAC ’05: Proceedings of the 21st
Annual Computer Security Applications Conference, pages 85–94,
Washington, DC, USA, 2005. IEEE Computer Society.

[14] K. Fraser, S. Hand, R. Neugebauer, I. Pratt, A. Warfield,and
M. Williamson. Safe hardware access with the Xen virtual machine
monitor. InProceedings of the 1st Workshop on Operating System
and Architectural Support for the on demand IT InfraStructure, 2004.

[15] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a
virtual machine-based platform for trusted computing. InProceedings
of the 19th ACM Symposium on Operating Systems Principles, pages
193–206. ACM Press New York, NY, USA, 2003.

[16] B. Gleeson, A. Lin, J. Heinanen, G. Armitage, and A. Malis. A
Framework for IP Based Virtual Private Networks. RFC 2764, IETF,
Feb. 2000.

[17] M. Hohmuth, M. Peter, H. Härtig, and J. Shapiro. Reducing TCB size
by using untrusted components: small kernels versus virtual-machine
monitors. InProceedings of the 11th ACM SIGOPS European
workshop: beyond the PC. ACM Press New York, NY, USA, 2004.

[18] B. Kauer. OSLO: Improving the Security of Trusted Computing.
In Proceedings of the 16th USENIX Security Symposium. USENIX
Association, 2007.

[19] S. Kent and K. Seo. Security Architecture for the Internet Protocol.
RFC 4301, IETF, Dec. 2005.

[20] D. Kuhlmann, R. Landfermann, H. Ramasamy, M. Schunter,
G. Ramunno, and D. Vernizzi. An Open Trusted Computing
Architecture: Secure virtual machines enabling user-defined pol-
icy enforcement. Technical report, OpenTC consortium, 2006.
https://secure.opentc.net/otc HighLevelOverview/OTC
Architecture High level overview.pdf.

[21] J. Liedtke. On micro-kernel construction.ACM SIGOPS Operating
Systems Review, 29(5):237–250, 1995.

[22] Microsoft Corporation. BitLocker Drive Encryption, 2007. http:
//technet.microsoft.com/en-us/windowsvista/aa905065.
aspx.

[23] National Institute of Standards and Technology. An Introduction to
Computer Security: the NIST Handbook. Technical Report 800-12,
National Institute of Standards and Technology, October 1995.

[24] T. J. Ostrand and E. J. Weyuker. The distribution of faults in a large
industrial software system.SIGSOFT Softw. Eng. Notes, 27(4):55–64,
2002.

[25] N. Provos, M. Friedl, and P. Honeyman. Preventing privilege
escalation. InProceedings of the 12th USENIX Security Symposium,
pages 16–16, Berkeley, CA, USA, 2003. USENIX Association.

[26] D. Reed, I. Pratt, P. Menage, S. Early, and N. Stratford.Xenoservers:
Accountable execution of untrusted programs. InProceedings of
the 7th Workshop on Hot Topics in Operating Systems, page 136,
Washington, DC, USA, 1999. IEEE Computer Society.

[27] L. Reuther, V. Uhlig, and R. Aigner. Component Interfaces in a
Microkernel-based System. InProceedings of the 3rd Workshop on
System Design Automation (SDA), March 2000.

[28] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and
Implementation of a TCG-based Integrity Measurement Architecture.
In Proceedings of the 13th USENIX Security Symposium, pages 223–
238, 2004.

[29] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner. Detecting format
string vulnerabilities with type qualifiers. InProceedings of the 10th
USENIX Security Symposium, Berkeley, CA, USA, 2001. USENIX
Association.

[30] L. Singaravelu, C. Pu, H. Hartig, and C. Helmuth. Reducing TCB
complexity for security-sensitive applications: Three case studies. In
Proceedings of EuroSys 2006, 2006.

[31] A. Tanenbaum, J. Herder, and H. Bos. Can we make operating
systems reliable and secure?Computer, 39(5):44–51, 2006.

[32] (Unattributed). dm-crypt - a device-mapper crypto target, 2007.
http://www.saout.de/misc/dm-crypt/.

[33] (Unattributed). TPM Main Part 1 Design Principles. Techni-
cal report, Trusted Computing Group, 2007.https://www.
trustedcomputinggroup.org/specs/TPM/mainP1DPrev103.
zip.

[34] D. A. Wheeler. SLOCCount, 2007.http://www.dwheeler.com/
sloccount/.

[35] XenSource. XenApi - Xen Wiki, 2007.http://wiki.xensource.
com/xenwiki/XenApi.

[36] X. Zhang, S. McIntosh, P. Rohatgi, and J. Griffin. XenSocket: A
high-throughput interdomain transport for VMs. InProceedings of
Middleware 2007, Secaucus, NJ, USA, 2007. Springer-Verlag New
York, Inc.

