
Applying Kalman Filters to Dynamic Resource
Provisioning of Virtualized Server Applications

Evangelia Kalyvianaki
Computer Laboratory

University of Cambridge, UK
ek264@cl.cam.ac.uk

Themistoklis
Charalambous

Department of Engineering
University of Cambridge, UK
tc257@eng.cam.ac.uk

Steven Hand
Computer Laboratory

University of Cambridge, UK
smh22@cl.cam.ac.uk

ABSTRACT
Resource management in virtualized data centres is impor-
tant and challenging, particularly when dealing with com-
plex multi-tier server applications and fluctuating workloads.
In this paper, we use control theory to build two controllers
based on Kalman filters which monitor and vary CPU alloca-
tions across application tiers. Our approach (a) tracks util-
isation patterns over noisy data, (b) considers the resource
coupling among tiers and collectively allocates resources to
them, and (c) adapts to workload conditions through an
on-line parameter estimation mechanism. An initial exper-
imental evaluation on a multi-tier server application shows
that our controllers work effectively.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Measurement techniques,
Modelling techniques.

General Terms
Measurement, Performance.

Keywords
Kalman Filter, Feedback Control, Resource Provisioning,
Virtual Machines.

1. INTRODUCTION
System-level virtualization enables a single physical ma-

chine to host multiple virtual machines (VMs) which may
run any application. In modern data centres, virtualization
is commonly deployed to provide the abstraction of an ag-
ile set of resources. This can create VMs on demand and
dynamically allocate resources to them.

A key prerequisite to high performance is setting these
allocations as required to meet server application demands.
Server applications, however, exhibit variable resource usage
over time due to workload fluctuations; a simple static re-
source allocation scheme will fail to react to these changes. If
under-provisioned, the application is not properly equipped
to serve incoming requests; its performance will drop and
Service Level Agreement (SLA) violations may occur. If
over-provisioned, incoming requests are adequately served,
but physical resources are under-utilised, thus preventing
additional applications from being run. A dynamic resource
allocation scheme is required to address these challenges.

Recently control theory has been used to perform dy-
namic allocation of CPU resources in virtualized data cen-

tres. CPU is an important resource for data centres. Server
machines’ reported under-utilisation has various consequences
such as increase in power consumption. Therefore it is crit-
ical to use efficiently CPU resources. Dynamic techniques
can be used to construct an efficient scheme that adjusts
allocations as workload changes occur, without using ex-
tensive a priori knowledge of the workload patterns or the
applications’ internal structure. For example, Wang et al [9]
present a nonlinear gain-adaptive integral controller that
regulates the relative utilisation at a target value for sin-
gle resource containers. The same controller in combination
with other controllers has been studied in virtualized en-
vironments in order to: (a) allocate the CPU resources for
co-located multi-tier applications [6]; (b) maintain the server
response time within user-specified limits [12]; and (c) reg-
ulate the response time to a reference value with the aid of
a performance model based on transaction mixes to better
estimate the utilisation across tiers [8]. Finally, Liu et al [5]
present an optimal controller that computes the resource al-
locations for multi-tier co-located virtualized applications,
providing QoS response time differentiation in overload.

This paper presents a feedback control scheme that uses
Kalman filters to control CPU resource allocation for multi-
tier server applications deployed across multiple VMs. We
formulate the allocation problem as a CPU utilisation track-
ing one, where a controller aims to maintain the CPU allo-
cation at a certain limit above the utilisation. Tracking the
utilisation is an intuitive approach to resource provisioning
as each VM is allocated resources as needed.

Although others have also tried to regulate the relative
CPU utilisation to a reference value [9, 6], the contribu-
tion of this paper is the integration of a very powerful fil-
tering technique into a linear feedback allocation controller.
Rather than using Kalman filters to estimate the parameters
of an application performance model [11], we use Kalman
filters as both as a tracking method and to build a feed-
back controller. The Kalman filter is particularly attractive
since it is the optimal linear filtering technique when certain
conditions hold and has good performance even when the
conditions are relaxed.

This paper makes the following contributions: (a) a linear
allocation controller for each VM based on tracking CPU us-
age; (b) an extended second controller that considers the re-
source coupling in multi-tier applications and enables faster
allocations to saturated components; and (c) an on-line adap-
tation mechanism that modifies the filter parameters under
different operating conditions without requiring any a priori

knowledge.

2. PROTOTYPE VIRTUALIZED CLUSTER
Figure 1 illustrates the prototype virtualized cluster used

to evaluate our controllers. The cluster, which consists of
three machines running the Xen 3.0.2 hypervisor [2], hosts
the Rubis server application [1]. Rubis is a prototype auc-
tion web server which models eBay.com. In this paper we
use a 3-tier version of Rubis. Each one of the three server
components — Tomcat web server, JBoss application server
and MySQL DB server — is deployed on a separate VM run-
ning on a separate physical machine. A fourth machine hosts
the Rubis Client Emulator used to generate requests1 to the
server. The Client Emulator also records the response times
of requests and can be used to evaluate the performance of
our controllers. All machines are connected on a Gigabit
Ethernet network.

The controllers presented in this paper determine CPU
allocations for VMs. Periodically, the manager module sub-
mits the mean CPU usage for the VM under control over
the last interval to the controller module(s). The con-

troller(s) compute the allocations for the next interval
and enforces the new allocations to the specified VM by
using the CPU scheduler interface exported by Xen. Our
prototype uses the “simple EDF” (SEDF) scheduler config-
ured with the capped option so that no VM can use any
more CPU time that it has been allocated. The controller

modules run on the same machine as the Client Emulator.
The current prototype controls CPU allocations per VM.

To ensure that the server’s performance depends solely on
the controller(s) CPU allocations, certain actions are taken.
All machines have two CPUs, and each one of the two VMs
per physical machine is pinned on a separate CPU. This sim-
ple setup enables us to study the impact of the controller(s)
allocations on the server performance, without any implica-
tions due to scheduling artifacts among running VMs shar-
ing the same CPU. In future work we hope to demonstrate
that our system performs well even when many VMs share a
single CPU. Finally, for all the experiments each VM is allo-
cated memory as required when first created and this alloca-
tion is kept constant throughout. The network bandwidth is
also measured and is never a bottleneck to the application.

3. CONTROLLER DESIGN
Since first presented by R.E. Kalman in his seminal 1960

paper [3], the Kalman filter has been used in a large num-
ber of areas including autonomous or assisted navigation,
motion prediction, and so on. It is a data filtering method
that estimates the state of a linear stochastic system in a re-
cursive manner based on noisy measurements. The Kalman
filter is optimal in the sum squared error sense and in the
maximum likelihood sense under the following assumptions:
(a) the system is described by a linear model and (b) the
process and measurement noise are white and Gaussian. It
is also computationally attractive, due to its recursive com-
putation, since the production of the next estimate only re-
quires the updated measurements and the previous predic-
tions.

In the rest of this section we present two controllers which
make use of Kalman filters to dynamically allocate CPU re-
sources to the various VMs comprising a multi-tier applica-
tion. We define a component’s CPU allocation a to be the

1Due to space considerations, in this paper we limit our-
selves to the read-only browsing mix [1].

RUBIS Server System

c

c

c

MIMO
Controller

manager

manager

manager

dom0

dom0

dom0

Tomcat

JBoss

MySQL

Xen

Xen

Xen

Controller

Controller

Controller

Client
Emulator

Incoming Requests

allocations

usages

Figure 1: Virtualized prototype and control system
overview. Solid lines between the controller mod-
ules and the Rubis Server System depict the three
BC SISO controller systems. The PNCC MIMO
controller is shown by the dashed rectangle.

percentage of the total CPU capacity of a physical machine
allocated to a running VM; a component’s CPU usage or
utilisation v to be the percentage of the total CPU capacity
of a physical machine actually used by that component; and
u the measured/observed value of v.

3.1 Basic Controller
The Basic Controller (BC), also presented in [4], computes

the allocations for each VM based on usage measurements
from each tier separately. All metrics presented in this sub-
section are scalar and refer to a single component.

We start by modelling the time-varying CPU usage v as a
one-dimensional random walk. The system is thus governed
by the following linear stochastic difference equation:

vk+1 = vk + tk, (1)

where the independent random variable t represents the pro-
cess noise and is assumed to be normally distributed. Intu-
itively, in a server system the CPU usage vk+1 in the next
interval will generally depend on the usage vk of the previ-
ous interval as modified by changes, tk, caused by request
processing e.g., processes added to or leaving the system,
additional computation by existing clients, lack of compu-
tation due to I/O waiting, and so on. Knowing the process
noise and the usage vk over the previous interval, one can
predict the usage vk+1 for the next interval. The purpose of
the controller is to maintain the allocation at a certain level
1

c
of the usage, where c is customised for each server applica-

tion or VM. In this way, allocations are updated as required
and follow the workload fluctuations. The allocation is thus
described by:

ak+1 = ak + zk. (2)

The allocation a is an unknown signal since the real us-
age v is also unknown. Therefore, we try to approximate a
through the measurements u as:

uk = cak + wk. (3)

The independent random variables zk and wk represent the
process and measurement noise respectively, and are as-

sumed to be normally distributed:

p(z) ∼ N(0, Q), (4)

p(w) ∼ N(0, R). (5)

The measurement noise variance (R) might change with each
time step or measurement. Also, the process noise variance
(Q) might change in order to adjust to different dynamics.
However, for the rest of this subsection they are assumed
to be stationary during the filter operation. Later, we will
present an approach which considers non-stationary noise.

Given that the equations (eq.) (2) and (3) describe the
system dynamics, the required allocation for the next inter-
val is computed based on tracking the utilisation and is a
direct application of the Kalman filter theory. eak is defined
as the a priori estimation of the CPU allocation, that is the
predicted estimation of the allocation for the interval k based
on previous measurements. bak is the a posteriori estimation
of the CPU allocation, that is the corrected estimation of the
allocation based on measurements. The predicted a priori
allocation for the next interval k + 1 is given by:

eak+1 = bak, (6)

where the corrected a posteriori estimation over the previous
interval is:

bak = eak + Kk(uk − ceak). (7)

At the beginning of the k + 1 interval the controller applies
the a posteriori bak allocation. If the bak estimation exceeds
the available physical resources, the controller allocates the
maximum available. In the region where the allocation is
saturated, the Kalman filter is basically inactive. There-
fore, the filter is active only in the underloaded situation
where the dynamics of the system are linear. The correction
Kalman gain between the actual and the predicted measure-
ments is:

Kk = c ePk(c2 ePk + R)−1, (8)

where ePk is the a priori estimation error variance and is

calculated based on the a posteriori error variance bPk−1:

bPk−1 = (1 − cKk−1) ePk−1, (9)

ePk = bPk−1 + Q. (10)

3.1.1 Modelling Variances
To obtain a good estimation of the allocation process noise

variance Q it is enough to estimate the usage variance —
since the allocation is considered to be proportional to the
usage — and then evaluate it via the following formula:

var(a) ' var(
u

c
) =

1

c2
var(u). (11)

The usage process noise corresponds to the evolution of the
usage signal in successive time frames. Estimating its vari-
ance is difficult, since the usage signal itself is an unknown
signal and it does not correspond to any physical process well
described by a mathematical law. The usage variance is cal-
culated from measurements of the CPU utilisation. When
the current BC controller is applied, the stationary process
variance Q is computed off-line before the control process
and remains the same throughout.

Finally, the measurement noise variance R corresponds
to the confidence that the measured value is very close to
the real one. Once more it is difficult to compute the ex-
act amount of CPU usage. However, given the existence of
relatively accurate measurement tools, a small value (e.g.
R = 1.0 is used throughout the paper) can act as a good
approximation of possible measurement errors.

3.2 Process Noise Covariance Controller
The Process Noise Covariance Controller (PNCC) further

extends the BC controller by considering the resource cou-
pling between multi-tier applications (MIMO controller in
Figure 1, usages from all tiers are forwarded to all con-
trollers). In multi-component servers, there is a correlation
between the utilisation of the various tiers. Server applica-
tions are usually modelled with queues in tandem. If any of
the tiers is inadequately provisioned, the overall server per-
formance is affected. In fact, when workload fluctuations
happen in resource provisioned server components, the sat-
uration point can be moved from one component to another,
causing prolonged poor server performance [7, 10].

To address this problem, the PNCC controller considers
the coupling between the components. The allocation for
each component is adjusted based on the errors of the cur-
rent component in addition to the errors caused in the other
components, as explained below. If n is the number of appli-
cation components, then the PNCC Kalman filter equations
for stationary process and measurement noise take the form:

Ak+1 = Ak + Zk, (12)

Uk = CAk + Wk, (13)

bAk = eAk + Kk(Uk − C eAk), (14)

Kk = CePk(CePkC
T + R)−1, (15)

bPk = (I − CKk)ePk, (16)

eAk+1 = bAk, (17)

ePk+1 = bPk + Q, (18)

where Ak ∈ R
n×1 and Uk ∈ R

n×1 are the allocation and
usage vectors respectively and each row corresponds to a
component; C ∈ R

n×n is a diagonal matrix with the target

value c for each component along the diagonal; ePk ∈ R
n×n

and bPk ∈ R
n×n are the a priori and a posteriori error covari-

ance matrices; Kk ∈ R
n×n is the Kalman gain matrix and

R ∈ R
n×n and Q ∈ R

n×n are the measurement and pro-
cess noise matrices respectively. For matrices Q and R the
diagonal elements correspond to the process and measure-
ment noise for each component. The non-diagonal elements
of the matrix Q correspond to the process noise covariance
between different components. Similarly, the non-diagonal
elements of the Kk matrix correspond to the gains between
different components and are computed based on their co-
variances (eq. (15), (16), and (18)). For example, in a 3-tier

application, the a posteriori bAk(1) estimation of the alloca-
tion of the first component at time k is the result of the a

priori estimation eAk(1) of the allocation plus the corrections
from all components’ innovations, given by:

bAk(1) = eAk(1) + Kk(1, 1)(Uk(1) − C(1, 1) eAk(1))

+ Kk(1, 2)(Uk(2) − C(2, 2) eAk(2))

+ Kk(1, 3)(Uk(3) − C(3, 3) eAk(3)).

3.2.1 Modelling Covariances
Similarly to the computation of the allocation variances,

the covariances between the components’ allocations are com-
puted off-line based on the usage covariances. If ui and uj

are the measured usages between components i and j, then
the covariance between their allocations ai and aj is com-
puted as:

cov(ai, aj) ' cov(
ui

c
,
uj

c
) =

1

c2
cov(ui, uj). (19)

3.3 Process Noise Adaptation
So far we have assumed stationary process and measure-

ment noises. Both controllers can be easily extended to
adapt to operating conditions by considering non-stationary
noises. For example in the case of the PNCC controller,
all formulae are as before but instead of the stationary Q,
the dynamic Qk is now used. In this case, Qk is updated
every several intervals with the latest computations of vari-
ances and covariances from CPU utilisation measurements
over the last iterations. For simplicity reasons, we consider
the measurement noise variance R to be always stationary,
(Rk = R).

4. RESULTS
In this section, the controllers’ performance is studied in

a variety of situations. System identification experiments
performed on our benchmark server application show that
when all components are adequately provisioned the client
mean response time (mRT) is kept below 1 second (s). If
one or more components are saturated, however, then the
mRT exceeds 1s. Therefore, for evaluation purposes, the
performance of the controller is examined against the mRT.

For all experiments the controller interval is set to 5s; this
interval enables the controller to react quickly to workload
changes. The parameter c, which denotes the level of the
CPU usage to the allocation, is set to 60%; this enables us
to study the controllers’ performance without any implica-
tions from the benchmark application. When the CPU us-
age approaches its allocation, the mRT exceeds 1s, because
of the large CPU usage variance exhibited by the Tomcat
and MySQL components.

4.1 Basic Controller
We first evaluate the performance of the BC controller.

Initially, the stationary process and measurement variances
are computed. To compute the allocation noise variance
Q for each component, the usage variances are first mea-
sured, eq. (11). To this end, the following experiment is per-
formed: 600 clients issue requests to the server for 200s, and
each component is allocated to 100% of its CPU. The same
experiment is repeated 10 times for statistically confident
results. The estimated usage variances are: var(Tomcat,
JBoss, MySQL) = (28.44, 4.75, 47.43). We refer to the set
of these values as Q0 and to the data set of this experiment
a D1. These values are an estimation of the variances in
the case of 600 clients, when no allocation restrictions are
applied to the components. Experiments in this paper use
600 clients.

Figure 2 illustrates the BC controller allocations across
all components, when the workload intensity changes; the
number of clients doubles from 300 to 600 at the 20th sam-
ple point, and drops to 300 at the 40th, we refer to this type

of experiment as E1. The controller tracks the usage fluc-
tuations and it tries to maintain the allocations at 1

c
of the

usages, (Figures 2(a), 2(b), 2(c)). The server’s performance
(Figure 2(d)) is sustained at good levels, as the mRT for the
majority of the intervals stays well below 1s. It exceeds this
value when the usage of one or more components becomes
very close to its allocation for that interval; this is standard
Rubis server behaviour.

It is even more useful to build a controller which corrects
its error and is not so strongly affected by transient fluc-
tuations. This is achieved by tuning the variances which
affect the Kalman gain. According to eq. (8), Kk monoton-
ically increases with Q, and monotonically decreases with
R. Consider a system with large process noise Q. Its states
experience large variation and this is shown by the measure-
ments as well. The filter should then increase its confidence
in the new error (the difference between the predicted state
and the measurement), rather than the current prediction,
in order to keep up with the highly variable measurements.
Therefore, the Kalman gain in this case is relatively large.
This is also the case for the gain in Figure 2(e), where the
variance values Q0 are relatively larger than the R values.
On the other hand, when the measurement noise variation R
relatively increases to the Q value, the new measurements
are biased by the included measurement error. The filter
should then decrease its confidence in the new error and the
Kalman gain stabilises to smaller values.

To better illustrate this behaviour, an E1 type of exper-
iment with workload fluctuations is carried out, but where
only a fraction of the initially computed values Q0 are con-
sidered; the new variances are set to Q0/400, which are
closer to the R values. Results are shown in Figure 3. In
this case, the values of the Kalman gains (Figure 3(e)) are
smaller than before (Figure 2(e)), and therefore the filter
has more confidence in the predicted values than the new
measurements. Figures 3(a), 3(b), and 3(c) show that the
allocation signal still adapts to the usage changes; however,
the behaviour is now smoother than before. In fact, the
overall server’s performance is better (Figure 3(d)), with
fewer spikes above 1, since the controller is not affected by
transient usage fluctuations. Tuning the Q values enables
the controller to act fast to workload changes without being
so strongly affected by transient fluctuations. With further
system identification analysis, Q values can be set to appro-
priate levels for specific applications.

The slow responsiveness of the controller to workload changes
is mainly the result of two factors. Firstly, when the con-
troller is configured to make smooth allocations, it responds
slowly to sudden workload changes. Secondly, the BC con-
troller controls the allocations for each component sepa-
rately, ignoring any resource coupling between them. The
PNCC controller presented next, considers this issue.

4.2 Process Noise Covariance Controller
In the current example server application, each compo-

nent’s usage is the result of its own workload processing.
However in multi-tier applications, if any component is not
adequately provisioned, all component utilisations can be af-
fected [4]. To incorporate the other components’ usages, the
usage covariance between the components is now used; the
new allocations, as explained in Section 3.2, are therefore
adjusted according to all components’ errors.

The PNCC controller is now evaluated using an exper-

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL

1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
in

 s
ec

on
ds

(d) Response

1 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 g
ai

n

Tomcat
JBoss
MySQL

(e) Kalman gains

Figure 2: BC controller performance, stationary Q0 variances.

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL

1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
in

 s
ec

on
ds

(d) Response

1 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 g
ai

n

Tomcat
JBoss
MySQL

(e) Kalman gains

Figure 3: BC controller performance, stationary Q0/400 variances.

iment of type E1 with workload fluctuations; results are
shown in Figure 4. Q variance values are set from the off-
line estimated Q0 and we also estimate the covariances from
the same data set, D1. Figure 4(d) shows the server’s mRT,
which is maintained at good levels (below 1s). Note that
the PNCC controller responds more quickly to the increased
number of clients, as shown by the fewer mRT spikes at
around the 20th interval compared with Figure 3(d).

To better compare the performance of the PNCC and BC
controllers when workload changes, we perform the next ex-
periment: 200 clients issue requests for 60 intervals; at the
30th interval another 600 are added for the rest of the experi-
ment, quadrupling the total number of clients. The same ex-
periment is performed for variances and covariances divided
by x values drawn from X = (x ∈ {8, 10, 40, 80, 100, 400}).
Each experiment is performed from 20 to 40 times for sta-
tistically confident results. Results are shown in Figure 5,
where the controllers are evaluated against two metrics: the
percentage of requests with response time (RT) ≤ 1s (Figure
5(a)), and the number of completed requests (Figure 5(b)).
To emphasise on the actual workload change, all metrics
are calculated for the duration of the workload increase un-
til the server settles down to the new increased number of
clients. Results show that the PNCC controller improves the
BC controller’s performance; larger improvement is achieved
as the values of the variances and covariances decrease. In
general, the small overall improvement observed is due to
the fact that each component has much more confidence in
its own error (e.g. large Tomcat gain for the Tomcat allo-
cations in Figure 4(e)) than the errors coming from other
components (e.g. small gains between different components
in Figure 4(e)). Again, with system identification analysis
on specific applications, the PNCC controller can be tuned
to achieve different performance.

4.3 PNCC Adaptive
So far we have presented results with stationary variances

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1

x values divide variances and covariances

%
 o

f r
eq

ue
st

s
w

ith
 R

T
<=

 1
s

BC
PNCC

14.0%
1.9% 4.2% 5.9%

0%
15.3%

(a) Low Response Requests

8 10 40 80 100 400
0

5000

10000

15000

x values divide variances and covariances

of

 c
om

pl
et

ed
 re

qu
es

ts

BC
PNCC

1.3% 1.0% 2.5% 1.9% 6% 5.3%

(b) Completed Requests

Figure 5: Comparison between BC and PNCC con-
trollers. Percentages in each case show the metric
difference of the PNCC controller over the BC with
a 90% confidence interval (CI).

and covariances computed off-line. As server workloads can
change frequently, it is impossible to compute off-line the
variances and covariances for every possible combination of
number of clients and request type mixes. In Section 3.3 we
discussed how each controller is formulated in the case of
non-stationary process variances. In this section, we eval-
uate the PNCC controller augmented with an adaptation
mechanism which computes the process variances and co-
variances in an on-line fashion.

The adaptation mechanism is tested again sudden work-
load changes using the following experiment: initially 300
clients issue requests to the server for 120 intervals; at the
40th interval another 300 are added for 40 intervals so that
for the last 40 intervals the number of clients is dropped to
the initial 300. Variances and covariances are updated every
10 controller intervals using the usage measurements. The
same experiment is repeated for different Q values divided
by x ∈ X. We compare against the PNCC controller, config-
ured with the stationary variances and covariances as com-

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(a) Tomcat

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(b) JBoss

1 10 20 30 40 50 60
0

10
20
30
40
50
60
70
80
90

100

Sample point

%
 C

P
U

usage
allocation

(c) MySQL

1 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

3.5

4

Sample point

m
R

T
in

 s
ec

on
ds

(d) Response

1 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sample point

K
al

m
an

 g
ai

n

Tomcat
Tomcat−JBoss gain
Tomcat−MySQL gain

(e) Kalman gains

Figure 4: PNCC controller performance, stationary Q/400 variances and covariances. Figure 4(e) shows the
Kalman gains used for calculating the allocations for the Tomcat component only.

8 10 40 80 100 400
0

0.2

0.4

0.6

0.8

1

1.2

x values divide variances and covariances

%
 o

f r
eq

ue
st

s
w

ith
 R

T
<=

 1
s

PNCC
PNCC Adaptive

1.3% 0.1% 0.6% 1.4% 1.3% 2.5%

(a) Low Response Requests

8 10 40 80 100 400
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5 x 104

x values divide variances and covariances

#

o
f

c
o

m
p

le
te

d
 r

e
q

u
e

s
ts

PNCC
PNCC Adaptive

1.3% 0.5% 0.2% 0.6% 0.2% 0.7%

(b) Completed Requests

Figure 6: Comparison between PNCC and PNCC
Adaptive controllers. Percentages in each case show
the metric difference of the PNCC Adaptive con-
troller over the PNCC with a 90% CI.

puted previously. Results shown in Figure 6; all experiments
are repeated 5 times. The PNCC adaptive performs equally
well to the non-adaptive PNCC, as shown by the number
of requests with RT ≤ 1s, and the number of completed
requests for the duration of the experiment. To conclude,
the adaptation mechanism is very powerful, as it eliminates
the need for off-line computations and so the controller can
adapt to unknown workload changes.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we presented two feedback controllers that

control the CPU allocations of multi-tier virtualized server
applications based on the Kalman filtering method. Our
results showed that the controllers dynamically adapt to
workload fluctuations. By considering the resource coupling
among tiers, a further improvement is achieved. In addition,
the controllers can be tuned to adapt more quickly or more
slowly to workload changes. Finally, the controllers’ param-
eters can be computed on-line, avoiding therefore extensive
off-line computations.

Part of our ongoing research is the extension of this work
by combining particle filtering with Kalman filters. This
should let us to track variables with noise that is not essen-
tially normally distributed, and also allow us to cope better
with multi-modal models.

Finally, we would like to thank the anonymous reviewers
for their useful comments and suggestions on this paper.

6. REFERENCES
[1] C. Amza, A. Chanda, E. Cecchet, A. Cox, S. Elnikety,

R. Gil, J. Marguerite, K. Rajamani, and

W. Zwaenepoel. Specification and Implementation of
Dynamic Web Site Benchmarks. In Proc. of the 5th
Annual IEEE Int. WWC Worskhop, 2002.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the Art of Virtualization. In
Proc. of the 19th ACM SOSP, 2003.

[3] R. E. Kalman. A New Approach to Linear Filtering
and Prediction Problems. Transaction of the
ASME–Journal of Basic Engineering, 82(Series
D):35–45, 1960.

[4] E. Kalyvianaki and T. Charalambous. On Dynamic
Resource Provisioning for Consolidated Servers in
Virtualized Data Centres. In Proc. of the 8th Int.
PMCCS Workshop, 2007.

[5] X. Liu, X. Zhu, P. Padala, Z. Wang, and S. Singhal.
Optimal Multivariate Control for Differentiated
Services on a Shared Hosting Platform. In Proc. of the
46th IEEE Conf. on Decision and Control, 2007.

[6] P. Padala, K. Shin, X. Zhu, M. Uysal, Z. Wang,
S. Singhal, A. Merchant, and K. Salem. Adaptive
Control of Virtualized Resources in Utility Computing
Environments. In Proc. of the EuroSys, 2007.

[7] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Groyal.
Dynamic Provisioning of Multi-tier Internet
Applications. In Proc. of the 2nd Int. ICAC, 2005.

[8] Z. Wang, X. Liu, A. Zhang, C. Stewart, X. Zhu,
T. Kelly, and S. Singhal. AutoParam: Automated
Control of Application-Level Performance in
Virtualized Server Environments. In Proc. of the 2nd
IEEE Int. FeBID Workshop, 2007.

[9] Z. Wang, X. Zhu, and S. Singhal. Utilization and
SLO-Based Control for Dynamic Sizing of Resource
Partitions. In Proc. of the 16th IFIP/IEEE Int.
DSOM Workshop, 2005.

[10] Q. Zhang, L. Cherkasova, and E. Smirni. A
Regression-Based Analytic Model for Dynamic
Resource Provisioning of Multi-Tier Applications. In
Proc. of the 4th IEEE Int. ICAC, 2007.

[11] T. Zheng, J. Yang, M. Woodside, M. Litoiu, and
G. Islzai. Tracking Time-Varying Parameters in
Software Systems with Extended Kalman Filters. In
Proc. of the CASCON Conference, 2005.

[12] X. Zhu, Z. Wang, and S. Singhal. Utility-Driven
Workload Management using Nested Control Design.
In Proc. of the American Control Conference, 2006.

