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ABSTRACT
The emergence of Delay Tolerant Networks (DTNs) has culminated
in a new generation of wireless networking. We focus on a type of
human-to-human communication in DTNs, where human behaviour
exhibits the characteristics of networks by forming a community. We
show the characteristics of such networks from extensive study of real-
world human connectivity traces. We exploit distributed community
detection from the trace and propose aSocio-Aware Overlay over de-
tected communities for publish/subscribe communication. Centrality
nodes have the best visibility to the other nodes in the network. We
create an overlay with such centrality nodes from communities. Dis-
tributed community detection operates when nodes (i.e. devices) are
in contact by gossipping, and subscription propagation is performed
along with this operation. We validate our message dissemination al-
gorithms for publish/subscribe with connectivity traces.

Categories and Subject Descriptors
C.2.4 [Computer Systems Organization]: Computer Communica-
tion Networks—Distributed Systems; I.6 [Computing Methodolo-
gies]: Simulation and Modeling

General Terms
Measurement, Experimentation, Algorithms

Keywords
Pervasive computing, Delay Tolerant Networks, Connectivity Mod-
elling and Analysis, Network Measurement, Social Networks

1. INTRODUCTION
Wireless networking has moved from a first generation of wireless ac-
cess provided by 802.11 LANs and cellular services, and a second gen-
eration of Mobile Ad Hoc Networks (MANETs), to a third generation:
Pocket Switched Networks (PSNs)[5] are a category of Delay Tolerant
Networks (DTNs)[21] aimed at supporting applications for human-to-
human communication. Portable devices (e.g. smart phone, PDA) will
be carried by most people in the future and communication is becom-
ing more pervasive and autonomous in an opportunistic manner. In
such environments, mobile nodes (i.e. devices) are sparsely distributed
and networks are often partitioned due to geographical separation or
node movement. DTNs employ a store-and-forward mechanism and
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opportunistic message dissemination to support network partitioning
situations.

The goal of this paper is to introduce a novel approach for construct-
ing a backbone for publish/subscribe communication based on uncov-
ered human community structure in pervasive computing. We attempt
to enable simple but powerful multi-point asynchronous communica-
tion in DTNs. In order to make DTNs viable, understanding both hu-
man interaction and mobility is necessary, to give us information for
designing feasible applications and communication algorithms. Thus,
we look into real-world human connectivity traces extracting charac-
teristics of node interaction that lead to detection of communities from
the traces. Several research projects such as the European Haggle
project [11] and the MIT Reality Mining project[12] have collected
contact based human connectivity traces using Bluetooth iMotes and
cellular phones. These traces capture the human contact patterns over
a wide range of periods and hence are useful for human interaction
studies.

A key difference between traditional networks and DTNs is that an
end-to-end path is expected to exist in traditional networks within a
communication range, while DTNs allow looser connections between
source and destination. Network storage allows DTN nodes to buffer
data until connections are available. Thus, a node carries data until it
encounters a node to pass it.

DTN research shares a similar paradigm with asynchronous mes-
saging in middleware research. When nodes in a DTN have a local or
global connection opportunity, messages are forwarded according to
some policy, with the intention that they are brought ‘closer’ to their
destination. Several trials have been performed for DTN forwarding
algorithms, from simple flooding to using social networks. Because
the environments where DTNs are deployed will be well integrated in
daily life (e.g. VANET, Smart PhoneCO2 monitoring, disease epi-
demic spread monitoring), it is important to adopt a people-centric ap-
proach to model network semantics. Potential users include humans,
vehicles, buses, trains and software agents, which must be part of a
communication mechanism. They inject various types of data (i.e.
context, event) for routing decisions. Thus, the network will be more
human and data-centric, and will be integrated in various aspects, in-
cluding reflection of human behaviour (mobility, membership, trust,
etc.), visualisation with interaction, profiling (past history) and trace-
ability.

The current research in DTNs focuses on the end-to-end commu-
nication, but many-to-many, any-to-many and one-to-any communi-
cation paradigms must be addressed, because typical communication
in DTNs may be more group oriented. Multi-point communication
(e.g. publish/subscribe) will provide aids to applications over DTNs
such as smart caching. Smart caching is essential to provide prompt
information availability and can be built based on social networks,
where communities establish the backbone for content sharing in dis-
connected environments (e.g. Ad Hoc Google). We envision that the
future communication structure in pervasive computing will be built in
an incremental manner from small communities to a large urban com-



munication space rather than devices follow the infrastructure-based
networking.

This paper’s contribution is twofold. First, we perform analysis of
connectivity traces to uncover the characteristics of the networks in-
cluding extracting communities and their centralities. Community de-
tection is implemented using gossipping when nodes are in contact in
a distributed fashion. Second, we propose aSocio-Aware Overlay for a
message broker network using the centrality of a community, which is
derived from distributed community detection. The overlay is a back-
bone for publish/subscribe communication and experiments with the
connectivity traces are reported.

This paper continues as follows: Section 2 briefly describes the
background and related works. Further background discussion canbe
found in the corresponding sections. Section 3 describes the network
analysis of connectivity traces, Section 4 describes algorithms of com-
munity detection, and Section 5 introduces ourSocio-Aware Overlay
for publish/subscribe communication system. Section 6 contains con-
clusions and future work.

2. BACKGROUND AND RELATED WORK
In DTNs, the exact contact information between any nodes cannot be
known in advance, and the routing decision at a node is difficult. In
[39], a good summary of routing strategies in DTNs is given. Several
strategies apply some degree of computation to deal with complex-
ity of network semantics such as location tracking or mobility. There
have been several social based forwarding studies in DTNs (e.g.[26]).
However, there are not yet message forwarding algorithms derived
from in-depth understanding of social networks, which is important
because in PSNs a network node essentially represents a human. Most
social network based forwarding algorithms simply follow the math-
ematical model constructed in a simulated environment. Thus, more
study of social network aspects in real world scenarios is desired. We
take an empirical approach and work directly with the real world con-
nectivity traces by analysis and validation.

Multi-point asynchronous communication is useful for many dis-
tributed applications over DTNs such as resource discovery, where
destination of communication can be one or many in a group, and
asynchronous operation is preferable. Communication types include
many-to-many (e.g. publish/subscribe), any-to-many (e.g. multicast-
ing) and one-to-any (e.g. anycasting). Publish/subscribe is a powerful
abstraction for building distributed applications. Communication is
message-based and can be anonymous, where participants are decou-
pled from the following aspects:
• Space - no direct connection between clients
• Flow - no synchronised operation is required on event publish-

ing and subscribing
• Time - no need to be running at the same time

Thus, decoupling characteristics give the advantage of removal of
static dependencies in a distributed environment. It is a good solution
to support highly dynamic, decentralised systems. Most distributed
event-based middleware supporting a publish/subscribe paradigm con-
tains three main elements: a publisher who publishes events (mes-
sages), a subscriber who subscribes his interests to the system, and
an event broker network to match and deliver the events to the cor-
responding subscribers. Event brokers are usually connected in an
arbitrary topology. In a distributed event-based middleware, the event
brokers form an agent network providing routing, event matching, and
filtering services[3] (see Fig. 1).

Publish/subscribe shares similar issues with MANET multicast[24].
The basic idea to define multicast routing in MANETs is to form a
path to all group members with minimal redundancy. It is also critical
whether the routing table is constructed on-demand, or optimal paths
are determined once and updated periodically. Control packets can be
flooded throughout the network or limited to the nodes in the multicast
delivery tree.
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Figure 1: Distributed Publish/Subscribe System

Dynamic wireless network environments seem to require more dy-
namic multicast group creation based on the message contents instead
of a pre-assigned channel. As a result, the groups tend to be smaller,
frequently short-lived, and more numerous. This is significantly dif-
ferent from group membership in traditional multicast, where groups
are defined in advance and only the membership is dynamic (see[37]
for multicast membership in MANETs).

Potential applications using publish/subscribe vary including envi-
ronmental monitoring by pervasive devices. The MetroSense project
[9] explores the use of people-centric sensing with personal as well
as consumer oriented sensing applications. Sensing can potentially
cover a campus, city, or a whole metropolitan area, with many poten-
tial applications such as noise mapping and pollution mapping. Sim-
ilarly, the urban sensing project CENS[33] seeks to develop cultural
and technological approaches for using embedded and mobile sensing
to invigorate public space and enhance civic life.

A social network consists of a set of people forming social mean-
ingful relationships, where prominent patterns or information flow are
observed. In PSNs, social networks could map to computer networks
since people carry the computer devices. Many experiments captured
this type of network connectivity trace, which is shown in the next
section. Understanding the whole network characteristics is a popular
study. Discovering cliques or tightly connected clusters by looking for
similar relations are also common studies in social network research
[2][35]. Graphs are a powerful tool to represent social relations and are
structured in quantified and measurable manner.

3. NETWORK ANALYSIS
A key requirement for human interaction in pervasive environments is
capturing trace data from the real world (e.g. human connectivity and
intermittency of connections between people) in order to construct re-
alistic synthetic models. For example, the Reality Mining project col-
lected proximity, location and activity information, with nearby nodes
being discovered through periodic Bluetooth scans and location infor-
mation from cell tower IDs. Several other groups have performed sim-
ilar studies. Most of these, such as[12], [11] and[28], use Bluetooth to
measure device connectivity, while others, such as[15], rely on WiFi.
The duration of experiments varies from 2 days to over 300 days, and
the numbers of participants vary from 8 to over 5000. The Crawdad
database[10] provides extensive traces, which are useful for the val-
idation of forwarding algorithms and routing protocols that operate
through learning characteristics of node mobility. Some traces include
location information (e.g. MIT), however the majority of traces have
only node connectivity information (e.g. Haggle). Thus, if location
information is available, it is possible to infer the mobility of nodes.
In this paper, we focus on connectivity in the traces, and leave investi-
gation of geographical information as future work.

Note that it is a complex task to collect accurate connectivity traces
using Bluetooth communication, as the device discovery protocol may
limit detection of all the devices nearby. Bluetooth inquiry can only
happen in1.28 second intervals.4 × 1.28 (i.e. 5.12 seconds) gives
you more than 90% chance of finding a device. However there is no
data available when there are many devices and many human bodies
around. Power consumption of Bluetooth also limits scanning inter-
val if devices have limited recharging capability. iMote connectivity
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Figure 2: Node Classification (Wireless Rope)

traces in Haggle use around 2 minutes scanning interval, while the Re-
ality Mining project uses 5 minutes. See[29] for further details related
to connectivity data collection with Bluetooth.

Previously the characteristics of these data, such as inter-contact
and contact distribution, have been explored in several studies[4] [18]
[25], to which we refer the reader for further background information.
In this paper, we focus on extracting information related to levels of
clustering or network transitivity and strong community structure. We
have analysed various traces from Crawdad database and show anal-
ysis with the MIT Reality Mining Project[12], the UCSD wireless
topology discovery project[34], the Haggle project[11], and confer-
ence activity data, by Wireless Rope[28]. Note that connectivity trace
data may not be perfect for the moment when mobile phones are used
to gather anonymous devices since only an average 15% of population
turn on the Bluetooth communication. A brief explanation of the trace
data is given below:

MIT in the MIT Reality Mining project[12], 100 smart phones were
deployed to students and staff at MIT over a period of 9 months.
These phones were running software that logged contacts with
other Bluetooth enabled devices by doing Bluetooth device dis-
covery every five minutes, as well as logging information about
the cellular tower they are associated with.

UCSD in the UCSD Wireless Topology Discovery[34], approxi-
mately 300 wireless PDAs running Windows Pocket PC were
used collecting WiFi access points information periodically for
11 weeks.

CAM in the Cambridge Haggle project, 40 iMotes were deployed to
1st year and 2nd year undergraduate students for 11 days. iMote
detects proximity by Bluetooth.

WirelessRope Wireless Rope[28] is a tool to detect social situa-
tions by Bluetooth proximity with consumer devices and its
effects on group dynamics. The logged data comprises Blue-
tooth name, Service class, sighting information, IDs, and origi-
nal/transformed time.

The connectivity traces can be represented in the form of weighted
graphs called contact graphs, with the weight of an edge representing
the contact duration/contact frequency for the two end vertices. Hence
understanding human interaction can be tackled from the domain of
weighted network analysis. Possible outcomes from studying of the
weighted contact graphs include community detection and weighted
node centrality. Many real-life networks are weighted, but because
of complexity, little analysis has been done in this area. The semi-
nal work is a weighted network analysis paper by Newman[22]. A
weighted graph can be converted into a multi-graph with many unit
edges. One can then apply the usual non-weighted versions of various
algorithms, including a community detection algorithm based on edge
betweenness (for more detail see Section 4).

3.1 Inter-Contact Time
For a given pair of nodes A and B, the time-line can be divided into
two regions, contact times and inter-contact times. The contact times
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Figure 3: Node Characteristics

are when A and B are in range of one another, and could therefore
have sent data if they had wished to. Inter-contact times are the times
between the contact times, and the distribution of inter-contact times
simply indicates the frequency of interactions. Our previous works[4]
[19] have shown that inter-contact time follows a power-law distribu-
tion, where the higher that value of the power coefficient, the more
frequently the node pairs interact.

In [18], we have shown that an intra-community pair has higher
power law coefficient than an inter-community pair; that is, nodes pair
in the same community tend to meet more often. See[4] and [19] for
more details of inter-contact time analysis on the connectivity trace.

3.2 Four Pair Categories
The correlation between contact duration and the number of contacts
can be split into the following four categories. Meetings take place
between pairs of individuals at a rate which is high if a pair has one or
more mutual friends, and low otherwise. Acquaintances between pairs
of individuals who rarely meet decay over time. There is an upper
limit on the number of friendships an individual can maintain. Prox-
imity determines community in many cases; however, how to evaluate
proximity or common interests is an issue still to be determined. In
Wireless Rope, each person can define the criteria of four categories.
In general, a more in-depth analysis in the following social contexts
may reveal new aspects to consider. Fig. 2 depicts the four categories
on a Wireless Rope trace.

I Community High number of contacts and longer contact duration
II Familiar Stranger High number of contacts and short contact du-

ration
III Stranger Low number of contacts and short contact duration
IV Friend Low number of contacts and longer contact duration

Nodes withHigh Visibility andNo Mobility (e.g. Tracking Stations)
will be good candidates for rendezvous nodes. Fig. 3 show the device
characteristics. A tracking station has many familiar strangers but no
friends, while the personal device shows a clear friend zone. This
classification of nodes is the base for our current community detection
by setting the number of contacts and duration as threshold values.

3.3 Node Centrality
Understanding a network and a node’s participation in the network is
important. For example, it is key to identify important actors in a so-
cial network, where actors are usually located in strategic locations
within the network and have power to impact on others. These actors,
or centralities, can be found out by measuring the network is essen-
tial. This gives insight into the roles and tasks of nodes in a network.
Three well known centrality measures are:Degree, Betweenness, and
Closeness Centrality.
Degreecentrality measures the number of direct connections. This in-
dicates that the node must be the most active in the network. Fig. 4a
shows the degree distribution of MIT, UCSD, CAM traces. A high
number of connections indicates that the node may be a good can-
didate to be a hub. MIT and CAM show strong scale-free network
characteristics, where only certain nodes have high degrees.
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Betweennesscentrality indicates a bridge node between two nonadja-
cent nodes. Thus, a high betweenness potentially might have control
over these two nonadjacent nodes. A betweenness node in the network
may impact on data flow between two communities. Use of between-
ness centrality between communities is planned, but is out of scope of
this paper.
Closenesscentrality yields the node with the shortest path to all oth-
ers and the best visibility in the network and sub-network (i.e. com-
munity). It is a measurement of how long it will take data to spread
the others in the community. The closenessCC(a) for a vertexa is
inverse sum of distances to other nodes b:

CC(a) = 1 /
X

b

dab (1)

Our Socio-Aware Overlay currently uses closeness centrality nodes as
messaging brokers (see Section 5 for more details) so that the chosen
broker maintains a higher message delivery rate. Understanding the
characteristics of centrality is a basis for detecting community struc-
ture described in Section 4.

3.4 Distance Distribution
Fig. 4b depicts the number of hops between each pair of nodes in the
MIT, UCSD, and CAM traces. Table 1 summarises average hop counts
and cluster coefficient values of MIT, UCSD, and CAM traces. The
cluster coefficient value of the MIT trace 0.44 indicates 44% chance
that if node A knows nodes B and C, then nodes B and C know each
other. We also examined the CityWare data[30], where proximity data
is collected in city scale, and it shows an average hop count of 3.3
and cluster coefficient value of 0.45. These values indicate that the
network structure is scale-free, which gives great promise for our pro-
posedSocio-Aware Overlay approach.

Experimental traces Average Hop Count Cluster Coefficient

MIT 1.6 0.44

UCSD 2.2 0.41

CAM 1.2 0.66

Table 1: Average Hops and Cluster Coefficient

4. COMMUNITY DETECTION
People tend to form groups inherently in the structure of society and
such groups evolve over time. We aim to uncover the structure and
dynamics of such social communities from the human connectivity
traces, where social groups must be embedded. There have been stud-
ies of identifying communities in physical environments, where com-
munity detection is based on the location or some context defining the
community. On the other hand, a social community may not be visible
in such physical environments, where people communicate by email
or social network services. Dealing with human connectivity traces

requires understanding both physical and virtual communities in such
pervasive environments. We have shown various community detection
mechanisms from human connectivity traces mostly in a centralised
manner[17]. In this section, we show community detection in decen-
tralised fashion, which becomes an important input for constructing an
overlay for publish/subscribe systems.

Members of a community share the same interest with high prob-
ability; and understanding the community provides efficient routing
and forwarding mechanisms. Detected communities from the traces
may be static social communities or temporal communities such as a
group of people who happen to be at the same conference. Our current
approach does not distinguish between these two different community
concepts and further consideration of community concepts along with
membership management is part of our ongoing work. However, both
types of detected communities contain an influential attribute for for-
warding efficiency.

Community detection in complex networks has attracted a lot of
attention in recent years. In biological networks, it is widely be-
lieved that the modular structure results from evolutionary constraints
and plays a crucial role in biological functions[14]. In social net-
works, community structures corresponding to human social commu-
nities[27]. In the Internet, the community structures correspond to au-
tonomous systems, which are connected segments of a network com-
prising a collection of subnetworks interconnected by a set of routers.
In the DTNs, community structure corresponds to some human com-
munities. Given the relevance of the problem, it is crucial to construct
efficient procedures and algorithms for the identification of the com-
munity structure in a generic network. See the reviews by Newman
[27] and Danonet al. [8] for methodological overviews and compara-
tive study of different algorithms.

4.1 Distributed Community Detection
In a realistic DTN scenario, the existence of a centralised server to
process the data can not be assumed. Thus, each node needs to de-
tect its own local community. In[6], Clauset defines a measure of
local community structure and an algorithm that infers the hierarchy
of communities that encloses a given vertex by exploring the graph
one vertex at a time. For graphs where exploring a new vertex is time-
consuming, like the encounter pattern in DTNs, the running time is
linear,O(k), wherek is the number of vertices in the local community.

In this section, we introduce two of our distributed community
detection algorithms, namedSIMPLE andk-CLIQUE. SIMPLE is our
novel algorithm, which classifies nodes based on the number of con-
tacts and contact duration of a node pair according to ana priori
threshold valueTth. k-CLIQUE is based on[31] in which ak-clique
community is defined as a union of allk-cliques (complete sub-graphs
of sizek) that can be reached from each other through a series of ad-
jacentk-cliques, where twok-cliques are said to be adjacent if they
sharek − 1 nodes.
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Figure 5: Duration of Distributed Detection (MIT)

4.2 Definitions
The common terminologies for our detection algorithms are:

Familiar set: we assume each vertex (mobile device) will keep a map
of vertices it has encountered with the corresponding cumulative con-
tact durations. When the cumulative contact duration with a vertex
exceeds a certain thresholdTth, it is promoted to be included into its
familiar set z. For a given vertex,υi, perfect knowledge of its own fa-
miliar set is denotedzvi

and incomplete knowledge of other vertices’
familiar sets (e.g. a local approximation of the familiar set for vertex
υj) is denoted̃zvj

.

Local Community: The local community of vertexzvi
, denoted by

Cvi
, contains all the vertices in itsfamiliar set (its direct neighbours)

and also the vertices that are selected by our following community
detection algorithms.

The basic structure of our algorithms is as follows. When a mo-
bile deviceυ0 first initialises its community detection procedure, the
local communityCυ0

only contains this source vertex. Whenever it
encounters another deviceυi, they will exchange part of their local
knowledge of the network.υ0 then has to decide on the following
based on certain acceptance criteria:

1. whether to place the encountered vertexυi in its familiar set
zυ0

and/orCυ0
.

2. whetherCυ0
should merge with the whole or part ofCυi

.
Both algorithms we introduce here differ only in the admission criteria
into the familiar set and local community.

4.3 Algorithms
When a mobile deviceυ0 encounters another deviceυi, the following
algorithm will execute:

1. Each vertex,υ0, needs to maintain the following information: a
list of encountered nodes and their contact durations (practically
encounters that do not meet certain criteria will be discarded
from the list), itsfamiliar set zυ0

(its familiar set of vertices),
its local communityCυ0

detected so far, and

(k-CLIQUE ) a local approximation of the familiar sets of all ver-
tices in its local communityCυ0

:

FoC(υ0) = {z̃υj
| υj ∈ Cυ0

}
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2. Initialisation: Cυ0
← {υ0}, zυ0

← ∅ andFoC(υ0)← ∅

3. Whenυ0 encounters anotherυi, they exchange local informa-
tion, i.e.υ0 will acquire fromυi the following:Cυi

, zυi
and

(k-CLIQUE ) FoC(υi)

Each local approximation of familiar set inFoC(υ0) is merged
(by taking the set union) with the corresponding versions just
obtained fromFoC(υi). e.g.

∀k s.t. ∃z̃υk
∈ FoC(υ0),

replace

z̃υk
in FoC(υ0)

with

(z̃υk
∈ FoC(υ0)) ∪ (z̃υk

∈ FoC(υi))

4. If υi is not inzυ0
, v0 updates the total contact duration counter

of υi which is stored atυ0, until υi falls out of contact and
meanwhile the algorithm forks and proceeds to the next step
(5). When the total contact duration count has exceed a certain
threshold (a design parameter),v0 will insertυi in zυ0

andCυ0
.

5. If υi is not inCυ0
, then addυi to Cυ0

if it satisfies the following
algorithm-specific criteria:

(SIMPLE ) if |zυi
∩ Cυ0

|/|zυi
| > λ (whereλ is the merging

threshold which we will vary in this paper to see the different of
final communities detected).

(k-CLIQUE ) if the familiar set, zυi
contains at leastk−1 mem-

bers of the local community,Cυ0
, i.e. if

|zυi
∩ Cυ0

| ≥ k − 1

6. If υi is added toCυ0
in the previous steps, the aggressive vari-

ants of the algorithm behave as follows:

(SIMPLE ) if the number of vertices overlappingCυ0
andCυi

,
(i.e. |Cv0

∩ Cvi
|), is greater than γ of

|Cv0
∪ Cvi

| (γ is the merging threshold as well which can be
different fromλ in step 5, but we will use the same value for
both cases in this section), then merge (by taking the set union
of) the two communities. i.e. the merging criterion is

|Cv0
∩ Cvi

| > γ|Cv0
∪ Cvi

|

(k-CLIQUE ) if the familiar set, z̃υj
of a vertexυj inside the

local community ofυi contains at leastk − 1 members of the
local community ofυ0, υj is added into the local community
Cυ0

, i.e. if

|z̃υj
∩ Cυ0

| ≥ k − 1

If this criteria is satisfied, thenFoC(υ0) also needs to be up-
dated to includẽzυj

.

Clearly, theSIMPLE algorithm require less storage and less compu-
tation than thek-CLIQUE algorithm.
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Figure 7: Duration of Distributed Detection (UCSD - K-CLIQUE)
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Figure 8: Duration of Distributed Detection (UCSD - SIMPLE)

Experimental traces SIMPLE k-CLIQUE Communities

MIT 0.79/0.76 0.87 8

UCSD 0.47/0.56 0.55 8

CAM 0.85/0.85 0.85 2

Table 2: Summary of Distributed Community Detection

4.4 Evaluation
Table 2 summarises the highest similarity values calculated by each
distributed algorithm. ForSIMPLE, we show both its comparison with
the centralisedk-CLIQUE (first) and the centralised Newman method
[22] (second). We can see the best performance of the algorithms can
be up to 90% detection accuracy compared to the centralised methods.
This gives a possibility that distributed community detection can be
realised. k-CLIQUE has slightly better performance than itsSIMPLE
counterpart, becausek-CLIQUE requires more information and calcu-
lation. Considering its computational and storage requirements, the
performance ofSIMPLE is acceptable. The complexity ofSIMPLE is
O(n), and it may be suitable for resource constrained mobile devices.
If the mobile devices can afford more storage,k-CLIQUE would be
a good choice due to its reasonably good similarity values. We use
modified version of the classic Jaccard index [32] for similarity mea-
surement between two communities (see[20] for more detail). The
core communities detected by distributed methods are compared with
the communities detected by centralised algorithms using our similar-
ity measurement.

Fig. 5-8 give some more detailed illustration of the results. Fig. 6
depicts the impact of different threshold criteriaTth on the accuracy

a. Small Time Window b. Large Time Window
Figure 9: Community Detection with Different Time Window Size

of community detection using thek-CLIQUE algorithm. In Fig. 6a,
the same value of contact duration is used (i.e. 150k seconds) with
changing similarity level when two sets of communities are compared
(i.e. the range 50% - 90%). It shows no significant change from this
aspect. In Fig. 6b, on the other hand, the value of contact duration is
changed (i.e. 50k - 250k seconds) and it indicates clearly that higher
values cause significant improvement on the accuracy of community
detection.

Fig. 5 depicts the same experiment running for the full length of
the trace, 1/3, and 2/3 on three different contact duration criteria. In
the best case with the 250K contact duration threshold, processing 1/3
of the trace shows a comparable result to the centralised approach.
Fig. 7 depicts detection by thek-CLIQUE algorithm with UCSD data
and Fig. 8 depicts detection by theSIMPLEalgorithm with UCSD data.
Both results show the stability with running 2/3 of trace processing.
Further details of the detection algorithms and results with various
traces can be found in[20].

Furthermore a sliding time window for community detection can be
set, where the threshold value for community detection is evaluated
within the specific time window (i.e. duration). Because of the space
restriction, this topic is out of scope of this paper. However, we show
the visualisation of detected communities based on the time window
size in Fig. 9, in which the smaller time window depicts communities
with fewer members, but probably they are tighter-knit communities
than the larger time window. See[38] for further details of visualisa-
tion of community detection.

5. MULTI-POINT COMMUNICATION
Creating an overlay for message dissemination has been a popular
technique for multi-point communication. Below, we present a brief
discussion of existing approaches along gossip based approaches. This
discussion leads to our proposal:Socio-Aware Overlay.

Overlay Approach: In [7], anOverlay Tree creates a dissemination
tree and maintains it in response to changes in the topology by recon-
figuring routes traversed by events. In[16], a distributed protocol to
construct an optimised publish/subscribe tree in ad hoc wireless net-
works is presented. Each publisher node becomes a root in a multicast
tree. Applying flooding (or random walk) over the physical topology
graph is one way to find routes to an object with a target key.



Another possibility is to create topology dependent identifiers for
the nodes and to apply geographical routing techniques (e.g. GPSR
[23]). An object is stored and replicated at nodes near to the node
where the key is stored. These approaches lack an understanding of
the actual network structure and do not take advantage of what routing
strategies can gain. OurSocio-Aware Overlay puts importance on con-
sideration of the real situation of the network semantics. Thus, once
the appropriate network structure is found (e.g. scale free networks),
it should show a significant advantage.

Gossip Approach: Maintaining a tree topology is challenging, as it
requires high network traffic to detect and repair failed links. Thus,
a structureless approach is desirable, where no global network-wide
structure and no link breakage detection are required. This approach is
resilient to network partition. The epidemic dissemination mechanism
is a powerful form of peer-to-peer (P2P) cooperation. Gossipping isa
simple routing protocol, where the retransmission probability function
is a constant value. In[13], this algorithm is extended, where proba-
bility 1 is given for the firstk hops. This stops gossipping when only
a few neighbours are near the gossip root node.

Most gossipping approaches lack consideration of the multi-point
communication aspect. The control flooding approach implicitly in-
dicates that the diffusion process can be managed by subscriptions in
[36]. We now introduce our novel approach for multi-point communi-
cation supporting PSN environments.

5.1 Socio-Aware Overlay
We propose multi-point event dissemination using an overlay con-
structed by closeness centrality nodes in communities and name this
overlay structureSocio-Aware Overlay. It takes a clustering-based ap-
proach and membership of the group is dynamically detected through
a community detection process rather than implicitly defined as the
set of nodes within a certain area in geographical or physical casting.
Cluster-based algorithms partition a wireless network into several dis-
joint and equally sized regions, and select a cluster head in each region
to operate message exchange.

Detected community members are well connected, implying that so-
cially they share the same interests with high probability. Thus, similar
subscriptions may coexist within the same community. The fundamen-
tal idea of this approach is instead of artificially constructing an over-
lay based on various contexts (e.g. location, group mobility), the ex-
isting structure is detected and mapped to the function. Thus, this ap-
proach strongly depends on dynamic community detection, and a cru-
cial factor is the quality of the community detection mechanism. Our
current community detection algorithms detect approximately 80% of
communities compared to the centralised approach.

At the same time, subscription propagation is operated during the
community detection by gossipping when two nodes are in contact,
which does not cause any extra cost. State maintenance requires con-
trol traffic, which could be expensive to operate, while a stateless ap-
proach could also be expensive if using event flooding. Stateful ap-
proaches suffer under frequent topology changes, whereas stateless
approaches are more suitable for topology change and the partitioning
and isolation of nodes. In a stateless approach, the gossip dissemina-
tion sends each message to a randomly chosen group of nodes. Thus,
our approach takes advantage of both stateful and stateless approaches
to deal with dynamic network environments.

Structured overlays assign identifiers to nodes, and control the iden-
tifiers of neighbours in overlay networks and the keys of the ob-
jects they store. This is effective since lookups can be done with
costO(logN), which is better than a flooding approach. However,
the characteristics of dynamic mobile networks require a significant
amount of traffic to maintain the overlay links. In[1], a structured P2P
overlay network is used for a publish/subscribe system. Subscriptions
are mapped to keys and sent to a rendezvous node. The performance
of this approach depends on the real mapping between the overlay net-

Underlying 
Routing

Broker 
Network

Publisher Subscriber

Community 1

Community 2

Community 3

Broker
(Centrality Nodes)

Figure 10: Overlay over Communities

work and the underlying network topology. OurSocio-Aware Overlay
is mapped over detected communities, which gives a certain level of
stable network topology (see Section 3 for network characteristics).

We currently choose a closeness centrality node for the broker node
as closeness centrality implies the best visibility in the community.
Thus, once this node gets the message, delivery to any member of
the community has high reliability. Because of the characteristics of
human networks (i.e. scale-free networks), many nodes within a com-
munity are tightly connected and multiple closeness centrality nodes
can coexist. This is an advantage as it potentially balances the work-
load of brokers and it will be the subject of future work to add a load
balancing mechanism.

The proposed multi-point communication takes advantage of PSNs,
where various communication methods can be used to control delay in
PSNs. Communication between brokers can have two modes:Unicast
and Direct. Unicast is based on the underlying unicast algorithms.
Thus, it could end up as epidemic routing.Direct provides a more di-
rect communication mechanism such as WiFi access points or GPRS.
The Direct approach gives accelerated message delivery with some
cost. WhenUnicast is used for the communication between broker
nodes, the average hop count follows the distance of the pair nodes
(i.e. 1.6 hops for MIT Reality mining trace). Using the betweenness
centrality, where a node has dual visibility from and to communities,
will improve the hop counts.

5.2 Overlay Construction
Fig. 10 depicts a publish/subscribe broker overlay, which is dynami-
cally constructed through the gossipping stage for the community de-
tection. Construction of the broker overlay is independent from under-
lying unicast routing algorithms. In the following, we briefly sketch
the algorithm that realises the proposed communication mechanism.

1. Distributed community detection operates gossipping between
nodes when in contact. The size of the exchanged data is small,
and the contact duration is assumed to be enough to complete an
exchange. Besides the community detection data the following
information is exchanged.
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# Pub/Sub Average Hops Contact to Sub (B→C) Pub to Sub (A→C) Latency Undelivered Total Hops

1000/100 1.27 0.0 units 74.2 units 8.0H 174(17%) 6528
500/50 1.26 0.0 units 67.5 units 7.3H 107(21%) 1852
200/20 1.45 0.0 units 21.9 units 2.4H 81(41%) 351

Table 3: Event Dissemination with Socio-Aware Overlay (CAM)

# Pub/Sub Average Hops Contact to Sub (B→C) Pub to Sub (A→C) Latency Undelivered Total Hops

1000/100 1.28 5.6 units 631.6 units 68.4H 261(26%) 6431
500/50 1.34 4.6 units 828.5 units 89.8H 242(48%) 1373
200/20 1.32 4.3 units 831.4 units 90.1H 115(58%) 204

1000/100C 1.35 2.7 units 449.4 units 48.7H 33(3%) -

Table 4: Event Dissemination with Socio-Aware Overlay (MIT)

# Pub/Sub Average Hops Contact to Sub (B→C) Pub to Sub (A→C) Latency Undelivered Total Hops

1000/100 1.01 0.0 units 645.7 units 70.0H 846(85%) 237
500/50 1.04 0.0 units 988.1 units 107.0H 432(86%) 85
200/20 1.00 0.0 units 1660.8 units 180.0H 183(92%) 17

Table 5: Event Dissemination with Socio-Aware Overlay (UCSD)

• Subscriptions/unsubscriptions with the destination of the
respective community broker nodes.

• A list of centralities with timestamp.

2. Each node has a local view of the community and calculates
closeness centrality as the corresponding message broker node.

3. When a broker node changes upon calculation of closeness cen-
trality, the subscription list is transferred from the old one to the
new one. A broker node information update is sent to all the
brokers.

4. During gossipping, subscriptions are also propagated towards
the closeness centrality node in the community.

After operations 1 - 4:

• Each node knows its broker node.

• Each node keeps its own subscriptions.

• Each broker node keeps the community’s subscription list.
It may keep the subscription list of individual subscribers
or an aggregated subscription list.

• All broker nodes keep the list of brokers in the other com-
munities. The list is collected during gossipping.

5. Once the publication is given from the publisher node to the
broker node, the broker node propagates it by one of two com-
munication modes (i.e.Unicast or Direct) to all the brokers.

6. When a node has a publication, it sends it to its broker node
within the community.

7. When the node without any community has a subscription or a
publication, currently the default community is assigned.

8. When the broker node receives a publication, it operates match-
ing against the subscription list. If it matches, it floods the publi-
cation within the community. This operation may be done either
unicast or broadcast. The broker has knowledge of the aver-
age/max hops to all the members of the community. When the
broker uses broadcast, max hops can be used to control flooding.
The detail of this operation is out of scope of this paper.

Multiple centrality nodes can be used as a group of brokers. In the
next section we show preliminary results of the publish/subscribe sim-
ulation to give an idea on whether our algorithms for publish/subscribe
in DTNs are feasible. We have performed a series of community de-
tection against different connectivity traces[20]. Detected numbers of

communities are shown in Table 2. Fig. 11 depicts the community
structure and closeness centralities detected in the MIT trace. Eight
communities are detected, and the largestCommunity 1 contains 21
members.Communities 4-8 contain 3-4 members each. There are 24
devices that do not belong to any communities, namedLoners. Multi-
ple centrality nodes are selected, which are in the inner circle. InCom-
munity 1, 13 nodes are closeness centrality nodes, and therefore broker
as a group. Alternatively, one of the centrality nodes is named as a sin-
gle broker, which is marked at the centre of the circle in Fig. 11. All
the detected centrality nodes have a single hop count to all members of
the community, and an average of 93% of nodes in the community can
take the role of event broker. Note that 24 nodes (25% of community
members) do not belong to any communities.

Membership: Because of the delay of delivery, group membership
to the topic may change during message propagation operation. Sub-
scription information needs to be updated dynamically. The current
membership model is based on subscription information propagated
by a gossipping mechanism. Thus, in case when subscription is no
longer valid for the subscriber but if the publisher has not obtained
un-subscription information, the message is attempted to be delivered.
There are two concepts for the membership to be considered: (i)Mem-
bership of the community, and (ii)Membership to shared contents:
Topics for publish/subscribe.Community is a permanent persistent
entity, Topics may often map to community, because members share
the same interests. Thus, managing membership of the community
indirectly controls part of publish/subscribe functionality. TheSocio-
Aware Overlay approach currently provides membership management
in an implicit way by distributed community detection. Each local
view of community change reflects a community membership change.
However, expiration of membership, membership refresh, or change
of roles within a community is not yet completely managed.
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5.3 Results and Discussion
For validation and evaluation of the proposed approach, we use a dis-
crete event emulator to replay the connectivity traces. The original
trace files are divided into discrete sequential contact events and fed
into the emulator as inputs. Although the current subscription model
is simply topic-based, content-based filtering can be operated in the
broker nodes. In the experiments, ten topics are predefined. Ran-
domly selected nodes create 20 to 100 unique subscriptions, and 200
to 1000 publications unless stated otherwise. The message creation
times are uniformly distributed throughout the experimental duration.
The experiment is performed with MIT (100 devices), CAM (40 de-
vices), and UCSD (300 devices) traces. All the results are averaged
over at least 5 runs of the experiments.

We have performed experiments of our publish/subscribe communi-
cation with several connectivity traces and show the results with three
connectivity traces: 1) CAM (well connected nodes in the entire net-
work), 2) MIT (existence of distinct communities), and 3) UCSD (no
strong community structure). Table 3, 4, and 5 summarise the re-
sults of theSocio-Aware Overlay approach. The second column (Av-
erage hops) is hop counts per publication. The experiment with the
MIT trace shows around 1.3 hops regardless of the scale of publica-
tion/subscription. The average pair distance of the network is 1.6 hops
(see Section 3.4), which indicates that theSocio-Aware Overlay ap-
proach performs better than flooding to every subscriber by epidemic
approach. The total hop count in the entire operation is shown in the
final column (Total Hops). A pure epidemic approach results in larger
hop counts.

In the experiments, communication between brokers is assumed to
use direct methods such as access-point WiFi or GPRS. This approach
does not need to wait for the next contact with devices to commu-
nicate. Thus, if communication between brokers uses unicast or an
epidemic approach,Average hops will increase. In the experiments, a
group of brokers are used instead of a single broker in the community.
This requires further work for balancing network work load of brokers
and increasing reliability by replication of brokers.

A: Publication Created

B: Publisher à First Node Contact

C: Subscriber Received Publication
A B C

Each publication has three stages during the simulation: (i) a pub-
lication is created at time unit (A), (ii) a publisher contacts the other
devices to inject its publication to the network at time unit (B), and
(iii) the publication is delivered to the subscriber at time unit (C).

The third column (Contact to Sub) indicatesC−B in the number of
time units. The fourth column (Pub to Sub) shows that total duration of
publishing (C − A). A single time unit has a duration of 0.5 seconds,
andLatency indicates the approximate latency in minutes. Thus,C−A
andC − B are indicators of the latency of publications.C − B is
much smaller thanC −A andC −A ≈ B −A. On average, it takes
over 3 days to get a first contact from when a publication is ready.
However, the majority of nodes gets much shorter waiting time until
getting a first contact (see Fig. 12). Once the publication is passed
to the contacted device, in a few minutes subscribers will receive a
publication.

Fig. 12 depicts the distribution of valuesC − A in three different
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settings of publication and subscription. The result shows a power
law distribution indicating that most event dissemination has short du-
rations. Fig. 13 depicts the distribution of valuesC − B from pub-
lisher’s and subscriber’s aspects from an experiment with 1000 publi-
cations and 100 subscriptions. Certain subscribers (e.g. 70-80) have
higher durations, which has various reasons such as that these nodes
are away from the centrality nodes in the community (i.e. more than
single hop distance), or these nodes may not be part of the community
despite them being detected. This will require further investigation.

The value ofUndelivered indicates the reliability of delivery. The
ratio varies from 26% to 58% in 3 settings. The result shown in the last
row of Table 4 has the same setting as the first row except publishers
and subscribers are in the same communities. When both publishers
and subscribers are in the same communities, theUndelivered ratio
decreases significantly to 3%. In the real world, this may happen fre-
quently as shared interest often creates communities.

Fig. 14 depicts a comparison of two different settings of publishers
and subscribers.MixCommunity indicates publishers and subscribers
are spread across different communities andWithinCommunity indi-
cates 90% of both subscribers and publishers of the same topics reside
within the same community. Fig. 14a depicts hop counts from pub-
lishers to subscribers and shows that topic sharing within communities
gives higher reliability with delivery of events in fewer hops. Fig. 14b
depicts the distribution of the latency of publications (C − A). Mix-
Community shows high value of latency of the few nodes. Fig. 14b
fundamentally presents a power law distribution indicating that the
majority of nodes have low latency.

The evaluation of the MIT trace indicates the use of community, and
its centrality does much to improve multi-point asynchronous commu-
nication. This improves significantly when members of a community
share the same topics.

The result from the CAM and UCSD traces in Table 3 and 5 il-
lustratesContact to Sub is 0, which indicates that the messages are
delivered to the subscribers as soon as the publisher has a contact with
any node. Thus, the network path from the publisher and subscriber
exists during the specific time unit. The CAM trace indicates higher
reliability of message delivery with shorter latency, which shows that
the entire network is well connected. On the other hand, the reliabil-
ity of message delivery with the UCSD is low, and the latency for the
successful delivery is large. The average hop value≈ 1 indicates the
messages must be delivered by the publishers to subscribers when they
are in contact. Even though eight communities are uncovered from the
UCSD trace, the communities may not be tightly enough connected for
supporting our community based approach.

Thus, the experiment results exhibit the MIT traces as the best use
of our approach. Further experiments with different scale of traces are
in progress.

6. CONCLUSIONS AND FUTURE WORK
We have introduced publish/subscribe communication for PSNs using
our novelSocio-Aware Overlay in PSNs based on uncovered commu-
nity structure from human connectivity traces. We have shown an ef-
ficient overlay construction for message dissemination by gossipping



when devices contact each other. Distributed community detection
and messaging overlay construction enable effective multi-point asyn-
chronous communication. The proposed model is simple but powerful
when it is applied on DTN/PSN environments. Our approach exploits
real human connectivity traces, which provide rich insight into social
behaviour. Within communities and societies, there are structures for
social networking, and the structure can be powerful for exploiting the
information flow. We investigated how the local and global character-
istics of the network can be used practically for information dissemi-
nation. The research in this area is wide open, and we are working on
a series of extension works as described below.

• Explore various centrality characteristics for communication
such as use of betweenness centrality for bridging two commu-
nities or high degree centrality nodes in the entire network for
communications between brokers.
• Integrating spatial/temporal properties of graphs created by de-

vice contacts to improve information dissemination and epi-
demics (e.g. enabling the incorporation of landmark routing).

• Detecting patterns of human behaviour, location/time influenced
behaviour, trajectory of groups etc. from the connectivity trace.
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