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Abstract— Online traffic classification continues to be of long-
term interest to the networking community. It serves as the
input for practical solutions such as network monitoring, quality-
of-service and intrusion-detection. In this paper we present a
machine-learning approach that accurately classifies internet
traffic using C4.5 decision tree. Accuracy is not our only concern;
the latency and throughput are also of extreme importance. With-
out inspecting packet payload, our method can identify traffic
of different types of applications with 99.8% total accuracy, by
collecting 12 features at the start of the flows.

I. I NTRODUCTION

The Internet is evolving towards a vast, ubiquitous infrastruc-
ture, supporting an increasingly-huge market of data commu-
nication and digital media and producing trillions of dollars
of revenue each year. The data transmission is governed by
simple end-to-end transmission protocols such as TCP and
UDP, without efficient monitoring, auditing and intelligent
control over the traffic, but the success of the Internet has
led to the emergence of a seemingly-uncountable variety of
applications.

Along with the development and evolution of the applications
on the Internet, an efficient application classification scheme is
highly desirable to support various solutions such as advanced
network monitoring, network resource management, anomaly
detection, application-specific strategies and network auditing
activities. Moreover, the application-level knowledge ofthe
Internet is extremely useful for those who set out to model
Internet traffic or to investigate the long-term changes and
requirements for the Internet.

The Internet traffic, in principle, is the product of a complex
multifactor system involving a range of networks, hosts, ap-
plications and different people closely interacting with each
other. The complexity is continuously increasing as people
keep producing a vast variety of network applications and
application layer protocols that, in many ways, break the
traditional assumptions:

1) [1] reported that only 50-70% of the Internet traffic
was classifiable using the official International Assigned
Number Authority (IANA) list. Emerging applications
and proxies often avoid the use of standard host ports.

2) Port-based schemes are also overly simplistic confusing
applications. For example, VoIP telephony system, chat-
messenger systems such as MSN Instant Messenger, and
regular web-page browsing would use the same port.

3) The proportion of encapsulated or encrypted traffic is
increasing. Examples include proxies, VPN, tunneling,
and applications using a different protocol to exchange
data (e.g. GetByMail [2]). Encapsulation would change
the pattern of the original application level protocol,
while encryption of packet payload also renders the
identification mechanisms based on payload inspection
inefficient.

However, the nature of each Internet application allows it to
be classified into one of several discrete categories. Examples
include: web-browsing, multimedia data such as VOIP, email
activities, peer-2-peer and FTP file transfers and malicious
traffic. This taxonomy, originating with the “Class of Service”
(CoS) [3], was further extended in [1]. It was noted that
different kinds of applications have diverse objectives and
characteristics, which may also cause diverse behaviour inthe
traffic flows, i.e. “traffic patterns”.

Based upon observed traffic patterns, we developed a classifi-
cation scheme providing near-real-time classification of up to
99.8% of traffic, using behavioural features and C4.5 decision
tree algorithm [4]. This approach is fundamentally different
from traditional traffic classification approaches in that:

1) It does not rely on port numbers. Further, we presume
no prior knowledge about port-application mapping in
our approach.

2) Our approach does not require the inspection of traffic
payload.

3) The behavioural features, e.g. distribution of the size
of packets, TCP window size, TCP flag bits and packet
directions, are derived from the packet-headers, the same
source of information that is expected to be used by the
routers of the Internet.

In this paper we document the machine learning approach as
well as a traffic classification system operating in near real-
time. In addition to the demonstration of accuracy, the trade-off
between accuracy and complexity which is a significant prac-
tical issue is also fully discussed. The remainder of the paper
is organised as follows: the next section is a review of related
work. Section III illustrates our classification approach and
system complexity for online traffic classification. Section IV
presents detailed results and evaluation. Section V concludes
the paper and outlines our future work.



II. RELATED WORK

In recent literature, many different methods have been in-
troduced to solve the traffic classification problem. The ma-
jority of current classification approaches still relies onthe
information of host port numbers, IPs and signatures for
classification and intrusion detection, such as light-weighted
intrusion detection systems including Bro [5] and Snort [6].

Moore and Zuev in [7] presented a statistical approach to
classify the traffic into different types of services. A naive
Bayes classifier, combined with kernel estimation and a
correlation-based filtering algorithm was used to solve the
classification problem on offline TCP traces. The resulting
accuracy, up to 96% (which degrades to 93% after 8 months),
demonstrated the discriminative power of a combination of
10 flow-behaviour features, with an unsophisticated machine-
learning mechanism.

Williams et al. in [8] carried out an empirical study of compar-
ing five widely-utilised machine learning algorithms to clas-
sify Internet traffic. Among these algorithms, AdaBoost+C4.5
achieved the highest accuracy in their results. This serves
as a guidebook for algorithms, but their feature set used
is relatively unsophisticated, containing only packet lengths,
total bytes, total packets, inter-arrival times, flow duration and
protocol. Based on the mechanism in this work, [9] further
moved on to classify game traffic with an observation window
of no more than 25 packets, which is also looking forward to
real-time classification.

Bernaille et al. presented an approach to identify applications
using start-of-flow information in [10]. The authors utilised the
packet size and direction of the first 4 data packets in each
flow as the features with which they trained Gaussian and
Hidden Markov Models respectively. These models received
98.7% overall accuracy when assisted by an expanded port-
number list, and 93.7% overall accuracy using simple predic-
tion heuristics. It is worth noting that this work only retrieved a
very small amount of information from the flows. The authors
further specialised their work to the identification of encrypted
traffic in [11].

Another statistical fingerprinting mechanism was proposedin
[12]. The information they use include size of the IP packets,
inter-arrival time and the order of packets seen on the link.
A number of other works attempted the same problem with
different machine learning mechanisms such as clustering [13]
[14], LDA and k-NN [3].

Karagiannis et al. [15] studied multi-level behaviour of the
traffic such as analysing interaction between hosts, protocol
usage and per-flow average packet size. Their results show an
ability of classifying 80%-90% of the traffic with 95% accu-
racy. In their recent work [16] they presented an interesting
investigation to profile the users activity and behaviours,and
to analyse the dynamic characteristics of the host behaviours.

From the results in terms of accuracy we may assert that the
combination of a small number of flow-behaviour features al-
ready has strong discriminative power to differentiate services
or network applications. For non-anomalous traffic and within
a small scale of time (e.g. in the magnitude of within a day),
these classification mechanisms can be considerably promising
(with an accuracy up to 98% and real-time potential shown).
However, the results in the past remained incomplete. Some
major concerns and open problems included:

1) The accuracy is still insufficient. For general purpose
classification, the volume of Internet traffic is huge
and is dominated by a few major traffic classes (Web-
browsing in terms of flows, or Peer-2-Peer and FTP in
terms of bytes or packets). In terms of composition, the
major traffic is comparably easy to discriminate. How-
ever, those hard ones such as encapsulated, ambiguous,
non- standard, misused or anomalous traffic, would only
comprise a not large proportion. An overall error rate of
several percent would mean either the major traffic is
not efficiently classified; or the hard objects are unable
to be classified.

2) Insufficient understanding has been taken into account
of which features can be used and how to use them.
Further, little understanding between the accuracy and
the use of different types of features (port numbers, IP
Addresses, flow-behaviour) has been presented in the
past.

3) Limited practicability. Notably, real-time implementa-
tion is highly desirable, but insufficient work has been
done to show the feasibility and the system performance.

4) Inability to quickly discover and correctly identify crit-
ical flows, such as intrusions and network anomalies.
Intrusion detection systems would ideally require zero
false-negative rate and low-latency identification of ma-
licious traffic.

5) The incompleteness of data. Many past works selected
their classification object from a few applications such
as web-browser, email, FTP or multimedia applications,
which can not represent fully the traffic patterns of the
whole Internet.

Finally, the practical criteria for real-time online traffic clas-
sification systems can be different and remains application-
centric. A trade-off potentially exists between the four metrics
of system accuracy, completeness, latency and throughput.
Also, algorithm would play a key role in optimising such a
system where [17] has provided a lot of experience.

III. SEMI-AUTOMATED MACHINE LEARNING APPROACH

We use a semi-automated machine learning approach to build
the classifier which classifies the Internet traffic into appli-
cation classes. A series of mechanisms are applied to select
the feature set, the classification algorithm and the size of
observation window before the final classifier is built.



Firstly the total traffic-mix is divided into classifiable objects.
In this paper, the basic object of our classification system is
a TCP flow, defined as a bi-directional session between two
hosts with the same 5-tuple host-IP, client-IP, host-Port,client-
Port and timestamp of the first packet. The server and the client
of a flow are decided based on observation of SYN packet.

Two real traces are used to derive and evaluate our approach.A
rich set of 248 flow features are collected from the beginning
of individual network flows with different observation window
sizes. Using this data, we are able to apply feature-selection
algorithms to find a best subset of the features, to justify the
classification algorithm. Finally, we train a model upon this
feature subset, and apply this model to classify unknown flows.

Fig. 1 shows how different types of services exhibit different
behaviour in two group each of two features: 1) variance of
total bytes in packets (client to server) by the total number
of bytes sent in initial window (client to server) and 2) count
of packets with Push bit set in TCP header (server to client)
by minimum segment size (client to server). One can observe
that it is applicable to discriminate between the traffic flows
of each class, using a combination of these features.

A. Data

Our experimental data consists of two consecutive week-days
of Internet traffic with an 8 month interval. The traces were
collected using a high speed monitoring box [18] installed
between a research campus and the Internet. The campus is a
research-facility with about 1,000 employees and is connected
to the Internet via a full-duplex Gigabit Ethernet link. The
datasets, Day1 and Day2, consisting of TCP traffic only, are
chosen from a collection detailed in [19]. Every flow in the two
datasets was hand-classified using a content-based mechanism
into one of the 10 applications classes.

We left a number of TCP traffic in the datasets unconsidered:
those we havent seen their start of the flow (typically those are
with very long duration) and junk flows. The resulting traces
contain 31 GBytes and 42 million packets in 377 thousand
TCP flows in Day1, and 28 GBytes and 35 million packets
in 175 thousand TCP flows in Day2. Hence, a moderately
complex mix of applications exists in the traffic, as shown in
Table I. Note that for some traffic classes such as Multimedia,
Services, Games and Attacks, a greater amount of traffic may
used other transport layer protocols such as UDP.

B. Online Classification Approach

Our online traffic classification methodology was originated
in previous offline methodology where the features were
collected from complete TCP flows [7] [20].

However, if we performed our analysis of flows offline, the
practicability of such a system would be very much limited
to merely analytical and auditing purposes. For a much wider
application prospect, we moved on to investigate the problems

and challenges of online real-time or near real-time traffic
classification. Our concerns are no longer solely focused upon
the accuracy but also upon the latency and throughput of the
system. Since many applications would benefit from early
identification of the traffic, our approach considers features
taken from an observation window of only a few packets,
rather than those based upon the entire flows.

In theory, in order to more accurately classify an object,
it would require collecting more information (entropy) for
classification. However, collecting more information, forex-
ample: more packets or a larger number of features may
introduce higher latency and higher cost in both computation
and memory usage. For the traffic classification system to be
operated at near real-time with a considerable throughput,we
should capture an appropriate, small number of features, and
from a small number of packets and a limited duration, rather
than from a complete flow. It means, in order to gain the real-
time quality, an amount of information has to be sacrificed
from the complete-flow objects which in theory would result
in some level of degradation in accuracy.

In this way, the trade-off between accuracy, latency and
throughput becomes the key of our choice of subset of features
and size of the observation window and the classification
algorithm.

C. Feature Selection

Our complete feature set contains 248 different features as
detailed in [19], each of which has varied distribution in
the datasets and has associated with it different collection /
computation costs. Now what we want is to find a subset of this
set of features within an upper bound of cost but containing
sufficient information that leads to the desired accuracy.

In general, we limit the cost by reducing the number of
features in the feature set, utilising a correlation-basedfiltering
method. The output of such method is an approximately-best
subset of features.

Our feature selection procedure is as follows: firstly, Day1
dataset is divided into 10 different entries each representing a
volume of traffic at different hours of the day; then correlation-
based filtering is applied to each entry. We observe that these
feature subsets selected by the algorithm possess moderately-
good stability, and we manually picked 10 behaviour-features
which appear in at least 1/3 of the subsets, and each subset
would at least contain 1/3 of these features. The intention of
this criterion is to look for a best-possible feature set which can
be more stable and independent to the condition of the end-
to-end link. The resulting features are almost all dependedon
the applications on the end-hosts. It mirrors this consideration.
Table II lists these features, as well as the information and
complexity properties of these features.

Unrelated to the IANA port list or any prior knowledge of port-
application mapping, we still adopt port pairs as two features.
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Fig. 1. Scattered plot of 5,000 random selected samples from Day1.

Class
By flow By Packets By Bytes

ApplicationsDay1 (%) Day2 (%) Day1 (%) Day2 (%) Day1 (%) Day2 (%)
Web-browsing 84.558 80.198 22.529 16.383 29.438 17.623 http, https

Mail 8.682 9.384 6.777 1.884 7.904 1.763 imap, pop2/3, smtp
Bulk 3.800 6.146 69.483 80.850 60.569 79.372 ftp

Attack 0.787 0.562 0.084 0.016 0.132 0.002 portscan, worms, viruses, imail attacks
P2P 0.589 1.572 0.331 0.548 0.567 0.777 napster, kazaa, eMule, gnutella, eDonkey

Database 0.862 1.483 0.387 0.253 0.703 0.400 mysql, dbase, Oracle SQLNet
Multimedia 0.137 0.002 0.112 0.000 0.196 0.000 windows mediaplayer, realmedia

Service 0.555 0.633 0.135 0.026 0.194 0.009 X11, dns, ident, ldap, ntp
Interactive 0.027 0.021 0.156 0.040 0.285 0.053 ssh, telnet, klogin, rlogin

Games 0.002 0.0 0.006 0.000 0.013 0.000 microsoft direct play

TABLE I

COMPOSITION OF DATASETS.

Abbreviation Description Collection Time Symmetrical Uncertainty Memory Overhead Complexity
serv port Server Port S 0.8398 O(1) O(1)
clnt port Client Port S 0.0742 O(1) O(1)
pushpkts serv Count of all packets with push bit set in

TCP header (server to client)
D 0.2137 O(1) O(n)

init win bytesclnt The total number of bytes sent in initial
window(client to server & server to client)

D 0.1993 O(1) O(1)
init win bytesserv D 0.3040 O(1) O(1)
avg segsizeclnt Average segment size: data bytes divided

by #packets. (client to server)
E 0.1949 O(1) O(n)

IP bytesmedclnt Median of total bytes in IP packet (client
to server)

E 0.2574 O(n) O(n2)

act datapkt serv Count of packets with at least 1 byte of
TCP data payload (server to client)

D 0.1680 O(1) O(n)

databytesvar clnt Variance of total bytes in packets (client to
server)

E 0.2195 O(n) O(n)

min segsizeserv Minimum segment size observed. (server to
client)

D 0.2996 O(1) O(n)

RTT samplesserv Total numbers of RTT samples found
(server to client), see also [19]

D 0.5022 O(1) O(n)

pushpkts clnt Count of all packets with push bit set in
TCP header (client to server)

D 0.2360 O(1) O(n)

TABLE II

PROPERTIES OF THE SUBSET OF FEATURES SELECTED. S=START OF OBSERVATION; D=DURING OBSERVATION; E=END OF OBSERVATION. SYMMETRICAL

UNCERTAINTY GENERALLY EVALUATES THE DISCRIMINATIVE POWEROF INDIVIDUAL FEATURES WHEN USED SEPARATELY.



Naive Bayes
+ kernel est.

C4.5 AdaBoost+
C4.5

Overall
accuracy

92.38%±
0.35%

99.834%±
0.052%

99.816%±
0.057%

Complexity O(features)+
O(classes)

O(tree
depth)

O(tree
depth×rounds)

Time taken
for testing

1412s 1.5s 11s

Time taken
for training

<8s 133s 1505s

TABLE III

ALGORITHMS FOR ONLINE TRAFFIC CLASSIFICATION.

The port number rules in our classifier are built upon hand-
classification data, representing the association betweenthe
port numbers and those hand-classified application flows.

D. Classification Algorithm

Concerning the classification algorithm, we utilised Weka [21]
toolkit to compare between different algorithms. In our ap-
proach, C4.5 decision tree exhibits highest accuracy (99.834%)
among all the algorithms. AdaBoost [22]+C4.5 also exceeded
99.8%, while Logitboost, JRip, Nave Bayes Tree and Bayesian
Neural Network also achieved an accuracy of more than 99%.
Moreover, C4.5 decision tree has the lowest testing complexity
among these algorithms. In Table III, the performance of C4.5
and Adaboost+C4.5 are shown compared with the Nave Bayes
method which was used in [7]. Note that the approach in [7]
did not incorporate many standard performance improvements
for Naive Bayes method and the figure above is a worst case
bound. A similar comparison was seen in [8] based on a
simpler set of complete-flow features.

We also masked the port pairs and generated the models again
purely with the 10 packet- and flow-level behaviour features
with an observation window of 5 max packets. The highest to-
tal accuracy seen drops to 99.50% (C4.5 and Adaboost+C4.5).
This indicates that using port numbers in combination with
packet- and flow-level features in such a way provides more
information than only using packet-and flow-level features.

The accuracies are from two-fold cross validation on Day1
dataset, using 12 features described in Section III.B, withan
observation window of 5 packets. Time values are for training
and testing 325,000 flows from Day1, collected from Weka.

E. Observation window

The requirement for online traffic classification necessitates
the use of an observation window to collect the set of features
from a part of a flow rather than using full flows. There are
two major concerns:

1) Latency. Firstly, for real-time applications such as
application-specific queuing, monitoring or anomaly de-
tection, the latency in identifying a flow should be as

low as possible. For this, it is ideal to classify the flow
early in its existence, except for special purposes.

2) Cost. The use of an observation window reduces both
the memory footprint in aggregating the packets and
the computational complexity in calculating features. In
other words, this enables a higher system throughput.

Therefore, we calculate the features with a small number
of packets in the observation window, and within a limited
duration. The observation window size (number of packets)
is tuned based on empirical results. 1 to 10 packets are
collected from the start of the flow (SYN packet), within a
max-duration of 5 seconds, to compare the resulting accuracy.
Fig. 2 shows the result: from a total of 5 or 6 packets collected
it can achieve the highest 99.842% ten-fold cross-validation
accuracy in Day1 (99.834% for corresponding two-fold cross-
validation). We also notice that the small-observation-window
accuracy is not lower than the accuracy of larger observation
windows.

Fig. 2. Accuracy with different packet number limits (ten-fold cross-
validation)

F. Complexity and memory footprint

The cost in our system pipeline has a complex composition.
If we denoteM as total flows currently in the memory,N as
the average number of packets in a flow, andn as observation
window size, then the total computational overhead would
comprise all the following (also note that roughlyM has a
linear relationship withN ):

1) For capturing packet headers and aggregating packets
into flows, there will be a memory footprint ofO(M)
to store M flows in the memory and computational
complexity of at leastO(log2M)) for each packet
captured to find the flow it belongs to. AssumingM
is proportional toN , for each flow, the complexity in
aggregating the packets is roughlyO(N × log2N).

2) For feature collection and calculation of each flow,
different features in the complete set would cause
a memory footprint varied fromO(1) to O(n) and
computational complexity varied fromO(1) to O(n2).



Roughly, the total cost of feature collection of one flow
would have a super-linear relationship with the number
of features in the feature set.

3) Assuming C4.5 decision tree is being used as the clas-
sifier, for classification of each flow, the computational
complexity of the classifier is of the order of the average
depth of the decision tree which isO(1) - the same order
of simple port-based rule-sets.

Clearly we know from the cost breakdown above, as the
complexity of the classifier isO(1), the bottleneck in this
pipeline may be in reconstructing the flows and calculating the
features, instead of the calculations in the classifier. However,
the total cost can be bounded withinO(N × log2N +n2

×K)
where N is average number of packets in a flow,n is the
number of packets in the observation window andK is the
number of features collected.

IV. EVALUATION

In this section, the model is trained from the first 5 packets
seen at the start of every TCP flow. A duration limit of 5
seconds is also applied to enhance the real-time quality and
system robustness. The set of features being used are the 12
features shown in Table 4. We believe it is valuable to examine
the per-class quality, the temporal stability, and the relationship
between accuracy and the size of training set, so as to justify
the general methodology for wider practical application.

A. Per-class Accuracy

The per-class results shown in Table IV, V demonstrate the
accuracy of C4.5 algorithm, using the 12 features described
in the prior section. These features were taken from traffic
with an imposed maximum limit of 5 packets and a maximum
sampling duration of 5 seconds applied. The results are two-
fold cross validations of day1 and day2 model respectively.It
represents the accuracy of the model in the same network and
same time when the datasets were collected.

The accuracy shown is sufficient for most of the major
application classes (>99%), except for Attack class. As a
general class, Attack is highly varied and complex; it contains
many different subtypes, such as port-scans, various worms
and viruses. This complex variety leads to a number of false
predictions to and from other classes, e.g. to Web-browsing
and from Mail in Day1 and Day2 respectively. However, the
results show that these models can still achieve either good
precision or good recall for Attack class over shorter time
periods (e.g. the same day).

B. Temporal Stability

We may assume that a general traffic model cannot be as good
as one which is closely up-to-date and specific to one network
location, but we believe it should work moderately well with
most conditions. In order to evaluate our model as general
purpose traffic model, the temporal (i.e. for different time)

Class Precision (%) Recall (%)
Web-browsing 99.8891 99.9538

Mail 99.9703 99.9888
Bulk (ftp) 99.3522 99.7612

Attack 96.2542 83.2273
Peer-2-Peer 97.2588 97.7225

Database 99.6782 99.7853
Multimedia 99.7753 99.7753

Service 100.0 99.6124
Interactive 100.0 100.0

TABLE IV

PER-CLASS TEN-FOLD CROSS VALIDATION RESULT FORDAY 1.

Class Precision (%) Recall (%)
Web-browsing 99.9865 99.9915

Mail 99.5364 96.4310
Bulk (ftp) 99.8518 99.8888

Attack 60.8144 92.2999
Peer-2-Peer 99.3098 99.0221

Database 99.8848 99.8465
Service 99.5520 100.0

Interactive 97.2222 97.2222

TABLE V

PER-CLASS TEN-FOLD CROSS VALIDATION RESULT FORDAY 2. MINOR

CLASSES WITH NO MORE THAN5 FLOW SAMPLES ARE NEGLECTED.

stability of the model is further examined. This illustrates the
quality of this model after a significant period of time.

For temporal stability we use the model generated with Day1
dataset to classify the Day2 dataset, which was collected 8
months thereafter. The results are shown in Table VI. We
observe the accuracies of most of the major classes still
maintain to be at a high level; however, the temporal stability
for Attack class is 0. This reflects the fact that Attack classis a
special type of traffic that is more dynamic than other classes
and changes completely over a long period of time. However,
though it may not be possible to provide a long-term stable
traffic model for Attack class, there can be alternative solutions
such as:

1) By re-training the traffic model on a regular basis;
2) By combining this with other mechanisms such as

clustering methods or host/port profiling [15] [16];
3) By providing a feedback channel from deep-checking

the upcoming traffic to dynamically updating the flow
model.

C. Training Data

As noted in Section IV.B, although not significant, the tempo-
ral decay is still visible after a period of 8 months. Concerning
the practicality of such a classification mechanism, the require-
ment for hand-classifying the ground-truth training data in
order to train and re-train the model can be a serious concern.
As the labour required in hand-classification process increases
along with the size of the training set, it is useful to know
how much training data is required for a desired accuracy.



(a) C4.5 (b) Adaboost+C4.5

Fig. 3. Average accuracy vs size of training set.

Class Precision (%) Recall (%)
Web-browsing 99.9630 99.7860

Mail 94.2179 99.9939
Bulk (ftp) 83.2559 99.6479

Attack 0.0 0.0
Peer-2-Peer 92.5035 96.0884

Database 96.7181 19.2249
Service 99.6323 97.5696

Interactive 97.2222 97.2222

TABLE VI

TEMPORAL STABILITY RESULT. THE MODELS WERE BUILT WITH DAY 1

DATASET, AND TESTED ON WHOLEDAY 2 DATASET.

In the following results shown in Fig. 3, a proportion of
the data is randomly picked out for training, and the rest
for testing. Models are trained by C4.5 and AdaBoost+C4.5
respectively. The process is repeated 10 times for each pro-
portion ratio. Error-bars shown in this figure are the minimum
and maximum accuracy observed. We observe that using C4.5
decision tree, 99% total accuracy can be achieved with less
than 0.5% of flow objects (1875 flows) randomly selected
as training set. Moreover, AdaBoost+C4.5 can further reduce
this proportion to 0.2% (750 flows). This implies that with a
comparably small training set the model trained can still retain
a fairly high accuracy. Further, same accuracy may be achieved
with fewer training data if we could by any means, consciously
select a similar amount of samples for each traffic class. This
fact has more practical implications: it can be possible to use
some seed data collected from a small number of hosts, or
use some artificially generated application flows to model an
access network.

D. Discussion

We may assert that discriminative learning technique (notably
C4.5) is a great tool in this problem space. This is in common
with the results in [8]. However, the methodology itself
has not been specially tuned to adapt to our classification
problem: the features are not being post-processed to make

them more distinguishable. The final aim in this paper is
the overall accuracy on the number of flows, rather than
on specific traffic classes; and the use of C4.5 algorithm
is still very coarse-grained. According to the no-free-lunch
theorem [23], for a special type of problem the performance
of a highly specialised algorithm can be much better than
that of a general algorithm. Many applications would only
require the identification of single traffic classes, for example,
Multimedia, Game, Bulk, Peer-2-Peer or Attack. It is easier
to achieve high precision and recall for a binary classification
than for this multi-class classification.

Moreover, in order to tackle the temporal instability and to
further adjust the model to other specific network locations, we
note that the incremental learning (i.e. incrementally learning
new information from datasets that consecutively become
available, without access to previous datasets) mechanismsuch
as Learn++ [24] may provide some inspiration. Additionally, it
is also not difficult for other kinds of rules (e.g. based on port
numbers or flow metrics) to manually merge into a decision
tree model. Further investigation is required to demonstrate the
feasibility of this kind of mechanism in specific applications.

At present the classification module using C4.5 only occupies
a very small portion of CPU time in the pipeline. Therefore,
from a view of the whole system, a large opportunity exists
in which to refine the classification methodology.

V. CONCLUSION

In the Internet there is an ever-increasing volume and variety of
traffic. Motivated by a desire to identify the applications of the
Internet, in this paper we present a machine learning approach
for network traffic classification based on traffic behaviour.

By collecting a small number of features, from a small number
of packets or a short duration of a traffic flow, our approach
can provide good balance on the overall performance: the
accuracy, throughput and latency. It has many other advantages
over traditional port and signature based systems, including the



potential to identify encrypted flows or flows using irregular
ports, and the potential to tackle previously unknown appli-
cations. Finally, it has shown very promising feasibility for
practical use.

A. Future Work

Behind this work, we have one clear aim which is to apply this
classification scheme to practical applications. For this,there
are still a number of areas where future work should further
justify the feasibility and suitability.

We recognise that the challenge of finding the best possible
combination of features and methodology remains highly
application-specific and deserves further investigation.Long
term temporal stability and spatial stability remains an impor-
tant topic to establish the wider-applicability of the method
but will require more training data sets.

Moreover, the classification objects in our current methodol-
ogy are only TCP flows with their starts seen on the link,
no matter they are complete or not. There is still a portion
of traffic yet to be classified, such as UDP, ICMP and “mid-
stream” TCP flows, those for which we have not observed the
start of the flow. These kinds of traffic can also be tackled
in a very similar way with the use of the standard timeout
mechanism [25].

Also, further experiments would be carried out to extend the
performance evaluation and to demonstrate the ability of han-
dling encrypted traffic and previously unknown applications,
based on more traffic traces.

Lastly, we observe the computational overhead in the pipeline
has a comparably complex composition. It would be very
helpful to find a cost function for the features as an input for
feature selection in model-training. In this way a complexity
bound can be applied to the model.

Acknowledgements

This paper is supported by EPSRC research grant
GR/T10510/02. We are grateful to Grenville Armitage,
Renata Teixeira and Laurent Bernaille for thought-provoking
discussions. We also thank Jon Crowcroft, Ralphe Neill,
Yao Zhao, Jian Zhang, Awais Awan and many anonymous
reviewers for their valuable feedback.

REFERENCES

[1] A. W. Moore and D. Papagiannaki. Toward the accurate identification
of network applications. InProceedings of the Sixth Passive and Active
Measurement Workshop (PAM 2005), volume 3431. Springer-Verlag
LNCS, March 2005.

[2] Getbymail: Remote access & file sharing by mail.
http://www.getbymail.com/.

[3] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield. Class-of-Service
Mapping for QoS: A statistical signature-based approach toIP traffic
classification. InACM SIGCOMM Internet Measurement Conference,
Taormina, Sicily, Italy, 2004.

[4] J. R. Quinlan.C4.5: Program for Machine Learning.Morgan Kaufman,
1993.

[5] Vern Paxson. Bro: a system for detecting network intruders in real-time.
Computer Networks (Amsterdam, Netherlands: 1999), 31(23–24):2435–
2463, 1999.

[6] Martin Roesch. Snort - Lightweight Intrusion Detectionfor Networks. In
USENIX 13th Systems Administration Conference — LISA ’99, Seattle,
WA, 1999.

[7] Andrew W. Moore and Denis Zuev. Internet traffic classification using
bayesian analysis techniques. InProceedings of ACM Sigmetrics, pages
50–60, 2005.

[8] N. Williams, S. Zander, and G. Armitage. A preliminary performance
comparison of five machine learning algorithms for practical iptraffic
flow classification. SIGCOMM Computer Communication Review,
October 2006.

[9] T.T.T. Nguyen and G. Armitage. Training on multiple sub-flows
to optimise the use of machine learning classifiers in real-world ip
networks. In IEEE 31st Conference on Local Computer Networks,
November 2006.

[10] L. Bernaille, R. Teixeira, and K. Salamatian. Early application identifi-
cation. In2006 ACM conference on Emerging network experiment and
technology (CoNEXT06), December 2006.

[11] L. Bernaille and R. Teixeira. Early recognition of encrypted applications.
In Passive and Active Measurement Conference 2007 (PAM’07), April
2007.

[12] Manuel Crotti, Maurizio Dusi, Francesco Gringoli, andLuca Salgarelli.
Traffic classification through simple statistical fingerprinting. SIG-
COMM Computer Communication Review, January 2007.

[13] J. Erman, M. Arlitt, and A. Mahanti. Traffic classification using
clustering algorithms. InIn Proceedings of the 2006 SIGCOMM
workshop on mining network data (MineNet ’06), September 2006.

[14] K. Gopalratnam, S. Basu, J. Dunagan, and H. Wang. Automatically
extracting fields from unknown network protocols. InFirst Workshop
on Tackling Computer Systems Problems with Machine Learning Tech-
niques (SysML06), June 2006.

[15] Thomas Karagiannis, Konstantina Papagiannaki, and Michalis Faloutsos.
Blinc: multilevel traffic classification in the dark. InProceedings of ACM
SIGCOMM 2005, pages 229–240, 2005.

[16] Thomas Karagiannis, Konstantina Papagiannaki, Nina Taft, and Michalis
Faloutsos. Profiling the end host. InPassive and Active Measurement
Conference 2007 (PAM’07), April 2007.

[17] G. Varghese.Network Algorithmics: An Interdisciplinary Approach to
Designing Fast Networked Devices.Morgan Kaufman, 2004.

[18] Andrew Moore, James Hall, Christian Kreibich, Euan Harris, and Ian
Pratt. Architecture of a Network Monitor. InPassive & Active
Measurement Workshop 2003 (PAM2003), La Jolla, CA, April 2003.

[19] A. W. Moore, D. Zuev, and M Crogan. Discriminators for usein
flow-based classification. Technical Report RR-05-13, Department of
Computer Science, Queen Mary, University of London, September 2005.

[20] T. Auld, A. W. Moore, and S. F. Gull. Bayesian neural networks for
internet traffic classification.IEEE Transactions on Neural Networks,
November 2006.

[21] I. H. Witten and E. Frank.Data Mining. Morgan Kaufmann Publishers,
2000.

[22] R. E. Schapire. The boosting approach to machine learning: An
overview. In MSRI Workshop on Nonlinear Estimation and Classifi-
cation, 2001.

[23] D. H. Wolpert and W. G. Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1),
April 1997.

[24] M. Muhlbaier, A. Topalis, and R. Polikar. Learn++.mt: A new approach
to incremental learning. In5th International Workshop on Multiple
Classifier Systems (MCS 2004), June 2004.

[25] Cisco ios netflow. http://www.cisco.com/en/US/products/ps6601/prod
literature.html.


