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Abstract — An analysis of the sending rate of TCP control over 
Terabit per second rate links illustrates how future optical 
network characteristics, such as higher bitrates, network 
congestion, and larger data loads, would affect performance. We 
have implemented a model to allow increased sending rate for 
TCP. It is shown that even if the network bitrate is higher and 
the sending rate of TCP is scaled up, the throughput does not 
grow considerably, and latency remains one of the key 
parameters which must be reduced to improve performance. 
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I.  INTRODUCTION  
The rapid increase in data traffic volumes and the 

bandwidth that can be provisioned by wavelength multiplexed 
optical channels present both challenges and opportunities in 
the data networking arena. The Transport Control Protocol 
(TCP) is one of the most commonly used protocols for data 
communications [1], but the extension of TCP to Terabit per 
second aggregate data rates has not been extensively studied. 
This work investigates the operation of future high capacity 
data links to explore the modifications which may be 
appropriate to ensure the robust operation of current protocols 
and infrastructure.  

In this paper, it has been studied for the first time the effects 
of the window scaling up to 1.07GB at Tb/s line rates by 
comparing performance with and without the implementation 
of the scaling window. In the process, packet loss is analyzed 
under the window scaling implementation at Tb/s line rates. 

II. BACKGROUND 
When we are talking about a reliable connection such as 

TCP, the performance of the transmission rate depends on how 
many segments of data have been received and acknowledged. 
Every time the sender receives an acknowledgement, the TCP 
sending rate grows. Thus the sending rate of each TCP 
transmission varies according to the number of 
acknowledgments received. In the case of packet loss or 
congestion, the transmission rate is decreased by the sender. 
These variations take the form of an additive increase, and 
multiplicative decrease (AIMD) scheme [2]. 

The conventional growth of the sending rate or scaling of 
the “window” utilizes an algorithm known as “slow start” [3] 

which provides exponential increases up to 65KB, which is 
known as the slow start threshold. After this threshold the 
scaling becomes linear, a process known as “congestion 
avoidance” [3].  

 
The slow start operates by observing that the rate at which 

new packets should be injected into the network is the rate at 
which the acknowledgments are returned by the receiver. The 
congestion window is the control flow imposed by the sender 
and the advertised window is the flow control imposed by the 
receiver. 

 
It is possible within TCP to scale the slow start threshold up to 
1.07GB using the “window scale option” [4]. The window 
scale extension expands the definition of the TCP window to 
32 bits and then uses a scale factor to carry this 32-bit value in 
the 16-bit Window field of the TCP header. The scale factor is 
carried in an option field of the TCP header. Two approaches 
to window scaling are feasible. This first approach sends the 
scaling information only in a synchronization segment and the 
window scale is therefore fixed in each direction when the 
connection is opened. A second approach allows the 
specification of the window scale in every TCP segment. 
Fixing the scale when the connection is opened has the 
advantage of lower overhead but the disadvantage that the scale 
factor cannot be changed during the connection. [4] 

 
As data rates approach and exceed Tb/s however, the 

feedback closed loop requirements of TCP are expected to 
incur a severe burden in terms of latency.  In this work, it was 
studied how window scaling may be implemented to enhance 
network performance at line rates of up to 10 Tb/s, addressing 
the dependence on line rate. The goodput, the amount of data 
successfully transmitted, is quantified along with transmission 
time for the example of 8 MB packet transmission. The 
improvement in link efficiency facilitated through window 
scaling is characterized through the implementation of an 
adapted SSFNet simulation in terms of maximum window for 
the sending and receiving rates with exponential growth. 

III. IMPLEMENTATION 
The role of window scaling was explored by implementing 

a customized option for the SSFNet simulator [6]. This option 
was not otherwise available. While the “window field” of the 
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TCP header was not directly modified, the sending rate 
algorithm was adjusted to allow it to grow to the maximum 
value that is a window of 1,073,725,440 bytes (65535 x 214). 
The 65535 bytes is the previous slow start threshold and is the 
conventional value for all versions of TCP; the 214 number 
comes from the options section of the TCP header which is the 
window scale factor and is 3 bytes long, the last byte being the 
shift count and is set to 0 when scale option is applied. 

To facilitate this modification, the sending rate and the 
receiving rate must also be able to facilitate the scaling and 
therefore the receiver buffer was modified to allow as many 
packets as the line physical rate permitted. This avoids 
reception side restrictions and to allow the unambiguous 
interpretation of simulations in terms of the sending rate 
behavior.  

The fact that we modify directly the behavior of the growth 
is actually different from the original idea of the window scale 
option only in the way the start of the communication is 
executed. The scaling is not advertised between the receiver 
and server during the synchronization of the communication. 
The scaling is allowed for all the transmissions by modifying 
the congestion window threshold and the advertised window. 

 Even if the implementations are different in the initial 
period of the communication (TCP synchronization); the 
scaling of the window is the same for the window scale option 
and our scaling up implementation during the slow start 
growth.  

IV. RESULTS 
Five different line rates were simulated with a client server 

link of 1 microsecond delay. The one and ten Tera bits per 
second line rates simulation cases, show and improvement in 
the performance with the scaling up window implementation. 
See Table 1. However the improvement could be better, except 
for other important factors which are contributors to the total 
performance. Thus it should be considered the fact that every 
amount of data to be transfer is segmented by TCP. This 
segmentation is directly related to the round trip time and the 
acknowledgments.  

It was found through simulations that the performance of 
TCP for high data rates is dominated by the latency and the rate 
at which transmissions may be sent. This sending rate varies 
with the number of acknowledgements received and their 
incidence. An important consideration is the wait to receive 
and acknowledged for a sent segment which is dependent on 
the physical line delay.  

 
While it is true that the latency imposed by the physical 

layer is small the final performance will be affected by the 
feedback closed loop generated between the transmission of 
packets and their acknowledgments. This loop is observed 
every time that a TCP connection is established, thus the time 
that it takes for an entire file to be transmitted would be nearly 
a constant number dependent on the physical line delay when 
the bit rate is equal to or higher than 1 Tb/s and there are not 
retransmissions due to packet loss; see Table 1. In this case the 
limit is the number of packets (segments of the file) that can be 
sent per unit of time and are controlled by the congestion 

window of TCP and the round trip time of the feedback loop 
created by the flow between the packets and their 
acknowledgments.  

TABLE I.  PERFORMANCE WITH AND WITHOUT SCALING UP THE SENDING 
RATE IMPLEMENTATION  

 
 

The calculation of the time required to transmit the entire 
file depends on factors such as: segmentation, the physical line 
delay and network congestion, plus round trip time and the 
adaptive algorithms of the TCP window.  

Table 1 shows the results of a transmission with 8 Megabits 
file size using TCP; the first column to the left hand side shows 
the bit rates tested, the second and third columns show the 
results of the simulation without the scaling up implementation 
and the fourth and fifth columns show the results with the 
implementation of the scaling window. 

 

In the table we refer to “goodput” as the measurement of 
the data rate successfully transmitted; the aggregated 
throughput minus the overhead and retransmissions.   

As can be seen, the transmission time becomes a constant at 
approximately 40usec; this is because the physical delay of the 
link is determining the connection performance. When the 
simulations run with the window scaling factor increased 
1.07GB, the transmission time stabilizes at approximately 
28usec for both speed cases of 1 Tb/s and 10 Tb/s. This time 
cannot be reduced significantly because it is the product of the 
physical delay multiplied by the number of packets transmitted 
(equal to the number of segments of the full amount of data to 
be transferred).  

A comparison of the goodput values in Table 1 reveals that 
the scaled up window implementation increases the 
performance by approximately 40%.  

In Fig. 1 it can be seen the behavior of the congestion 
window size for the scaling up window and for the previous 
growth of the congestion window, without the scaling up 
implementation.  

As is also seen, both with and without the scaling up 
implementation increase approximately exponentially up to 
1.5usec although in contrast with the previous behavior it is 
clear that the exponential increase persist for the scaling up 
option because now it can increase exponentially to reach the 
new limit causing the time to transmit the total amount of data 
to be reduced from 40.35usec to 28.64usec.  



  
Figure 1.  Congestion window growth for the scaling up and withouth scaling 

up implementation 

With the previous limit of 65KB (red-dashed line) in Fig. 1, 
the growth of the window change from exponential to linear 
(blue-dashed line) that is known as “congestion avoidance”. 
The congestion avoidance is activated in the presence of packet 
loss or congestion of the network as well, not only by the 65KB 
or 1.07GB thresholds. 

However the improvement may be conditioned to a good 
quality link because in the case of packet loss the goodput 
performance of the link may be affected in practice by the 
retransmissions. These retransmissions are the natural control 
of TCP to maintain reliable communication in case of packet 
loss or congestion. 

It was decided to test the new implementation with several 
packets passing through the link and simulated packet losses 
with the use of a random number generator with an exponential 
distribution. This function allows us to induce a packet loss 
every certain number of packets transmitted.  

Performance is compared for a range of packet error rates 
in Fig. 2 both with and without the scaling modification, for 
different packet error rates. It was also investigated for bit rate 
links of 1 Tb/s and 10 Tb/s. 

The simulations show that; the goodput has not been 
compromised by a packet error rate that is better than ten to the 
power of minus four (1E-04); 100 files were tested transferring 
each 8MB of size where some packet losses were generated 
over the link.  

The 8MB file transferred is expected to be more susceptible 
to packet loss because of its considerable size but TCP gives 
stable performance although the final sending rate is reduced 
by the retransmissions generated. 

  
Figure 2.  Goodput vs. packet error rate for the scaling window 

implementation  

V. CONCLUSIONS 
It can be concluded from the results that scaling the TCP 

window improves the performance of the communication link 
and is robust in the face of packet loss for the types of 
transmission and link rates which we have considered. 

TCP was simulated with the scaling up sending rate with 
the slow start threshold set to 1.07GB which has not been 
deeply studied at Tb/s before. The simulation results show 
some of the limitations of TCP operating at Tera bits per 
second rates. 

It was found that a TCP transfer at 1Tb/s takes 
approximately the same time as 10 Tb/s; because of the 
segmentation and the latency receiving the acknowledgments. 
An overview of how the data segments and their 
acknowledgments can determine the performance of the 
network is presented in this paper.  

TCP has been working well, covering the requirements of 
the data communications although some modifications to the 
control algorithms of the window must be reconsidered. 

VI. FUTURE WORK 
From our point of view latency remains one of the key 

parameters which must be reduced to improve the performance.  
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