
TCP sending rate control at Tera bits per second

E. Rodríguez-Colina, L. B. James,
R .V. Penty, I. H. White

University of Cambridge, Photonic Communications
Systems, 9 JJ Thompson Av. Cambridge, CB30FA, U. K.

er254@cam.ac.uk

K. A. Williams*
* Technische Universiteit Eindhoven, Den Dolech 2, 5600

MB Eindhoven, Netherlands

A. W. Moore +,
+ Queen Mary, University of London, Dept of Computer

Science, Mile End Road, E1 4NS, U.K.

Abstract — An analysis of the sending rate of TCP control over
Terabit per second rate links illustrates how future optical
network characteristics, such as higher bitrates, network
congestion, and larger data loads, would affect performance. We
have implemented a model to allow increased sending rate for
TCP. It is shown that even if the network bitrate is higher and
the sending rate of TCP is scaled up, the throughput does not
grow considerably, and latency remains one of the key
parameters which must be reduced to improve performance.

Keywords-component; TCP/IP performance over high bandwidth
links, window scale option, latency reduction.

I. INTRODUCTION
The rapid increase in data traffic volumes and the

bandwidth that can be provisioned by wavelength multiplexed
optical channels present both challenges and opportunities in
the data networking arena. The Transport Control Protocol
(TCP) is one of the most commonly used protocols for data
communications [1], but the extension of TCP to Terabit per
second aggregate data rates has not been extensively studied.
This work investigates the operation of future high capacity
data links to explore the modifications which may be
appropriate to ensure the robust operation of current protocols
and infrastructure.

In this paper, it has been studied for the first time the effects
of the window scaling up to 1.07GB at Tb/s line rates by
comparing performance with and without the implementation
of the scaling window. In the process, packet loss is analyzed
under the window scaling implementation at Tb/s line rates.

II. BACKGROUND
When we are talking about a reliable connection such as

TCP, the performance of the transmission rate depends on how
many segments of data have been received and acknowledged.
Every time the sender receives an acknowledgement, the TCP
sending rate grows. Thus the sending rate of each TCP
transmission varies according to the number of
acknowledgments received. In the case of packet loss or
congestion, the transmission rate is decreased by the sender.
These variations take the form of an additive increase, and
multiplicative decrease (AIMD) scheme [2].

The conventional growth of the sending rate or scaling of
the “window” utilizes an algorithm known as “slow start” [3]

which provides exponential increases up to 65KB, which is
known as the slow start threshold. After this threshold the
scaling becomes linear, a process known as “congestion
avoidance” [3].

The slow start operates by observing that the rate at which

new packets should be injected into the network is the rate at
which the acknowledgments are returned by the receiver. The
congestion window is the control flow imposed by the sender
and the advertised window is the flow control imposed by the
receiver.

It is possible within TCP to scale the slow start threshold up to
1.07GB using the “window scale option” [4]. The window
scale extension expands the definition of the TCP window to
32 bits and then uses a scale factor to carry this 32-bit value in
the 16-bit Window field of the TCP header. The scale factor is
carried in an option field of the TCP header. Two approaches
to window scaling are feasible. This first approach sends the
scaling information only in a synchronization segment and the
window scale is therefore fixed in each direction when the
connection is opened. A second approach allows the
specification of the window scale in every TCP segment.
Fixing the scale when the connection is opened has the
advantage of lower overhead but the disadvantage that the scale
factor cannot be changed during the connection. [4]

As data rates approach and exceed Tb/s however, the

feedback closed loop requirements of TCP are expected to
incur a severe burden in terms of latency. In this work, it was
studied how window scaling may be implemented to enhance
network performance at line rates of up to 10 Tb/s, addressing
the dependence on line rate. The goodput, the amount of data
successfully transmitted, is quantified along with transmission
time for the example of 8 MB packet transmission. The
improvement in link efficiency facilitated through window
scaling is characterized through the implementation of an
adapted SSFNet simulation in terms of maximum window for
the sending and receiving rates with exponential growth.

III. IMPLEMENTATION
The role of window scaling was explored by implementing

a customized option for the SSFNet simulator [6]. This option
was not otherwise available. While the “window field” of the

E. Rodriguez-Colina is member of St Edmund’s College and is sponsored
by the Council of Science and Technology of Mexico (CONACYT)

TCP header was not directly modified, the sending rate
algorithm was adjusted to allow it to grow to the maximum
value that is a window of 1,073,725,440 bytes (65535 x 214).
The 65535 bytes is the previous slow start threshold and is the
conventional value for all versions of TCP; the 214 number
comes from the options section of the TCP header which is the
window scale factor and is 3 bytes long, the last byte being the
shift count and is set to 0 when scale option is applied.

To facilitate this modification, the sending rate and the
receiving rate must also be able to facilitate the scaling and
therefore the receiver buffer was modified to allow as many
packets as the line physical rate permitted. This avoids
reception side restrictions and to allow the unambiguous
interpretation of simulations in terms of the sending rate
behavior.

The fact that we modify directly the behavior of the growth
is actually different from the original idea of the window scale
option only in the way the start of the communication is
executed. The scaling is not advertised between the receiver
and server during the synchronization of the communication.
The scaling is allowed for all the transmissions by modifying
the congestion window threshold and the advertised window.

 Even if the implementations are different in the initial
period of the communication (TCP synchronization); the
scaling of the window is the same for the window scale option
and our scaling up implementation during the slow start
growth.

IV. RESULTS
Five different line rates were simulated with a client server

link of 1 microsecond delay. The one and ten Tera bits per
second line rates simulation cases, show and improvement in
the performance with the scaling up window implementation.
See Table 1. However the improvement could be better, except
for other important factors which are contributors to the total
performance. Thus it should be considered the fact that every
amount of data to be transfer is segmented by TCP. This
segmentation is directly related to the round trip time and the
acknowledgments.

It was found through simulations that the performance of
TCP for high data rates is dominated by the latency and the rate
at which transmissions may be sent. This sending rate varies
with the number of acknowledgements received and their
incidence. An important consideration is the wait to receive
and acknowledged for a sent segment which is dependent on
the physical line delay.

While it is true that the latency imposed by the physical

layer is small the final performance will be affected by the
feedback closed loop generated between the transmission of
packets and their acknowledgments. This loop is observed
every time that a TCP connection is established, thus the time
that it takes for an entire file to be transmitted would be nearly
a constant number dependent on the physical line delay when
the bit rate is equal to or higher than 1 Tb/s and there are not
retransmissions due to packet loss; see Table 1. In this case the
limit is the number of packets (segments of the file) that can be
sent per unit of time and are controlled by the congestion

window of TCP and the round trip time of the feedback loop
created by the flow between the packets and their
acknowledgments.

TABLE I. PERFORMANCE WITH AND WITHOUT SCALING UP THE SENDING
RATE IMPLEMENTATION

The calculation of the time required to transmit the entire
file depends on factors such as: segmentation, the physical line
delay and network congestion, plus round trip time and the
adaptive algorithms of the TCP window.

Table 1 shows the results of a transmission with 8 Megabits
file size using TCP; the first column to the left hand side shows
the bit rates tested, the second and third columns show the
results of the simulation without the scaling up implementation
and the fourth and fifth columns show the results with the
implementation of the scaling window.

In the table we refer to “goodput” as the measurement of
the data rate successfully transmitted; the aggregated
throughput minus the overhead and retransmissions.

As can be seen, the transmission time becomes a constant at
approximately 40usec; this is because the physical delay of the
link is determining the connection performance. When the
simulations run with the window scaling factor increased
1.07GB, the transmission time stabilizes at approximately
28usec for both speed cases of 1 Tb/s and 10 Tb/s. This time
cannot be reduced significantly because it is the product of the
physical delay multiplied by the number of packets transmitted
(equal to the number of segments of the full amount of data to
be transferred).

A comparison of the goodput values in Table 1 reveals that
the scaled up window implementation increases the
performance by approximately 40%.

In Fig. 1 it can be seen the behavior of the congestion
window size for the scaling up window and for the previous
growth of the congestion window, without the scaling up
implementation.

As is also seen, both with and without the scaling up
implementation increase approximately exponentially up to
1.5usec although in contrast with the previous behavior it is
clear that the exponential increase persist for the scaling up
option because now it can increase exponentially to reach the
new limit causing the time to transmit the total amount of data
to be reduced from 40.35usec to 28.64usec.

Figure 1. Congestion window growth for the scaling up and withouth scaling

up implementation

With the previous limit of 65KB (red-dashed line) in Fig. 1,
the growth of the window change from exponential to linear
(blue-dashed line) that is known as “congestion avoidance”.
The congestion avoidance is activated in the presence of packet
loss or congestion of the network as well, not only by the 65KB
or 1.07GB thresholds.

However the improvement may be conditioned to a good
quality link because in the case of packet loss the goodput
performance of the link may be affected in practice by the
retransmissions. These retransmissions are the natural control
of TCP to maintain reliable communication in case of packet
loss or congestion.

It was decided to test the new implementation with several
packets passing through the link and simulated packet losses
with the use of a random number generator with an exponential
distribution. This function allows us to induce a packet loss
every certain number of packets transmitted.

Performance is compared for a range of packet error rates
in Fig. 2 both with and without the scaling modification, for
different packet error rates. It was also investigated for bit rate
links of 1 Tb/s and 10 Tb/s.

The simulations show that; the goodput has not been
compromised by a packet error rate that is better than ten to the
power of minus four (1E-04); 100 files were tested transferring
each 8MB of size where some packet losses were generated
over the link.

The 8MB file transferred is expected to be more susceptible
to packet loss because of its considerable size but TCP gives
stable performance although the final sending rate is reduced
by the retransmissions generated.

Figure 2. Goodput vs. packet error rate for the scaling window

implementation

V. CONCLUSIONS
It can be concluded from the results that scaling the TCP

window improves the performance of the communication link
and is robust in the face of packet loss for the types of
transmission and link rates which we have considered.

TCP was simulated with the scaling up sending rate with
the slow start threshold set to 1.07GB which has not been
deeply studied at Tb/s before. The simulation results show
some of the limitations of TCP operating at Tera bits per
second rates.

It was found that a TCP transfer at 1Tb/s takes
approximately the same time as 10 Tb/s; because of the
segmentation and the latency receiving the acknowledgments.
An overview of how the data segments and their
acknowledgments can determine the performance of the
network is presented in this paper.

TCP has been working well, covering the requirements of
the data communications although some modifications to the
control algorithms of the window must be reconsidered.

VI. FUTURE WORK
From our point of view latency remains one of the key

parameters which must be reduced to improve the performance.

ACKNOWLEDGMENTS
We would like to thank Madeleine Glick from Intel

Research Cambridge, UK, and Pablo Vidales from Deutsche
Telekom Laboratories, TU Berlin for their help.

REFERENCES
[1] C. Cameron, H. Le Vu, J. Choi, S. Bilgrami, M. Zukerman and M. Kang

“TCP over OBS -fixed-point load and loss” Optics Express, OSA, Vol.
13, No. 23/9172, 2005

[2] Cheng Jin, David Wei, at al, “Fast TCP From theory to Experiments”,
IEEE Network January/February, 2005

[3] A. Detti, M. Listanti, “Impact of Segments Aggregation on TCP Reno
Flows in Optical Burst Switching Networks”, INFOCOM 2002

[4] V. Jacobson, R. Braden, D. Borman, “TCP Extensions for High
Performance”, Network Working Group, RFC 1323

[5] W. Richard Stevens, “TCP/IP Illustrated, Volume 1: The Protocols”,
ISBN 0-201-63346-9, Addison-Wesley

[6] “SSFNet simulator”, http://www.ssfnet.org/homePage.html

