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Abstract— Studying transfer opportunities between
wireless devices carried by humans, we observe that the
distribution of the inter-contact time, that is the time
gap separating two contacts of the same pair of devices,
exhibits a heavy tail such as one of a power law, over a
large range of value. This observation is confirmed on
six distinct experimental data sets. It is at odds with
the exponential decay implied by most mobility models.
In this paper, we study how this new characteristic of
human mobility impacts a class of previously proposed
forwarding algorithms. We use a simplified model based
on the renewal theory to study how the parameters of
the distribution impact the delay performance of these
algorithms. We make recommendation for the design of
well founded opportunistic forwarding algorithms, in the
context of human carried devices.

I. INTRODUCTION

The increasing popularity of devices equipped with
wireless network interfaces (such as cell phones or
PDAs) offers new communication services opportunities.
Such mobile devices can transfer data in two ways -
transmitting over a wireless (or wired) network interface,
and carrying from location to location by their user
(while stored in the device). Communication services
that rely on this type of data transfer will strongly depend
on human mobility characteristics and on how often such
transfer opportunities arise. Therefore, they will require
fundamentally different networking protocols than those
used in the Internet. Since two (or more) ends of the
communication might not be connected simultaneously,
it is impossible to maintain routes or to access centralized
services such as the DNS.

In order to better understand the constraints of oppor-
tunistic data transfer, we take an experimental approach.
We analyze six distinct data sets, three of which we
have collected ourselves. We define the inter-contact

time as the time between two transfer opportunities,
for the same devices. We observe in the six traces that
the inter-contact time distribution follows a heavy tailed
distribution on a large range of values. Inside this range
the inter-contact time distribution can be compared to the
one of a power-law. We study the impact of those heavy
tailed inter-contact times on the actual performance and
theoretical limits of a general class of opportunistic
forwarding algorithms that we call ”naive forwarding
algorithms”. Algorithms in this class do not use the
identity of the devices that are met, nor the recent history
of the contacts, or the time of the day, in order to
make forwarding decision. Instead forwarding decision
are based on forwarding rules statically defined that
bound the number of data replicates, or the number of
hops.

Based on our experimental observations, we develop
a simplified model of opportunistic contact between
human-carried wireless devices. It is based on several
independence assumptions which are usually met, at
least implicitly, in the literature of mobile ad-hoc routing.
We do not claim that this model is satisfactory to have
accurate performance of different forwarding algorithms.
It rather serves our purpose which is to demonstrate how
heavy tail inter-contact times influence the performance
of naive forwarding algorithms in opportunistic transmis-
sion conditions – and how these forwarding algorithms
should be configured to offer reasonable performance
guarantee.

Our experimental results are presented in Section II.
In Section III, we model contact opportunities based on
our observations and we analyze the delay that wireless
devices would experience using a class of forwarding
algorithm previously studied in the literature. Section IV
is dedicated to related works. The paper concludes with a
brief summary of contributions and presentation of future



work, including a discussion of our assumptions.

II. EXPERIMENTAL ANALYSIS

A. Data sets

In order to conduct informed design of forwarding
algorithms between devices carried by humans, it is
important to study data on the frequency and duration
of contacts between them. Ideally, an experiment would
cover a large user base over a large time period, as well
as include data on connection opportunities encountered
twenty-four hours a day, with a granularity measured in
seconds.

We examined two types of data sets. First, we used
traces made available to us by people who have per-
formed previous measurement exercises. Three data sets
emerged, namely from UCSD [1], Dartmouth Univer-
sity [2] and the University of Toronto [3]. We comple-
mented these traces with three of our own experiments.
These six experiments use different user populations as
well as different wireless technologies. The characteris-
tics of the six data sets, explained below, are shown in
Table I.

1) External data sets: UCSD and Dartmouth make
use of WiFi networking, with the former including client-
based logs of the visibility of access points (APs),
while the latter includes SNMP logs from the access
points. The durations of the different logs traces are
three and four months respectively. Since we required
data about device-to-device transmission opportunities,
the raw data sets were unsuitable for our experiment
and required pre-processing. For both data sets, we made
the assumption that mobile devices seeing the same AP
would also be able to communicate directly (in ad-hoc
mode), and created a list of transmission opportunities
by determining, for each pair of devices, the set of time
regions for which they shared at least one AP.

Unfortunately, this assumption introduces inaccura-
cies. On one hand, it is overly optimistic, since two
devices attached to the same access point may still be out
of range of each other. On the other hand, the data might
omit connection opportunities, since two devices may
pass each other at a place where there is no instrumented
access point, and this contact would not be logged. In
addition, the UCSD data set is more exhaustive than
the Dartmouth one, since it logs all reachable APs
for each client at each time slot, while the Dartmouth
data only logs the associated AP. Another issue with
these data sets is that the devices are not necessarily
co-located with their owner at all times (i.e. they do
not always characterize human mobility). Despite these
inaccuracies, the WiFi traces are a valuable source of

data, since they span many months and include thousands
of devices. In addition, considering that two devices,
connected to the same AP, are potentially in contact
is not altogether unreasonable, as these devices could
indeed communicate through the AP, without using end-
to-end connectivity.

The University of Toronto have collected traces from
20 Bluetooth-enabled PDAs that were distributed to a
group of students. These devices performed a Bluetooth
inquiry each 100s and this data was logged. This method-
ology does not require devices to be in range of any
AP in order to collect contacts, but it does requires that
the PDAs are carried by subjects and that they have
sufficient battery life for them to participate in the data
collection. Data may be collected over a long period if
devices are recharged. The data set we use comes from
an experiment that lasted 16 days.

2) iMote-based experiments: In order to complement
the previous traces, we built our own experiment using
Intel iMotes, which are embedded devices similar to
Crossbow motes1, but with the key feature (for our
experiments) that they communicate via Bluetooth. We
programmed the iMotes to log contact data for all visible
Bluetooth devices (including iMotes as well as other
Bluetooth devices such as cell phones). Each contact is
represented by a tuple (MAC address, start time, end
time). The experimental settings are described in detail
in [4]; an anonymized version of our data will be made
available to other research groups on demand.

Three iMote-based experiments were conducted. The
first included eight researchers and interns working at
Intel Research in Cambridge. The second obtained data
from twelve doctoral students and faculty comprising a
research group at the University of Cambridge Computer
Lab. The third experiment was conducted during the
IEEE INFOCOM 2005 conference in Miami where 41
iMotes where carried by attendees for 3 to 4 days.
iMotes contacts were classified into two groups: iMotes
recording the sightings of another iMotes are classified
as “internal” contacts, while sightings of other types of
Bluetooth devices are called “external” contacts. The
external contacts are numerous and include anyone who
has an active Bluetooth device in the vicinity of the
iMote carriers, thereby providing a measure of actual
wireless networking opportunities present at that time.
The internal contacts, on the other hand, represent the
data transfer opportunities among participants, if they
were all equipped with devices which are always-on and
always-carried.

1www.xbow.com



User Population Intel Cambridge Infocom Toronto UCSD Dartmouth
Device iMote iMote iMote PDA PDA Laptop/PDA

Network type Bluetooth Bluetooth Bluetooth Bluetooth WiFi WiFi
Duration (days) 3 5 3 16 77 114

Granularity (seconds) 120 120 120 120 120 300
Devices participating 8 12 41 23 273 6648

Number of internal contacts 1,091 4,229 22,459 2,802 195,364 4,058,284
Average # Contacts/pair/day 6.5 6.4 4.6 0.35 0.034 0.00080
Recorded external devices 92 159 197 N/A N/A N/A

Number of external contacts 1,173 2,507 5,791 N/A N/A N/A

TABLE I

COMPARISON OF DATA COLLECTED IN THE SIX EXPERIMENTS.

B. Definitions

We are interested in how the characteristics of transfer
opportunities impact data forwarding decisions. In this
paper, we focus on how often such opportunities occur.
We decided not to attempt to analyze how much data can
be transported for each of them, as this strongly depends
on factors such as the transmission protocol, the antennas
used, and other factors that could be modified to provide
improved transmission performance. In our analysis in
Section III, we address two extreme cases corresponding
to a lower and upper bounds of the amount of data that
may be transferred in each connection opportunity.

We define the inter-contact time as the time elapsed
between two successive contacts of the same devices.
Inter-contact time characterizes the frequency with which
packets can be transferred between networked devices;
it has rarely been studied in the literature. Two remarks
must be made at this point:

First, the inter-contact time is computed once at the
end of each contact period, as the time interval between
the end of this contact and the next contact with the
same devices2. Another option would be to compute the
remaining inter-contact time seen at any time, i.e at time
t, for each pair of devices: the remaining inter-contact
time is the time it takes after t, before a given pair of
devices met again (a formal definition is given in Sec-
tion III). Inter-contact time and remaining inter-contact
time have different distributions, which are related, for
a renewal process, via a classical result known as the
waiting time paradox, or inspection paradox (see p.147
in [5]). A similar relation holds for stationary process, in
the theory of Palm Calculus (see p.15 in [6]). We choose
to study the first definition of “inter-contact time seen at
the end of a contact period”, as the second gives too
much weight to large values of inter-contact times. In
other words the definition that was chosen is the most

2Inter-contact starting after the last contacts recorded for this pair
of devices were not included.

conservative one in the presence of large values.
Second, the inter-contact time distribution is influ-

enced by the duration and the granularity of the experi-
ment. Inter-contact times that last more than the duration
of the experiment cannot be observed, and inter-contact
times close to the duration are less likely to be observed.
In a similar way, inter-contact times that last less than
the granularity of the measurement (which ranges from
two to five minutes among different experiments) cannot
be observed.

Another measure of the frequency of transfer opportu-
nities, that could be considered, is the inter-any-contact,
i.e. for a given device, the time elapsed between two
successive contacts with any other device. This measure
is very much dependent on the deployment of wireless
devices and their density during the experiment, as it
characterizes time that devices spend without meeting
any other device. This measure was studied for most of
these datasets in [4], we do not present further results
here, due to a lack of space.

C. Inter-contact time characterization

We plot the inter-contact time distribution for all
six experiments in Figure 1-2. For the two first iMote
experiments (labeled Intel and Cambridge) the distri-
bution of inter-contact were computed using all pairs
of two iMotes. Therefore it contains only values as-
sociated with internal contacts (However, we observe
the exact same properties for external contacts). Data
from Toronto experiment were also collected between
pairs of experimental Bluetooth devices. Distributions
for these three datasets are plotted in Figure 1 (left).
Distributions belonging to the iMote based experiment
at Infocom is shown in Figure 1 (right), where inter-
contacts belonging to both internal and external contacts
have been plotted separately for comparison. Figure 2
presents the distribution of inter-contact computed using
traces from WiFi experiments. All plots describe the tail
distribution function, in log-log scale.



 0.001

 0.01

 0.1

 1

1 month1 week1 day8 h3 h1 h10 min2 min

P
[X

>
x]

Time

Toronto
iMote Intel

iMote Cambridge
PL with slope 0.9

 0.001

 0.01

 0.1

 1

1 month1 week1 day8 h3 h1 h10 min2 min

P
[X

>
x]

Time

for an external addresses
for an iMote

PL with slope 0.4

Fig. 1. Tail distribution function of the inter-contact time in six experiments: iMote-based experiment at Intel and Cambridge, and Toronto
experiment (left), iMote-based experiment at INFOCOM (right).

The most interesting region is the middle of the
graphs, as the leftmost and rightmost parts show artifacts
due to the granularity and duration of the experiments
as explained above. In this region, all six distributions
show the same characteristics: they exhibit an heavy tail,
that can be approximated or lower bounded by the tail of
a power law, over a large range of value. This common
property is rather surprising given the diversity of the six
data sets. The most notable difference is that the match
with a power law, as evidenced by the straightness of
the curve, is better for the data sets that are shown in
Figures 1 (right) and 2, which contain the largest number
of contacts. Figure 1 (right) proves that the distribution
is almost unchanged if one consider internal or external
contacts. The same results was shown for the two other
iMote experiments and are presented in [7].

A power law is characterized by its coefficient reflect-
ing the slope of the line on log-log graphs; we show
later that this coefficient is critical for the performance
of the forwarding algorithms presented in Section III.
For the iMote-based experiments at Intel and Cambridge,
and the data collected in Toronto, the tail is lower
bounded by a power law with coefficient 0.9 for the
range [2 min; 1 day]. The distribution for the iMote-
based experiment at Infocom is remarkably close to a
power law with coefficient 0.4 on the range [2 min, 16h].
The tail from Dartmouth data can be approximated by
a power law with a coefficient of 0.3 on the range
[10 min; 1 week]. The tail from UCSD data can be also
compared with a power law with coefficient 0.3, but over
a more limited range [10 min; 1 day].
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Fig. 2. Tail distribution function of the inter-contact time: data
collected in Dartmouth and UCSD.

A tail that can be compared or lower bounded by a
power law means the tail distribution function decreases
slowly over this range. This contradicts the exponential
decay that is implied by many mobility models in the
literature (see Section IV). As a result, opportunistic
networking algorithms which have been designed around
exponential models must be re-evaluated in the light of
our observations (see next section). In the iMote-based
traces, 8 to 25% of inter-contact times are greater than
one hour, and 2 to 3% are greater than one day. In



the Toronto trace, 13% last more than a day, and 7%
last more than one week. Similarly in the Dartmouth
trace, we find that large inter-contact times are far from
negligible: 20% last more than a day, 10% last more than
a week. In the UCSD trace, 15% last more than a day,
and 4% last more than one week.

While the WiFi experiments have longer durations,
longer inter-contact times may be affected by the more
limited mobility of laptops or PDAs as their users
may not carry them all the time. However, this is a
characteristic of how users of wireless devices behave
and this should be taken into consideration in the design
of forwarding mechanisms. What remains is that the
same pattern – a heavy tail that can be compared to the
one of a power law – seems to apply to all experiments
despite the fundamental differences in methodology and
in experimental environments.

III. FORWARDING WITH POWER LAW–BASED

OPPORTUNITIES

We now study analytically the impact of our findings
on the performance of a class of forwarding algorithms.
We define first our model of the opportunistic behavior
of mobile users that is based on our experimental obser-
vations.

A. Assumptions and Forwarding Algorithms

1) Contact process model: We consider a slotted time
t = 0, 1, . . .. For a given pair of devices (d, d′), let us
introduce its contact process (U (d,d′)

t )t≥0 defined by:

U
(d,d′)
t =

{
1 if d and d′ are in contact during slot t,
0 otherwise.

For the pair (d, d′) we consider the sequence of the
time slots T

(d,d′)
0 < T

(d,d′)
1 < . . . < T

(d,d′)
k < . . . that de-

scribes all the values of t ∈ N such that U
(d,d′)
t = 1.

We do not include in this model the contact time
representing the duration of each contact, assuming that
each contact starts and ends during the same time slot.
This is justified here by the fact that we are interested in
a model accounting for consequences of large values of
the inter-contact time. It was observed (see [7]) that the
contact time distribution is also heavy tailed, but it takes
smaller values, by several orders of magnitude, than the
ones of the inter-contact time.

Under this condition, the time τ
(d,d′)
k = T

(d,d′)
k+1 −

T
(d,d′)
k for any d, d′ and k ≥ 0 is the inter-contact time

after k th contact of this pair. We suppose in our model
that it is distributed according to the law X , that is a
power law distribution with coefficient α:

P [X ≥ t] = t−α for all t = 1, 2, . . . . (1)

In particular, variable X is not bounded but it is almost
surely finite.

In addition we assume that the contact process
(U (d,d′)

t )t≥0 of each pair is a renewal process, and that
contact processes associated with different pairs are
independent. In other words, the inter-contact times in
the sequence (τ (d,d′)

k )k≥0 are i.i.d., for all (d, d′), and
sequences belonging to different pairs are independent.

We come back to these assumptions later in Section V.
Note that these assumptions are verified, or implicitly
assumed, in most of the analysis of currently proposed
mobility models. This is because it is typically very
difficult to analyze models where dependence may arise
between different devices or between successive events
occurring with one or more devices.

Even if we do not explicitly model the contact time
(each contact lasts one time slot), we need to take
into consideration the fact that a contact may last long
enough to transmit a significant amount of data. We then
introduce two situations:

• the short contact case : where only a single data
unit of a given size can be sent between devices in
a single time slot where they are in contact.

• the long contact case : where two devices in contact
can exchange an arbitrary amount of data during a
single time slot.

These two cases represent a lower and an upper
bounds for the evaluation of bandwidth. The number of
data unit transmitted in a contact (whether short or long)
is defined as a data bundle. the long and the short case
differ from a queuing standpoint. In the long contact
case, the queue is emptied any time a destination is met.
In the short contact case, only one data unit is sent and
therefore, data can accumulate in the memory of the
relay device.

Note that our model is not taking into account explicit
geographical locations and movement of devices, as it
assumes directly that the processes of contacts between
them are given. The results of this section extend to
any mobility model which creates independent contact
processes for all pairs of devices, that follow this same
law.

Before describing forwarding algorithms that we
consider, let us introduce for any pair of device (d, d′),
the remaining inter-contact time, observed at time slot
t: It is denoted by R

(d,d′)
t and defined as

R
(d,d′)
t = min

{
t′ − t

∣∣∣ t′ ≥ t and U
(d,d′)
t′ = 1

}
.

2) Forwarding algorithms: We are interested in a
general class of forwarding algorithms, which all rely
on other devices to act as relays, carrying data between



a source device and a destination device that might not
be contemporaneously connected. These relay devices
are chosen purely based on contact opportunism and not
using any stored information that describes the current
state of the network. The only information used in
forwarding is the identity of the destination so that a
device knows when it meets the destination of a bundle.
We call such algorithms “naive”, although they could
be in reality quite complex and, as we will see, very
efficient in some cases.

The following two algorithms provide bounds for the
class of algorithm described above:

• wait-and-forward: The source waits until its next
direct contact with the destination to communicate.

• flooding: a device forwards all its received data to
any device which it encounters, keeping copies for
itself.

The first algorithm uses minimal resources but can
incur very long delays and does not take full advantage
of the ad-hoc network capacity. The second algorithm,
that was initially proposed in [8], delivers data with
the minimum possible latency, but does not scale well
in terms of bandwidth, storage, and battery usage. In
between these two extreme algorithms, there is a whole
class of algorithms that play on the number of relay
devices to maximize the chance of reaching the des-
tination in a bounded delay while avoiding flooding.
The most important reason not to flood is to minimize
memory requirements and related power consumption in
relay devices, and to delete the backlog of previously
sent message that are still waiting to be delivered, and
could be outdated. Some strategies, based on time-outs,
buffer management, limit on the number of hops and/or
duplicate copies have been proposed (see [8], [9], [10])
to minimize replication and backlog.

B. Analysis of the two-hop relaying algorithm

Having described the class of ”naive” algorithms we
are considering in this work, we now introduce the two-
hop relaying algorithm [11], and evaluates its perfor-
mance for the model of power law inter-contacts that
we have described. Results are generalized to the class
of naive algorithms in the following section.

1) Description: The two-hop relaying algorithm was
introduced by Grossglauser and Tse in [11]. This for-
warding algorithm operates as follow: when a source
has a bundle to send to a destination, it forwards it
once to the first devices that it meets. This first device
is either a relay device or the destination itself. If it
is the destination, the bundle is delivered in one hop;
otherwise the device acts as a relay and stores the bundle

in a queue corresponding to this destination. Bundles
from this queue will be delivered when the relay device
meets the destination. Bundles for the same destination
are delivered by a relay device in a first-come-first-served
order. As queuing may occur in the devices that act as
relays, in the short contact case, the forwarding process
of bundles sent by the source to a relay needs to be of
lower intensity than the bundles sent by this relay to
the destination. This is the case in the implementation
proposed in [11] and we make the same assumption
below.

We choose this algorithm to start our study of the
impact of power law inter-contact times on opportunistic
forwarding for the following three reasons:

• In the short contact case, this algorithm was shown
to maximize the capacity of dense mobile ad-hoc
networks, under the condition that devices locations
are i.i.d., distributed uniformly in a bounded region.

• This result depends strongly on the mobility process
of devices. Authors of [11] assumed an exponential
decay of the inter-contact time. The same result has
been proven for devices following for instance the
random way-point mobility model [12].

• [11] and [12] have shown that that data experiences
a finite expected delay under these conditions.

2) Analysis: We consider N mobile devices which
transmit data according to the two-hop relaying algo-
rithm described above. Instead of the mobility model
used in [11] we assume that contacts between devices
follow the model that we have introduced in the begin-
ning of this section.

To ensure stability in the relay’s queuing mechanism,
we assume that the source s is not saturated: bundles are
created at s during a sequence of time slots. The same
assumption is made for the long contact case although
stability of the queue occupancy is not an issue in this
context as the queue is emptied after each contact with
the destination.

We have, as a consequence from the regenerative
theorem (or Smith’s formula).

Theorem 1 For a pair of source-destination devices
(s, d), let t

(s)
k be the time when the k th bundle is created

at s to be sent to d, and let t
(d)
k be the time when it is

delivered to d. We have for Dk = t
(d)
k − t

(s)
k :

(i) If α < 2, limk→∞ E [Dk] = +∞.
(ii) If α > 2, and we assume that all contacts are long,

limk→∞ E [Dk] = D̄ < +∞ and we have
R̄ ≤ D̄ ≤ 2R̄ where R̄ = 1

2 + E[X2]
2.E[X] .

(iii) If α > 3, and we assume that all contacts are
short, for a stationary point process (t(s)k )k≥0 with



intensity λ < (N − 1)/R̄, there exists a stationary
regime where the delay of a bundle has a
finite expected value D̄ verifying for a constant σR

1
2

(
1 + E[X2]

E[X]

)
≤ D̄ ≤ σR

N−1
λ

−R̄
.

Proof: We study first the case of long contacts,
where any amount of information may be exchanged
when a contact occurs between two devices.

We analyzed here a single source-destination pair.
The two-hop relaying strategy uses multiple routes to
transport bundles belonging to this pair; that is because
any other contacted device may act as a relay. Let
us denote by t

(s)
k the time when the k th bundle is

created in the source for this destination. This bundle is
transmitted to the first relay that is met by s after time
t
(s)
k . The relay chosen is rk = argminr′ �=sR

(s,r′)

t
(s)
k

; and this

transmission occurs at time t
(r)
k = t

(s)
k +minr′ �=s R

(s,r′)

t
(s)
k

.

The bundle is then delivered to destination d at time
t
(d)
k = t

(r)
k + R

(rk,d)

t
(r)
k

. Note that in this case:

Dk = min
r �=s

R
(s,r)

t
(s)
k

+ R
(rk,d)

t
(r)
k

. (2)

Let us first establish the positive result (ii) that the
two-hop relaying strategy achieves a delay with finite
mean if α > 2.

Proving (ii) : In this case, E
[
X2
]

is finite, and

E

[∑T
(d,d′)
1 −1

t=T
(d,d′)
0

R
(d,d′)
t

]
= E [X(X + 1)/2] < ∞, for any

pair (d, d′) of devices. By Smith’s formula (see (5) in the
appendix), we have limt→∞ E

[
R

(d,d′)
t

]
= E[X2]+E[X]

2E[X] .

The process (minr �=s R
(s,r)
t )t≥0 is taken as a minimum

of a finite number of independent processes, correspond-
ing to pairs {(s, r) | r �= s}, which all have the same law.

Hence, lim
t→∞E

[
min
r �=s

R
(s,r)
t

]
≤ E

[
X2
]
+ E [X]

2E [X]
.

Lemma 2 can then be applied to this process, with
(t(s)k )k≥0 which is independent from it; this proves

limk→∞ E

[
minr �=s R

(s,r)

t
(s)
k

]
≤ E[X2]+E[X]

2E[X] .

If we consider the collection of random variables
((R(r,d)

t )t≥0)r �=s, the condition (i) of Lemma 2 is met.
As (t(r)k )k≥0 and (rk)k≥0 depend only on (t(s)k )k≥0

and contacts processes belonging to other pairs than
{(r, d) | r �= s}, they are independent from the collection
above, and we have limk→∞ E

[
R

(rk,d)

t
(r)
k

]
=
(

1+E[X2]
2E[X]

)
.

Using (2), we have

R
(rk,d)

t
(r)
k

≤ Dk = min
r �=s

R
(s,r)

t
(s)
k

+ R
(rk,d)

t
(r)
k

, and

1
2(1 + E[X2]

E[X] ) ≤ lim
k→∞

E [Dk] ≤ (1 +
E
[
X2
]

E [X]
) .

Note that this result holds if the law of X is replaced
by any law that admits a finite second moment.

Proving (i), for 1 < α < 2 : As α > 1, Smith’s
Formula (5) holds in this case for any function f
verifying the integrability condition.

Let r denote any device different from s. For conve-
nience, let us denote X1 = T

(r,d)
1 − T

(r,d)
0 , we have for

any A, that may be chosen arbitrary large:

A(A + 1)
2

I{X1≥A} ≤
T

(r,d)
1 −1∑

t=T
(r,d)
0

min(R(r,d)
t , A) ≤ A.X1 .

These variables are positive; they all have a finite ex-
pectation by comparison with the right term. This proves
the integrability condition required in (5) for the function
f(x) = min(x, A), hence we obtain

lim
t→∞E

[
min(R(r,d)

t , A)
]
≥

A(A+1)
2

P[X1≥A]

E[X1]
≥ A2.A−α

2.E[X1]
.

As this inequality holds for A arbitrary large, and α <

2, we have: lim
t→∞E

[
R

(r,d)
t

]
= +∞ . The collection

of processes ((R(r,d))t≥0)r �=s verifies condition (b) of
Lemma 2. As (t(r)k )k≥0 and (rk)k≥0 are independent of
this collection, we can therefore deduce that

lim
k→∞

E

[
R

(rk,d)

t
(r)
k

]
= +∞ hence lim

k→∞
E [Dk] = +∞ .

Proving (i), for α ≤ 1 : In this case, for any device r,
the Markov chain defining (R(r,d)

t )t≥1 is recurrent null,
so that Orey’s theorem (see [5] p.131) tells us :

lim
t→∞P

[
R

(r,d)
t = i

]
= 0 for all i

In particular, for any A arbitrary large,

lim
t→∞P

[
R

(r,d)
t < A

]
= 0 and lim

t→∞P

[
R

(r,d)
t ≥ A

]
= 1 .

We have, E

[
R

(r,d)
t

]
≥ A.P

[
R

(r,d)
t ≥ A

]
. As a conse-

quence, and because the result holds for any arbitrary A,
we have limt→∞ E

[
R

(r,d)
t

]
= +∞. This holds for any

device r. Another application of Lemma 2 with condition
(b) allows us to prove limk→∞ E

[
R

(rk,d)

t
(r)
k

]
= +∞ .

The result (i) for short contacts can then be deduced
as the delay in this case, that may include some queuing,
is always greater.

Proving (iii) : This result is in fact an extension of
a method proved in [13], where the two-hop relaying
strategy was analyzed for a mobility model assuming
brownian motion. The argument is the following:

Let us focus on the queue belonging to a source-
destination pair, in a given relay. We denote arrival of
data bundles in this queue by tk. We introduce Wk that
is the “remaining load” in the queue when the bundle



k arrives. Wk is equal to the time needed to transmit
to d all the data present in the queue when k arrives.
The sequence (Wk) follows the following recurrence
equation: Wk+1 = (Wk + sk − (tk+1 − tk))

+ , where
sk denotes the additional time, that is added to Wk, to
deduce the time at which packet k leaves this queue.
This equation is exactly one of a single server queue
of customer arriving at time (tk)k≥0, requesting service
(sk)k≥0. The difficulty comes from the fact that (sk)k≥0

is not an i.i.d. sequence as it depends on the value
of (Wk)k≥0: In fact if Wk = 0, sk is equal to Rr,d

tk
.

Otherwise, the time when all bundles until k − 1 are
delivered is a time of contact T r,d

j ≥ tk for a certain
j, and sk corresponds to an additionnal inter-contact
time T r,d

j+1 − T r,d
j , that is independent from the rest, and

follows law X . The key argument that we use here was
first proposed in [12]: the law of X is stochastically
smaller than the one of Rr,d

t , hence we can show that
the sequence (sk)k≥1 is stochastically smaller than the
sequence R̃k, where R̃k≥0 is an i.i.d. sequence with the
distribution R, that is the one of Rr,d

t in steady state.

W is a monotone function of the values of the
sequence sk, hence we can show that the follow-
ing sequence (W̃k)k≥0, defined by recurrence as

W̃k =
(
Wk−1 + R̃k−1 − (tk − tk−1)

)+
, is stochasti-

cally greater than (Wk)k≥0.

This allows us to prove the stability of the queue if the
arrivals in the queue follow a process with intensity λ′ ≤

1
E[R] . As we have assumed α > 3, the second moment of
the law of R is finite (as can be seen from the expression
of π). Once can then use Kingman’s bound (see (9)
in [14]) to show that under this stability condition, the
expected value of Wk verifies: E [Wk] ≤ 2σR

2(1/λ′−E[R]) .
We can apply the same proof to all the N − 1 nodes in
the network, so that the intensity of the creation of data
bundle in the source can be λ(N − 1).

To summarize, we have identified two regions where
the behavior of the two-hop relaying algorithm would
differ, under the power law inter-contact time assump-
tion: For a value of α that is greater than 2 in the long
contact case and 3 in the short contact case, the algorithm
converges to a finite expected delay, as in the case of
an exponential decay. By opposition For α smaller than
2, the two-hop forwarding algorithm will not converge
to a finite expected delay, as the delay that can be
expected grows without bound with time. This remains
true even for long contact case, where data exchange are
unlimited during contacts, and queuing in relay devices
have therefore no impact on the delay experienced. In
other words, the region α > 2 (α > 3 in the short contact
case) may be thought as the stability region of the two-

hop relaying algorithm.

C. Generalization

In this section we characterize the region of stability
(defined as the value of α for which an algorithm
achieves a bounded delay) for the general class of naive
algorithms. We conduct the following proof in the long
contact case only.

To do so, we generalize the two-hop relaying algo-
rithm as follows. Instead of sending a single copy of a
given data unit to a unique relay, the source will send
m copies of each data unit: one to each of the first m
relays that it meets. As we have assumed that the contacts
processes belonging to these relays are independent,
the source may reduce the total transmission delay by
increasing its probability to pick a relay with a small
delay to the destination among the m relays to which
it has forwarded the message. This observation is made
rigorous in following lemma:

Lemma 1 Let (R(d1,d′
1)

t )t≥0, . . . , (R
(dm,d′

m))
t )t≥0 be re-

maining inter-contact times for m different pairs of
devices (di, d

′
i)1≤i≤m.

We suppose m > 1 and that 1 + 1
m < α < 2,

then E

[
R

(d1,d′
1)

t

]
= . . . = E

[
R

(dm,d′
m)

t

]
= +∞

and E

[
min(R(d1,d′

1)
t , . . . , R

(dm,d′
m)

t )
]

< ∞.

Proof: To illustrate the proof with simple argument,
we treat the case where m = 2. We suppose 3

2 < α < 2
and we prove for any two pairs of devices (d, d′) and
(e, e′) that E

[
min(R(d,d′)

t , R
(e,e′)
t )

]
< ∞. The general

case is treated in Appendix B. We decided not to include
it directly in the text, as it involves many additionnal
notation, with almost the same technique.

As α > 1, Lemma 3 (ii) can be applied.
The product chain (R(d,d′)

t , R
(e,e′)
t )t≥0 then

admits the following stationary distribution:
π(i, j) = (i+1)−α(j+1)−α

(c1)2
where c1 =

∑
i′≥0(i

′ + 1)−α .

E

[
min(R(d,d′)

t , R
(e,e′)
t )

]
=

1
(c1)2

∑
i,j

min(i, j)
(i + 1)α(j + 1)α

We have, by symmetry∑
i,j≥1

min(i,j)
iαjα = 2.

∑
i,j≥1

min(i,j)
iαjα I{i≤j}

= 2.
∑

j≥1
1
jα

(∑j
i=1 i1−α

)
The function x �→ x1−α is non-increasing on ]0; +∞[,
as α > 1, hence we have for any i ≥ 1:

i1−α ≤
∫ i

i−1
x1−αdx < +∞ as α < 2, hence



j∑
i=1

i1−α ≤
∫ j

0
x1−αdx =

j2−α

2 − α
.

∑
i,j≥1

min(i,j)
iαjα ≤ 2.

∑
j≥1

1
jα ( 1

2−αj2−α)

≤ 2
2−α

(∑
j≥1 j2−2.α

)
.

This proves that the expectation is finite if α > 3
2 .

This result shows that for α smaller than 2, the ex-
pected time to meet the destination is infinite. However,
the expected time for the destination to meet a group of
m devices may have a finite expected value, provided
that α > 1 and that m is large enough. This observation
is the key component in the next result, which proves
that using a two-hop relaying strategy with m relays is
sufficient to extend the stability region to any value of
α > 1. This theorem also proves that the case α < 1,
which is observed in most data sets, is of a quite different
nature, as even unlimited flooding does not achieve a
bounded delay. We comment on this difference further
in Section V.

Theorem 2 Let us consider a source destination pair
(s, d) and t

(s)
k , t

(d)
k , Dk defined as in Theorem 1. We

assume that all contacts are long.

(i) if α > 2, there exists a forwarding algorithm using
only one copy of the data, with a finite expected
delay. limk→∞ E [Dk] = D̄ < +∞.

(ii) if 1 < α < 2, m ∈ N is chosen such that α > 1+ 1
m ,

and the network contains at least N ≥ 2m devices,
there exists an algorithm using m relay devices such
that: limk→∞ E [Dk] = D̄ < +∞.

(iii) if α ≤ 1, for a network containing a finite number
of devices, and any forwarding algorithm, including
flooding, we have limk→∞ E [Dk] = +∞.

Proof: Proving (i) is just a reminder of the result
of Theorem 1. The two hop relaying algorithm may be
chosen and it achieves a finite expected delay.

Proving (ii): Let us assume that α > 1 + 1/m and
N ≥ 2m, where m ∈ N. The forwarding algorithm that
we consider in this case is a two-hop relaying algorithm
using m different relays.

STEP 1 : A bundle is created at time t in the source
(denoted as device s). It is first transmitted to the m
first devices that are met. We estimate first the time
when each of these m relays are all contacted and have
received the bundle. Let us consider the collection of
remaining inter-contact time with all the other devices
(R(s,r)

t )r �=s. This collection contains N − 1 variables.
If we consider a version of this collection, sorted for
each time t, in the increasing order, the time to contact
m different devices at time t is the m th value of this

sorted sequence. Corollary 1, which is a simple variation
of Lemma 1 shown in Appendix B, tells that this variable
is of finite expected value if α > 1+1/(N −1−m+1).
This last assumption is automatically verified as N−1−
m + 1 = N − m ≥ m by assumption.

STEP 2 : At time t′, a copy of the bundle is present
in each of the m relays, that we denote r1, . . . , rm.
We now consider the vector (R(r1,d)

t′ , . . . , R
(rm,d)
t′ ) which

describes the times needed for each of this relay to get
in contact with the destination. The time length elapsed
until the packet is delivered to the destination is taken as
the minimum of this values. An application of Lemma 1
tells us that this time is finite expected value.

As a consequence the overall delay, from the time of
creation of the bundle in the source, to the delivery at
the destination, is the sum of two variables with finite
expectations. It is hence of finite expected value.

Proving (iii): Let us consider in this case, for a source
s and any other device r in the network, the remaining
time R

(s,r)
t a time t until the next contact. As α < 1, all

of this sequences of random variables are irreducible null
recurrent Markov chains. By Orey’s theorem ([5] p.131),
we then have that lim P

[
R

(s,r)
t = i

]
= 0 for all i when

t tends to infinity. In particular for any A arbitrary large,
we have lim P

[
R

(d,d′)
t ≤ A

]
= 0, so that

P

[
min
r �=s

R
(s,r)
t ≥ A

]
= P


⋂

r �=s

{R(s,r)
t ≥ A}


→t→∞ 1 .

Consequently, E

[
minr �=s R

(s,r)
t

]
diverges for large t.

As a consequence, starting from any initial condition,
the time for a source to reach any other device is of
infinite expectation as times increases. No forwarding
algorithm, no matter how redundant, can then transport
a packet within a finite expected delay, using only
opportunistic contact between devices.

Note: By comparison, the result (iii) applies to any
case that includes short contacts as well as long contacts.
A network containing N devices admits forwarding
algorithms that achieve a bounded expected delay for any
α > 1+ 1

�N/2� : flooding (that may use up to N−2 relays)
is one of these, but it not the only one, as a forwarding
algorithm using only �N/2	 relays is sufficient.

D. Summary, Discussion

At this stage, we have established the following results
for the class of so-called naive forwarding algorithm
defined in III-A, in the long contact case :

• For α > 2 any algorithm from the class we
considered achieve a delay with finite mean.



• If 1 < α < 2, the two-hop relaying algorithm,
introduced by [11], is not stable in the sense that
the delay incurred has an infinite expectation. It is
however still possible to build a naive forwarding
algorithm that achieves a delay with finite mean.
This requires that a number of m duplicate copies
of the data are produced and forwarded, where m
must be greater than 1

α−1 , and the network must
contain at least 2

α−1 devices.
• If α < 1, none of these algorithms, including

flooding, can achieve a transmission delay with a
finite expectation.

IV. RELATED WORK

Our opportunistic communication model is related to
both Delay-Tolerant Networking and Mobile Ad-Hoc
Networking3. Research works on MANET and DTN
confirm the importance of the problem we address, as
several proposition were made to use mobile devices
as relays for data transport. Such an approach was
considered to enable communication where no contem-
poraneous path may be found [8], to gather efficiently
information in a network of low power sensors [15], [16],
[17], or to improve the spatial reuse of dense MANET
[11], [12], [18], [13]. All these works prove that the
mobility model that is assumed has a strong impact on
the performance of the algorithms proposed.

We did not find any previous work studying the
characteristics of inter-contact time for users of portable
wireless devices. However, we have identified related
work in the area of modeling and forwarding algorithms.

A common property of many mobility models found
in the literature is that the tail of the inter-contact
distribution decays exponentially. In other words, for
these models, the inter-contact time is light tailed. This
is the case for i.i.d. location of devices in a bounded
region (as assumed in [11]), or in the case of the popular
random way-point model as demonstrated in [18]. It was
shown in a recent article [13] that, by opposition, devices
moving according to a Brownian motion, in a bounded
region, exhibit heavy tailed inter contact time, with a
finite variance (corresponding in our analysis to the case
α > 2).

The most relevant work is the algorithm proposed
by Grossglauser and Tse in [11], further analyzed in
[12][18][13]. The two-hop relay forwarding algorithm
was initially introduced to study how the mobility of
devices impacts the capacity of the network. Our work
starts from very different assumptions, as bandwidth

3www.dtnrg.org and www.ietf.org/html.charters/manet-charter.html

might be unlimited at each contact, and the focus of the
analysis is on the delay incurred by the data transported.

V. SUMMARY, CONCLUSION AND FUTURE WORK

We study a scenario where mobility of networked
devices and the opportunistic connection with other
devices are used to transfer data. We observe from six
experimental traces that the distribution of the inter-
contact time seen between two devices in an opportunis-
tic networking environment exhibits a heavy tail over a
large range of value, that can be compared to a power
law with a coefficient less than one. This observation is
in contrast with the exponential decay assumption made
implicitly by mobility models used to date in ad-hoc
networking.

We prove the following major result: Naive forwarding
algorithm may deliver data with a bounded expected
delay in the case of light tailed inter-contact times, as
well as when mobility of devices implies power law
inter-contact with coefficient greater than 1. But all
of these algorithms have indeed an infinite expected
delay when mobility implies power law with coefficient
smaller than 1.

Some of the implications of our findings are:

1) Current mobility models (e.g. random way-point,
uniformly distributed locations) do not exhibit
characteristics found in our six data sets. New
mobility models are therefore required.

2) Little work has been done in the area of informed
design of opportunistic forwarding algorithms —
this remains an area for study. Suitable directions
for work might involve the sharing of recent
contact information between devices, leading to a
more careful selection of potential relay devices
which are likely to have a short path to the desti-
nation, while also being independently moving as
compared to other chosen relay devices.

We will investigate these various aspects of forwarding
in opportunistic networks.

We also intend to perform more human mobility ex-
periments. The power law nature of the inter-contact time
distribution seems well established for mutual sightings
of devices carried by humans during the working day, or
in a conference. But parameters in the environment or
in the nature of transfer opportunities (including special
devices, or infrastructure) certainly affect the shape of
the distribution. These new experimental data will allow
us to revisit three assumptions made in this paper:

First, approximating the inter-contact time by a power
law does not seem to be valid over an unlimited range.
Experimental results indicate that the inter-contact time



distribution may be different for very large time scale.
However, given that the tail is impacted by the exper-
iment duration, it is difficult to say if the tail of the
distribution is a characteristic of the user mobility or
a side-effect of the experimental methodology. If this
different behavior occurring at very large time scale is
confirmed, it may avoid the unbounded expectation of
the delay observed in our model. One should neverthe-
less keep in mind that the range of values where the
nature of the distribution may change may be far above
the delays that most network applications can tolerate.

Our model also assumes that the contact process of
a pair of devices follows a renewal process with a
given inter-contact time distribution. It may be possible
to get rid of this assumption, assuming that the inter
contact times follow locally in time a stationary pro-
cess that may exhibit some memory in the sequence
distribution. Another exciting direction is to approximate
the inter-contact times with phase-type distribution. We
have indeed already observed that the parameter of the
distribution of the inter-contact may change with the time
of the day [7].

Similarly, we assumed that contact processes for dif-
ferent pairs of devices are independent, and all described
by the same distribution. This is certainly a major sim-
plification. These assumptions are usual, either explicitly
or implicitly, in the modeling literature of mobile ad-hoc
networks. However, they might not be very realistic and
this remains a large area of investigation for opportunis-
tic communication. The contact process of two people
is certainly different depending on the communities that
they have in common explicitly (work group, institution,
friends), or implicitly (nearby neighbors).
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APPENDIX

A. Preliminary Results

1) Independent composition and limit expectation:
The following lemma will be useful to prove limit result
on compound process:

Lemma 2 Let ((F (i)
t )t∈N)i∈I be a finite collection of

sequences of real valued random variables verifying,
limt→∞ E

[
F

(i)
t

]
= l, where l ∈ R ∪ {+∞}, and

(a) ∀i, t, E

[
F

(i)
t

]
∈ R, and l ∈ R,

or (b) ∀i, t, E

[
F

(i)
t

]
∈ R ∪ {+∞} and l = +∞ .

Let (tk)k∈N and (ik)k∈N be two N valued processes,
independent from F , such that limk→∞ tk = +∞ a.s. .

We then have lim
k→∞

E

[
F

(ik)
tk

]
= l

Proof: Let us first develop the following expectation

E

[
F

(ik)
tk

]
=
∑
i∈I

∑
t≥0

∑
j≥0

jP

[
ik = i, tk = t, F

(i)
t = j

]
=
∑
i∈I

∑
t≥0

∑
j≥0

jP [ik = i] P [tk = t] P
[
F

(i)
t = j

]
=
∑
i∈I

∑
t≥0

P [ik = i] P [tk = t] E
[
F

(i)
t

]
(3)

If we suppose (a), we have l < +∞ and

∀ε > 0,∃T s.t. (t > T =⇒
∣∣∣E [F (i)

t

]
− l
∣∣∣ < ε

2
) .

Let M = supi∈I,t≤T

∣∣∣E [F (i)
t

]
− l
∣∣∣, there exists K s.t.

k > K =⇒ P [tk ≥ T ] ≥ 1 − ε

2.M
and hence

∣∣∣E [F (ik)
tk

]
− l
∣∣∣ can be bounded from above by∑

i∈I

∑
t≥0

P [ik = i] P [tk = t]
∣∣∣E [F (i)

t

]
− l
∣∣∣

≤
∑
i∈I

P [ik = i]
(
M.
∑

t≤T P [tk = t]

+
∑
t>T

P [tk = t]
∣∣∣E [F (i)

t

]
− l
∣∣∣
)

≤
∑
i∈I

P [ik = i] (ε/2 + ε/2) ≤ ε .

Let us now suppose (b), we have l = +∞ and

∀A > 0,∃T, (t > T =⇒ E

[
F

(i)
t

]
≥ 2.(A + 1)) .

Let M ′ = sup
i∈I,t≤T

max
(
−E

[
F

(i)
t

]
, 0
)

. ∃K s.t.:

k > K =⇒ P [tk ≥ T ] ≥ max
(
1/2, 1 − 1/M ′) , and

E

[
F

(ik)
tk

]
=
∑

i∈I

∑
t≥0 P [ik = i] P [tk = t] E

[
F

(i)
t

]
≥
∑
i∈I

P [ik = i]
(
−M.

∑
t≤T P [tk = t]

+
∑
t>T

P [tk = t] E
[
F

(i)
t

])

≥
∑
i∈I

P [ik = i]
(
−1 +

1
2
(2(A + 1)

)
≥ A .

2) Remaining inter-contact: Because the contact pro-
cess (U (d,d′)

t )t≥0 is a renewal process, the sequence
(R(d,d′)

t )t≥0 of integers is an Homogeneous Markov
Chain in N such that:{

R
(d,d′)
t+1 = R

(d,d′)
t − 1 if R

(d,d′)
t > 0,

R
(d,d′)
t+1 = i − 1 with prob. P [X = i] if R

(d,d′)
t = 0.

(4)
This Markov Chain is clearly irreducible and aperiodic as
P [X = 1] > 0, it is recurrent as X is almost surely finite.
The following lemma characterizes its properties, which
depend on the value of α, based on classical results from
the theory of Markov chains.

Lemma 3 For any devices d, d′, e, e′ we have

(i) If α > 1, (R(d,d′)
t )t≥0 is recurrent positive.

(ii) If α > 1, the chain (R(d,d′)
t , R

(e,e′)
t )t≥0 is ergodic

and admits the following stationary distribution:

π(i, j) = (i+1)−α(j+1)−α

(c1)2
where c1 =

∑
i′≥0

(i′ + 1)−α .

(iii) If α ≤ 1, (R(d,d′)
t )t≥0 is recurrent null.

Proof: Let us introduce ret0 the time for R(d,d′) to
return in the state 0. From the structure of the Markov
chain (4), starting from state 0, we can easily deduce
that E0[ret0] = E [X]. If α > 1, we have E [X] < +∞,
proving (i), and if α ≤ 1, we have E [X] = +∞, proving
(iii).

By (i), we know that the Markov chain R(d,d′) is
recurrent positive, hence it admits a stationary distribu-
tion. It is easy to check, from its regenerative structure,
that it is given by: π(i) = c1(i + 1)−α where c1 =
1/
∑

i≥0(i + 1)−α.
The same result holds for R(e,e′). As these two Markov

Chains are independent, one can then check easily that
the product Markov chain (R(d,d′), R(e,e′)), which is
irreducible and aperiodic, admits a stationary distribution
given by the product of the measure. It is hence ergodic.

Smith’s formula for α > 1: For any devices d and
d′, the process (R(d,d′)

t )t≥0 is regenerative with respect to
the delayed renewal sequence (T (d,d′)

k )k≥0. If we assume



α > 1, we have E [X] < +∞, hence the inter-event of
the sequence (T (d,d′)

k )k≥0 admits a finite mean. We know
in this case (see [5] p.148) that

lim
t→∞E

[
f(R(d,d′)

t )
]

=
E

[∑T
(d,d′)
1 −1

t=T
(d,d′)
0

f(R(d,d′)
t )

]
E

[
T

(d,d′)
1 − T

(d,d′)
0

]
for any f verifying E


T

(d,d′)
1 −1∑

t=T
(d,d′)
0

|f(R(d,d′)
t )|


 < ∞ .

(5)

B. Proof of Lemma 1

Lemma 1 is a generalization of the method presented
in § III-C. Let us start by the following remark:

for β < α,

j∑
i=1

iβ−α ≤ (β − α) + jβ−α+1

β − α + 1
. (6)

Indeed, the function x �→ xβ−α is non-increasing on
]0; +∞[, hence we have for any i ≥ 2,

iβ−α ≤
∫ i

i−1
xβ−αdx < +∞ hence (6) follows from

j∑
i=1

iβ−α ≤ 1 +
∫ j

1
x1−αdx = 1 +

jβ−α+1 − 1
β − α + 1

.

As all processes of contacts between devices are
independent, the stationary distribution of the product of
m Markov Chains is given by the the product measure.
Hence we have that E

[
min

(
R

(d1,d′
1)

t , . . . , R
(dm,d′

m)
t

)]
is

equal to 1
(c1)m

∑
i1,...,im

min(i1,...,im)
(i1+1)α...(im+1)α . In particular

this value is finite if we can prove g(m, α, 1) < ∞,
where g is defined as

g(m, α, β) =
∑

i1,...,im

(min(i1, . . . , im))β

(i1)α . . . (im)α
.

We will prove more generally that if α > 1 + 1/m,
and β ≤ 1, then g(m, α, β) < ∞ .

For m = 1, this is true as for α > 2 and β ≤ 1,
g(1, α, β) =

∑
i i

β−α < +∞.
More generally, g(m, α, β) is bounded by

m.
∑

i2,...,im


min(i2,...,im)∑

i1=1

(i1)β−α


 1

(i2)α . . . (im)α

≤ m.
∑

i2,...,im

am + bm(min(i2, . . . , im))β+1−α

(i2)α . . . (im)α

≤ a′m + b′mg(m − 1, α, β + 1 − α)
≤ . . .
≤ a′ + b′ g(1, α, β + (m − 1)(1 − α))︸ ︷︷ ︸

=
∑

i iβ+(m−1)(1−α)−α

.

am, bm, a′m, b′m are finite constant real number, that de-
pends on α, β, and m. They can be computed using (6);
a and b can also be computed, by developing the recur-
rence equation, but the exact values of these constants
have no importance for the result of the theorem. The
result follows as

β + (m − 1)(1 − α) − α ≤ β − 2︸ ︷︷ ︸
<−1

+ m + 1 − m.α︸ ︷︷ ︸
<0

.

For any real numbers (x1, . . . , xm), and i ≤ m, let
us denote by ord (i, (x1, . . . , xm)) the i th element of
the sequence after it is reordered in the increasing order.
In particular ord (i, (x1, . . . , xm)) = min(x1, . . . , xm).
We have

Corollary 1 Let (R(d1,d′
1)

t )t≥0, . . . , (R
(dm,d′

m))
t )t≥0 be

the remaining inter-contact times for m different pairs of
devices (di, d

′
i)1≤i≤m. We suppose that α > (m−j+1)+1

m−j+1 ,

then E

[
ord

(
j, (R(d1,d′

1)
t , . . . , R

(dm,d′
m)

t )
)]

< ∞.

Proof: Following the same step than for the previous
proof we can easily show that this expectation is given
by :

1
(c1)m

∑
i1,...,im

ord (j, (i1, . . . , im))
(i1 + 1)α . . . (im + 1)α

.

By symmetry we can show that this sum is upper
bounded by

1
(c1)m

m
∑

i1,...,im

ijI{ord(j,(i1,...,im))=ij}
(i1 + 1)α . . . (im + 1)α

.

Considering the number of choices of j − 1 elements in
m − 1, we can show by another symmetry argument,

≤ c2
∑

i1,...,im

ord(j,(i1,...,im))
(i1+1)α...(im+1)α

× I{ord(j,(i1,...,im))=ij ,ij≤ij+1,...,ij≤im} .

with c2 = m 1
(c1)m

(m−1)!
(j−1)!(m−1)! . In the term of this

sum, ij is always the maximum of i1, . . . , ij−1, ij and
the minimum of ij , ij+1, . . . , im. The product of terms
corresponding to i1, . . . , ij−1 is taken only for them
with values in {1, 2, . . . , ij} ; it could be overall upper
bounded by cj−1

1 , by completing each sum. We can then
show that

≤ c2c
j−1
1

∑
ij ,...,im

min(ij , . . . , im)
(ij)α . . . (im)α︸ ︷︷ ︸

g(m−j+1,α,1)

.

The result is then proved, once we remember, from the
proof of Lemma 1, that g(m − j + 1, α, 1) < +∞ if
α ≥ 1 + 1

m−j+1 .


