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Abstract

In recent years, much work has been done on attempting
to scale multicast data transmission to hundreds or thou-
sands of receivers. There are, however, many situations
where an application might involve transmission to just ten
or twenty sites.

Using multicast for this type of application can provide
significant benefits including reduced load on the trans-
mitter, an overall reduction in network traffic, and conse-
quently shorter data transfer times.

In this project, we are investigating how partial or in-
complete multicast can be exploited alongside reliable uni-
cast to improve both speed and efficiency of data transfers
while maintaining reliability.

The approach taken is to combine unicast with multicast
by modifying TCP to support multicast transfers, and run
this modified TCP engine over UDP as a userspace trans-
port protocol. We describe the work to date on the design
and implementation, and provide experimental results from
our tests across both local and wide area networks.

1 Introduction

Today, small scale group communication will typically
take place using unicast transmission. Only when the net-
work is capable, and the application demands it, will mul-
ticast be used. As a result, large clouds of native IP multi-
cast enabled networks are unnecessarily burdened with du-
plicate unicast data.

Depending on the state of unicast and multicast connec-
tivity in the network, the right combination of unicast and
multicast transmission can provide a large increase in effi-
ciency at the cost of a small decrease in speed.

We believe that for large sender-initiated data transfers
to a small group of receivers, not only does such a com-
bined unicast and multicast transmission sweet spot exist,
but that it can be quantified, and automatically found dur-
ing the transmission process. Applications can then initiate

fully reliable data transfers, while lowering network utilisa-
tion by taking full advantage of whatever multicast connec-
tivity is available.

One way of implementing this combined unicast / mul-
ticast approach is to embed multicast capability within an
existing unicast transport protocol such as TCP. The con-
sequence of such an approach would be that programmers
would see a familiar, but extended, API that supports one-
to-many group communications. By using the group exten-
sions, applications could take full advantage of any (partial)
multicast coverage, without having to explicitly program for
IP multicast.

2 Protocol Design

Today, applications use TCP for reliable unicast trans-
fers. It is a mature and well-understood protocol. By mod-
ifying TCP to deliver data to more than one receiver at a
time, and use multicast when available, an application can
transparently send data reliably to multiple recipients. Us-
ing existing TCP mechanisms, the modified protocol en-
sures that data is delivered reliably. Multicast transmission
is attempted for performance reasons, but fallback to uni-
cast preserves backwards compatibility and reliability guar-
antees, and capitalises on more than a decade of experience
that TCP implementations enjoy.

Network protocols are typically implemented in the ker-
nels of hosts and network devices. Any proposals that re-
quire modifications to these protocols imply changes to ker-
nel code. This immediately restricts deployment opportuni-
ties. By limiting changes to code that runs in user-space on
end stations, new protocols can be developed and tested on
live networks.

TCP is a reliable end-to-end unicast transfer protocol im-
plemented in host kernels. It is possible to modify TCP
behaviour between end stations without any changes to in-
termediate devices, however this requires kernel changes. If
TCP is moved into user-space, changes can be made with-
out modifying the kernel, but again, some form of privileged
access is needed by the user-space TCP implementation to



directly send and receive packets on a host’s network inter-
faces. While not as significant a barrier to widespread de-
ployment as kernel changes, this privileged access require-
ment severely limits the ease with which new code can be
widely tested.

One solution to this problem is to implement a modified
multicast TCP over UDP. User-space applications can freely
send and receive UDP packets, so a small shim layer can
be introduced to encapsulate the TCP engine’s packets into
UDP. While there are performance implications by running
in userspace, the instant deployment potential of a userspace
library, coupled with the scalability of multicast, mean that
any such limitations are more than acceptable.

The key advantage of this approach is that any applica-
tion can make use of this new protocol by simply linking
against the supplied library. No changes are required in the
network (other than enabling IP multicast).

Because the protocol is not tightly coupled to the appli-
cation, should it become widely adopted, a native imple-
mentation can be built in the kernel to boost performance.

2.1 Modifying TCP

In this section we will describe our modifications to TCP
to support multicast. We call our new protocol TCP-XM.

The key feature of TCP-XM is its focus on combining
both unicast and multicast simultaneously. Multicast trans-
mission will always be attempted, but equally, fallback to
unicast transmission will always be available.

The TCP-XM approach is a pragmatic one. It states
some ground rules and initial assumptions about the tar-
get audience (small scale group communications). It lends
itself to a prototype implementation over UDP, with no
changes required in the network. Unlike most other pro-
posed reliable multicast protocols, this allows the protocol
to be implemented and tested on a large scale. This capa-
bility will serve as a useful feedback loop into the design of
the protocol.

In order to describe TCP-XM functionality, we will walk
through a typical TCP-XM session. Let us first state some
rules or assumptions about how the protocol should operate:

• TCP-XM is primarily aimed at push applications

• It is sender initiated

• The sender has advance knowledge of destination
unicast addresses

Given these assumptions, the “call process” for a TCP-
XM sender is as follows:

1. The application connects to multiple unicast ad-
dresses. It does not connect to a multicast group ad-
dress (a Class D IP address in the range 224.0.0.0 to
239.255.255.255).

2. The user can specify a group address for multicast,
otherwise a random group address will be allocated
automatically.

3. Multiple TCP Protocol Control Blocks (PCBs) are
created – one for each destination.

4. Independent 3-way handshakes take place.

5. The group address is sent as option in the SYN
packet. Multicast depends on the presence of the
group option in the SYNACK. A PCB variable then
dictates the transmission mode for the PCB.

6. User data writes are replicated and enqueued on all
PCB send queues.

7. Data packets are initially unicast and multicast simul-
taneously. Multicast packets have protocol type TCP,
but the destination is a multicast group address.

8. Native IP network multicast transmission capability
is used

9. Unicasting ceases on successful multicasting.

10. Multicasting continues for the duration of the session.

11. All retransmissions are unicast.

12. Automatic fallback to unicast transmission takes
place after n failed multicasts packets.

13. Unicast & multicast sequence numbers stay synchro-
nised – min(cwnd) & min(snd wnd) used.

14. Connections are closed as per TCP.

From the receiver’s perspective:

• No API change is necessary.

• Normal TCP listen takes place.

• IGMP group join on incoming TCP-XM connect.

• Accept data on both unicast and multicast addresses.

TCP PCBs are stored on a linked list. This has not been
changed, however some extra variables have been added to
the PCB structure. These include:

struct tcp_pcb {
...
struct ip_addr group_ip;
enum tx_mode txmode;
u8t nrtxm;
struct tcp_pcb *nextm;

}



The group address and transmission mode are dependent
on the TCP group option discussed below.

The nrtxm variable keeps track of how many times a
unicast retransmission has been necessary for segments that
have previously been multicast. Too many of these retrans-
missions will result in the transmission mode of the PCB
falling back to unicast.

The nextm pointer references the next PCB in a chain
of PCBs associated with a single TCP-XM connection.

When a TCP-XM connection is made, a SYN packet is
sent that includes a TCP option specifying a multicast group
address. If not specified by the user, the group address is au-
tomatically chosen by TCP-XM. The presence of this option
means that the originating host has TCP-XM capability.

If the receiver is running TCP-XM, it can accept the
group address offered or, in exceptional circumstances, re-
turn the SYNACK with an alternative proposed group ad-
dress. On connection establishment, an IGMP join request
is issued.

The PCB txmode variable’s initial value is dependent
on the SYNACK. Its subsequent value can be one of:

TX MULTICAST - the SYNACK contained the group
option, multicasting will be attempted alongside uni-
cast on this connection.

TX UNICAST GROUP - the SYNACK contained the
group option, but multicast transmission failures have
caused a temporary fallback to unicast.

TX UNICAST GROUP ONLY - the SYNACK did not
contain the group option. The destination cannot re-
ceive multicast packets.

TX UNICAST - the sender has explicitly requested uni-
cast operation.

If multicast is working, TX MULTICAST mode is used.
Packet sequence numbers across all PCBs will be kept in
synchronisation. If multicast is not possible to a destina-
tion, TX UNICAST GROUP ONLY will be used. If multi-
cast fails to a particular site, TX UNICAST GROUP mode
will be used. Data segments will be unicast, but the se-
quence numbers will still be kept in line with those being
multicast. The reason for this is to keep open the option
of switching TX UNICAST GROUP connections back to
TX MULTICAST mode.

If the user has explicitly requested unicast-only opera-
tion, TX UNICAST mode will be used. No attempt will be
made to synchronise segment sequence numbers with other
PCBs in the connection.

Note that the “GROUP” tag in the txmode variable
refers to a group of PCBs with synchronised segment se-
quence numbers. It does not refer to a multicast group.

2.2 Multicast Detection

When TCP-XM transmits data via unicast or multicast,
an acknowledgement packet will be returned on success.
But a standard ACK does not indicate whether a segment
has been received via unicast or multicast.

In order for a TCP-XM transmitter to make an informed
decision about when to switch from unicast to multicast
transmission, it needs to know what the state of the net-
work is, or to be more precise, what the state of multicast
reception is like at the receiver.

A feedback mechanism that allows the receiver to in-
form the sender of multicast reception is desirable. TCP-
XM achieves this through the introduction of a TCP header
option that indicates the percentage of the last n segments
that have been received via multicast. The value of n de-
faults to 128.

The receiver inspects each segment that arrives and
records the sequence number and whether the segment was
received via unicast or multicast. It then recomputes the
percentage of recent packets received via multicast.

Just a single byte is required to carry the percentage of
recent multicast packets received. This option header is in-
cluded on all acknowledgement packets from the receiver to
the sender.

2.3 Avoiding Duplicate Acknowledgements

Because the same segments are being sent via unicast
and multicast, it is possible for a receiver to receive the same
segment twice. To avoid duplicate segments from gener-
ating duplicate acknowledgements, the following rules are
used:

• If a duplicate segment is received via multicast: drop
it. Because segments are never sent via multicast
twice (all retransmissions are unicast), if a duplicate
segment is received via multicast, the segment must
have originally been received via unicast. This means
that the sender is unicasting to the receiver, but partial
multicast connectivity has led to a multicast segment
being received after the original unicast segment.

• If a duplicate segment is received via unicast: check if
the original was received via multicast and if so drop
it. If the original segment was also received via uni-
cast, then this must be a retransmission, so a duplicate
acknowledgement is required, but if the original was
received via multicast, then this is likely to be a case
of network ordering of packets leading to a multicast
segment arriving before a unicast segment.

Checking if a previous segment was received via uni-
cast is achieved by scanning the array of recorded sequence
numbers and checking how the segment was received.



2.4 Fall Forward & Fall Back

With continuous feedback from receivers regarding the
state of their multicast reception (i.e. the percentage of
last packets received via multicast), it is very easy for the
sender to decide when to stop transmitting unicast packets,
and hence fall forward to multicast transmission only.

If a receiver has perfect multicast reception, and a sender
is transmitting both unicast and multicast, the receiver
should be receiving exactly 50% of packets via multicast.

Fall forward takes place when receiver feedback indi-
cates that the percentage of multicast packets received has
reached this figure. The PCB’s transmission mode is then
changed to TX MULTICAST.

When to fall back to unicast could also be determined us-
ing the multicast feedback mechanism, but instead a simple
retransmit count is used. After three consecutive unicast re-
transmissions have been necessary, the PCB’s transmission
mode is changed to TX UNICAST GROUP.

3 Implementation

Our implementation of TCP-XM has been built using
lwIP [6] as the baseline TCP/IP stack. It has been compiled
and tested on FreeBSD, Linux and Solaris.

We have chosen to implement TCP-XM in userspace
over UDP rather than implement in the kernel. This facili-
tates our practical goals of widespread test and deployment.

We make use of lwIP by creating applications that link to
the lwIP code and comprise three threads. One thread runs
our UDP driver to handle incoming and outgoing packets;
a second thread looks after the operation of the TCP-XM
protocol; the third thread is the application mainline itself.

As a vehicle for TCP-XM experimentation and deploy-
ment, we have created a simple file transfer application:
mcp is the client transmitter. It uses native TCP for control
connections and TCP-XM (over UDP) for data transfers to
mcpd receivers on one or more hosts. Both TCP and TCP-
XM connections are opened in parallel to destination hosts.

4 Performance Evaluation

We have carried out tests on both local and wide area net-
works. For local testing, a selection of departmental work-
stations were used. For wide area testing, the JANET aca-
demic network was used.

The specifications, network connectivity and operating
systems used by the hosts varies widely from site to site.
Some hosts are high speed machines connected close to the
WAN backbone. Others are smaller and older departmental
machines with poorer connectivity.

Round-trip times vary in range from approximately 5 to
21 milliseconds. Transfer rates attainable on single TCP
connections varied from just 1.5 Mb/s to over 50 Mb/s.

While this mixture may not be conducive to optimal
headline results, it allows a truly representative set of proto-
col performance results for a live wide area network.

All tests were conducted using mcp & mcpd and com-
pare TCP-XM (in userspace over UDP) with native kernel-
based TCP. Our userspace implementation of TCP-XM
means that it is at an immediate performance disadvantage
to native TCP. Nevertheless, the results provide a useful in-
dicator of the protocol’s worth.

We have also conducted experiments that show TCP-XM
providing comparable performance to other modern reliable
multicast protocol implementations. Despite the availabil-
ity of such multicast protocols, almost all data transfers use
TCP. The purpose of the experiments described here, there-
fore, is to assess how TCP-XM performs against the most
widely used data transfer mechanism.

Figure 1 shows a comparison of the TCP and TCP-XM
data transfer rate to n hosts on a local departmental LAN.
As would be expected, TCP’s throughput declines as the
host count increases. TCP-XM peaks at a much lower rate,
but then consistently maintains this rate despite the intro-
duction of more destination hosts.
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Figure 1. LAN Speed

Figure 2 shows the number of bytes being sent on the
wire for the same transfer. Because TCP-XM is multicast-
ing, it naturally scales. TCP is sending more and more data
as the host count increases, so performance inevitably suf-
fers. Note that the TCP-XM data is split in two: unicast
bytes and multicast bytes. The unicast bytes are barely vis-
ible at the bottom of the graph. These account for connec-
tion setup, close, and retransmissions. The majority of the
TCP-XM data transfer is composed of multicast bytes.

Figure 3 shows how TCP and TCP-XM compare when a
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Figure 2. LAN Efficiency

transfer to n hosts takes place using a wide area network. As
in the local area, TCP outperforms TCP-XM in raw speed,
but less so than might be expected. The inherent bottle-
necks present across the WAN, and the varied performance
specification of receivers, prevent TCP from achieving the
same strong results that are possible on a LAN. TCP-XM
finds its optimum transfer rate quickly and again manages
to maintain this rate across the WAN while making use of
both unicast and multicast simultaneously.
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Figure 3. WAN Speed

Figure 4 once again shows TCP’s inefficiencies as the
host count increases. More interestingly, we can see more
clearly how TCP-XM is combining unicast and multicast.
Unlike the LAN test above, not all destinations are multi-
cast capable, so TCP-XM cannot quickly switch to multi-
cast after connection setup. The number of bytes unicast by
TCP-XM is therefore much more significant. There is an
obvious step up in unicast bytes sent each time TCP-XM

encounters a destination host without multicast. With no
multicast capability in the network, TCP-XM’s efficiency
level would decrease to that of TCP.
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We should mention that lwIP lacks features such as TCP
window scaling. Coupled with some optimisation in our im-
plementation, we would expect considerable improvements
in performance to be possible. And, of course, while kernel-
based TCP will always have an advantage over a userspace
implementation of TCP-XM encapsulated in UDP, the same
would not be true of a kernel-based TCP-XM implementa-
tion. Indeed, the performance of kernel TCP-XM should be
almost identical to that of kernel TCP.

In addition, the key benefit from TCP-XM and its multi-
cast capability is not its raw data transfer rate, but its ability
to reliably transfer large amounts of data in a far more ef-
ficient manner. In an appropriate application domain, this
feature will outweigh native TCP’s data transfer rate so
much that even a limited userspace implementation can be
more desirable than kernel-based TCP.

5 Related Work

Unlike many reliable multicast protocols, TCP-XM is
sender initiated. This basic difference combined with per-
receiver sender-side state means that much of the previous
work in receiver-driven multicast and the associated con-
gestion control issues, while relevant to a certain extent, is
concerned with solving a different problem set. The prob-
lem of TCP friendliness, for example, is irrelevant for TCP-
XM; it is, by definition, TCP friendly.

There has been much work on making multicast reliable
[7, 13, 14, 16, 11, 10], and it can be categorised in many
different ways: sequenced or unsequenced delivery; fully
or mostly reliable delivery; levels of receiver synchronisa-
tion; sender or receiver driven; and whether changes or ad-



ditional intermediary network elements are required. Most
common across this work has been the focus on scaling to
large numbers of receivers.

There has been some precedent for attempting reliable
multicast by modifying TCP, but most research has focused
on building new protocols. These include UCL’s Sim-
ple TCP Extension [4], Single Connection Emulation [17],
TCP-SMO [12], M/TCP [18], and PRMP [1].

All of the above combine (or have proposed to com-
bine) multicast and TCP-like functionality in some way, but
few have real implementations. And other than TCP-SMO,
none have provided an implementation that combines the
actual TCP protocol with native multicast as deployed in the
network today. Functional reliable multicast code is thin on
the ground.

TCP-SMO differs from TCP-XM in a number of ways.
Unlike our sender initiated “push” model, TCP-SMO
adopts a server-side subscription model. The client makes
a TCP connection to the server and then joins a specific
multicast group. TCP-SMO matches the subsequent incom-
ing multicast data with the existing TCP connection. TCP-
SMO has been implemented as a modification to the Linux
kernel. This has led to strong performance results, but at the
cost of limited deployment potential. This contrasts with
our userspace approach which is instantly deployable. Fi-
nally, TCP-XM’s ability to switch between TCP unicast and
UDP multicast by falling back and forward is unique among
reliable multicast protocols.

6 Conclusion

We have described our design and implementation of
TCP-XM, a modified TCP that supports multicast. It differs
from other reliable multicast protocols in its novel combi-
nation of unicast and multicast transmission. Our practical
approach has led to an implementation that has been tested
over both local and wide area networks. These tests have
demonstrated its efficient use of network resources when
compared to TCP. They also indicate that there is potential
to close the performance gap with TCP should the imple-
mentation be optimised.

We believe that our combined approach of theoretical
protocol design and practical network implementation are
complementary, and create a valuable feedback loop. By
continuing in this manner, we hope to further the state of
reliable multicast research while delivering practical soft-
ware to end-users.
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