
Hybrid Reliable Multicast with TCP-XM

K. Jeacle & J. Crowcroft
University of Cambridge

Cambridge, UK

karl.jeacle@cl.cam.ac.uk

Marinho P. Barcellos
UNISINOS University
São Leopoldo, Brazil

marinho@unisinos.br

Stefano Pettini
European Space Agency

Frascati, Italy

stefano.pettini@esa.int

ABSTRACT
In recent years, much work has been done on attempting to
scale multicast data transmission to hundreds or thousands
of receivers. There are, however, many situations where an
application might involve transmission to just ten or twenty
sites. The European Space Agency, for example, carry out
regular multi-gigabyte bulk data transfers to a handful of
destinations.

Using multicast for this type of application can provide
significant benefits including reduced load on the transmit-
ter, an overall reduction in network traffic, and consequently
shorter data transfer times.

In this paper we take a fresh look at the problem of deploy-
ing reliable multicast. So far, there has been no convincing
solution to achieve this. We present a simple hybrid solution
which has not been proposed before. The approach taken
is to combine unicast with multicast by modifying TCP to
support multicast transfers, and run this modified TCP en-
gine over UDP as a userspace transport protocol.

Our goal is clear: reliable bulk data delivery to a moderate
number of sites. Unlike some other multicast protocols, our
work is complete: we have designed, implemented, deployed
and evaluated a protocol which meets this goal.

Categories and Subject Descriptors
C.2.2 [Communication Networks]: Network Protocols

General Terms
Design, Experimentation, Reliability

Keywords
Multicast, TCP, TCP-XM

1. INTRODUCTION
Today, small scale group communication will typically

take place using unicast transmission. Only when the net-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CoNEXT’05, October 24–27, 2005, Toulouse, France.
Copyright 2005 ACM 1-59593-097-X/05/0010 ...$5.00.

work is capable, and the application demands it, will multi-
cast be used.

Depending on the state of unicast and multicast connec-
tivity between source and destinations, the right combina-
tion of unicast and multicast transmission can provide a
large increase in efficiency at the cost of a small decrease in
speed.

We believe that for large sender-initiated data transfers
to a small group of receivers, not only does such a combined
unicast and multicast transmission sweet spot exist, but that
it can be quantified, and automatically found during the
transmission process. Applications can then initiate fully
reliable data transfers, while lowering network utilisation by
taking full advantage of whatever multicast connectivity is
available.

With a clear goal of reliable multicast data transfer to
a moderate number of receivers, we propose a novel hy-
brid userspace solution combining unicast TCP and mul-
ticast transmission simultaneously. We have taken our work
further than many other reliable multicast protocols as we
have designed, implemented, deployed and evaluated our so-
lution.

Part of the motivation for our work lies with addressing
the practical problem of bulk data delivery faced by High
Energy Physicists in a Grid environment, and by organisa-
tions such as the European Space Agency (ESA) [9].

A reliable multicast transport protocol could be used ex-
perimentally over the Internet, for the distribution across
Europe of Earth Observation satellite data from European
Acquisition Stations located in several European Countries
(e.g. Rome in Italy, Kiruna in Sweden, Masplaomas in Ca-
nary Islands). The same data is distributed to a medium-
high number of recipients, with a traffic volume greater than
one terabyte per day.

Grid Computing is also an important technology that can
benefit from a multicast file distribution system. Processing
and archiving are often performed in different sites across
Europe. Grid technology could allow the use of distributed
computing power to improve the performance of data pro-
cessing; but this requires the basic data, normally in the
order of several hundreds of Megabytes, to be transmitted
to all Grid nodes. A reliable multicast transport protocol
can speed up file transfers between multiple Grid nodes sig-
nificantly.

We would also like to see an increase in the number of
practical tools available that exploit multicast. Most pre-
vious research work on reliable multicast has proposed new
APIs and protocols that are not present outside of a lab en-

vironment. This has led to much theoretical analysis, but
little in the way of practical deployment. We have designed,
implemented, and deployed a publicly available reliable mul-
ticast file transfer tool that takes full advantage of our pro-
tocol work.

The rest of the paper is organised as follows. Section 2 de-
scribes the design of our protocol, including details of how we
have modified TCP to support multicast transmission. Sec-
tion 3 describes our implementation of the protocol, and the
software we have built that makes use of it. Section 4 evalu-
ates protocol performance on local and wide area networks,
and provides comparisons with other reliable multicast pro-
tocols. Section 5 overviews related work and describes how
we have taken a different approach. We close the paper with
final remarks in Section 6.

2. PROTOCOL DESIGN
Today, applications use TCP for reliable unicast trans-

fers. It is a mature and well-understood protocol. By mod-
ifying TCP to deliver data to more than one receiver at
a time, and use multicast when available, an application
can transparently send data reliably to multiple recipients.
Using existing TCP mechanisms, the modified protocol en-
sures that data is delivered reliably. Multicast transmission
is attempted for performance reasons, but fallback to uni-
cast preserves backwards compatibility and reliability guar-
antees, and capitalises on more than a decade of experience
that TCP implementations enjoy.

Network protocols are typically implemented in the ker-
nels of hosts and network devices. Any proposals that re-
quire modifications to these protocols imply changes to ker-
nel code. This immediately restricts deployment opportuni-
ties. By limiting changes to code that runs in userspace on
end stations, new protocols can be developed and evaluated
on live networks.

TCP is a reliable end-to-end unicast transfer protocol im-
plemented in host kernels. It is possible to modify TCP
behaviour between end stations without any changes to in-
termediate devices, however this requires kernel changes. If
TCP is moved into userspace, changes can be made with-
out modifying the kernel, but again, some form of privileged
access is needed by the userspace TCP implementation to
directly send and receive packets on a host’s network in-
terfaces. While not as significant a barrier to widespread
deployment as kernel changes, in practice, this privileged
access requirement limits the ease with which new code can
be widely tested.

One solution to this problem is to implement a modified
multicast TCP over UDP. Userspace applications can freely
send and receive UDP packets, so a small shim layer can be
introduced to encapsulate and decapsulate the TCP engine’s
packets into UDP.

We believe that the instant deployment potential offered
by a userspace library, coupled with the efficiency provided
by IP multicast, compensates for the loss of performance by
running the protocol in userspace and using encapsulation.
The key advantage of this approach is that any application
can make use of the protocol by linking against the supplied
library. Because the protocol is not tightly coupled to the
application, should it become adopted for widespread use, a
native implementation can be built in the kernel to improve
performance.

Before discussing a mechanism for introducing multicast

capability, some clarification is necessary with regard to the
scope of the problem being addressed.

Transmitting data to multiple destinations via multicast
will almost always be more efficient than transmitting via
unicast, but an increase in transfer speed will be possible
only if the source, or a link close to the source, is a bottle-
neck in the network. To achieve this increase, no additional
application-level functionality is required, or indeed desired,
at intermediary nodes in the network. The sole requirement
is that the sender and receivers are reachable within the
same cloud of end-to-end native network multicast connec-
tivity.

The constraining factors are the extent of multicast de-
ployment in the network, and the impact of ACK implosion.
But assuming symmetric links, sending 1500 byte data pack-
ets and receiving 40 byte acknowledgements will constrain
the group size to just under 40 receivers. For small group
sizes, we do not believe that ACK implosion is a serious
concern.

2.1 Modifying TCP
In this section we will describe our modifications to TCP

to support multicast. We call our new protocol TCP-XM.
The key feature of TCP-XM is its focus on combining both

unicast and multicast transmission simultaneously. Multi-
cast transmission will always be attempted, but equally, fall-
back to unicast transmission will always be available.

The TCP-XM approach is a pragmatic one. It states some
ground rules and initial assumptions about the target audi-
ence (small scale group communications). It lends itself to
a prototype implementation over UDP, with no changes re-
quired in the network. Unlike most other proposed reliable
multicast protocols, this allows the protocol to be imple-
mented and evaluated on a Wide Area Network. This capa-
bility will serve as a useful feedback loop into the design of
the protocol.

In order to describe TCP-XM functionality, we will walk
through a typical TCP-XM session. Let us first state some
rules or assumptions about how the protocol should operate:

• TCP-XM is primarily aimed at push applications;

• it is sender initiated;

• the changes to the API are minimal;

• the sender has advance knowledge of destination uni-
cast addresses.

Given these assumptions, the “call process” for a TCP-
XM sender is as follows:

1. The application connects to multiple unicast addresses
(not to a multicast group address).

2. The user can specify a group address for multicast,
otherwise a random group address will be allocated
automatically.

3. Multiple TCP Protocol Control Blocks (PCBs) are cre-
ated – one for each destination.

4. Independent 3-way handshakes take place.

5. The group address is sent as option in the SYN packet.
Multicast depends on the presence of the group option
in the SYNACK. A PCB variable then dictates the
transmission mode for the PCB.

6. User data writes are replicated and enqueued on all
PCB send queues.

7. Data packets are initially unicast and multicast simul-
taneously. Multicast packets have protocol type TCP,
but the destination is a multicast group address.

8. Unicasting ceases on successful multicasting.

9. Multicasting continues for the duration of the session.

10. All retransmissions are unicast; each PCB has a copy
of sent segments that remain unacknowledged.

11. Automatic fallback to unicast transmission for each
single receiver takes place after 3 multicast loss events.

12. Unicast & multicast sequence numbers stay synchro-
nised – minimum values across PCBs for congestion
and send windows are used. There is one sliding win-
dow per receiver and the sender is only allowed to send
the data in the intersection of all sliding windows.

13. Connections are closed as per TCP – closing a TCP-
XM connection will cause a FIN to be sent to each
receiver. The sender will wait until all individual closes
are complete.

From the receiver’s perspective:

• no API change is necessary;

• normal TCP listen takes place;

• IGMP group join on incoming TCP-XM connect;

• accept data on both unicast and multicast addresses.

When a TCP-XM connection is made, a SYN packet is
sent that includes a TCP option specifying a multicast group
address. If not specified by the user, the group address
is automatically chosen by the protocol. The presence of
this option means that the originating host has TCP-XM
capability.

If the receiver is running TCP-XM, it can accept the group
address offered or, in exceptional circumstances, return the
SYNACK with an alternative proposed group address. On
connection establishment, an IGMP join request is issued.

Each PCB in a sender’s TCP-XM connection maintains
the state or “transmission mode” for each particular re-
ceiver. The initial state depends on how the protocol has
been invoked by the user. Its subsequent value can be one
of those shown in Figure 1. The states shown correspond to
the following “TX ” transmission modes:

• TX UNICAST ONLY- the sender has made an explicit
request for unicast operation. This applies to all re-
ceivers.

• TX UNICAST GROUP - the default starting state.
Data is unicast until multicast capability at the re-
ceiver has been confirmed.

• TX MULTICAST ONLY - the sender has explicitly
requested multicast operation. This applies to all re-
ceivers.

• TX UNICAST GROUP ONLY - there was no group
option in the SYNACK. The receiver cannot receive
multicast packets.

• TX MULTICAST - the SYNACK contained the group
option, and the receiver has confirmed its ability to
receive multicast data from the sender.

tcp−only

UNICAST
ONLY

UNICAST_GROUP MULTICAST
ONLY

UNICAST_GROUP
ONLY

MULTICAST

fall
forward

back
fall

force
multicast

force
unicast

normal
open()

TCP−XM API Call

receiver

Figure 1: TCP-XM Protocol States

If multicast is working, TX MULTICAST mode is used.
Packet sequence numbers across all PCBs will be kept in
synchronisation. If multicast is not possible to a destina-
tion, TX UNICAST GROUP ONLY will be used. If multi-
cast fails to a particular site, TX UNICAST GROUP mode
will be used. Data segments will be unicast, but the se-
quence numbers will still be kept in line with those being
multicast. The reason for this is to keep open the option
of switching TX UNICAST GROUP connections back to
TX MULTICAST mode.

If the user has explicitly requested unicast-only operation,
TX UNICAST mode will be used. No attempt will be made
to synchronise segment sequence numbers with other PCBs
in the connection.

If the user has explicitly requested multicast-only oper-
ation, TX MULTICAST will be used. No attempt will be
made to fall back to unicast operation.

Note that the “GROUP” tag in the states listed above
refers to a group of PCBs with synchronised segment se-
quence numbers. It does not refer to a multicast group.

2.2 Congestion Control
An important aspect of our work is the approach to con-

gestion control. Because TCP-XM is an extension of TCP,
the existing congestion control mechanisms used by TCP are
also used by TCP-XM. Unlike other TCP equation based
reliable multicast protocols, our protocol is truly TCP-like.
The problem of TCP friendliness, therefore, does not arise
for TCP-XM; it is, by definition, TCP friendly.

2.3 Multicast Detection
When TCP-XM transmits data via unicast or multicast,

an acknowledgement packet will be returned on success. But
a standard ACK does not indicate whether a segment has
been received via unicast or multicast.

In order for a TCP-XM transmitter to make an informed
decision about when to switch from unicast to multicast
transmission, it needs to know what the state of the net-
work is, or to be more precise, what the state of multicast
reception is like at the receiver.

A feedback mechanism that allows the receiver to inform
the sender of multicast reception is desirable. TCP-XM
achieves this through the introduction of a TCP header op-
tion that indicates the percentage of the last n segments that
have been received via multicast. The value of n defaults to
128.

Just a single byte is required to carry the percentage of
recent multicast packets received. This option header is in-
cluded on all acknowledgement packets from the receiver to
the sender.

The receiver inspects every segment that arrives and records
the sequence number and whether or not the segment was
received via unicast or multicast. It then recomputes the
percentage of recent packets received via multicast.

The sender simply parses the option on arrival and records
the value contained for future processing.

2.4 Avoiding Duplicate Acknowledgements
Because the same segments may be sent via unicast and

multicast to a given receiver, it is possible that the same
segment arrives twice. To prevent duplicate segments from
generating duplicate acknowledgements, the following rules
are used:

• If a duplicate segment is received via multicast: drop
it. Because segments are never sent via multicast twice
(all retransmissions are unicast), if a duplicate segment
is received via multicast, the segment must have orig-
inally been received via unicast. This means that the
sender is unicasting to the receiver, but partial multi-
cast connectivity has led to a multicast segment being
received after the original unicast segment.

• If a duplicate segment is received via unicast: check if
the original was received via multicast and if so, drop
it. This is likely to be a case of network reordering of
packets leading to a multicast segment arriving before
a unicast segment. Otherwise, should the original seg-
ment be unicast, then this must be a retransmission,
and a duplicate acknowledgement must be sent.

Checking if a previous segment has been received via uni-
cast is achieved by scanning an array of recorded sequence
numbers and checking how the segment was received.

2.5 Fall Forward & Fall Back
With continuous feedback from receivers regarding the

state of their multicast reception (i.e. the percentage of last
packets received via multicast), it is easy for the sender to
decide when to stop transmitting unicast packets, and hence
fall forward to multicast transmission only.

If a receiver has perfect multicast reception, and a sender
is transmitting both unicast and multicast packets, the re-
ceiver should be receiving exactly 50% of packets via multi-
cast.

Fall forward takes place when receiver feedback indicates
that the percentage of multicast packets received has reached
this figure. The PCB’s transmission mode is then changed
to TX MULTICAST.

When to fall back to unicast could also be determined us-
ing the multicast feedback mechanism, but instead a simple
retransmit count is used. When the sender detects three
consecutive multicast losses for a given receiver, the PCB’s
transmission mode is changed to TX UNICAST GROUP.

Having fallen back to unicast, falling forward to multicast
will happen once again when receiver feedback indicates that
50% of packets received at the remote end were delivered via
multicast.

There is, of course, an overhead when unicasting and mul-
ticasting at the same time. The worst case scenario is where
native multicast capability in the network exhibits intermit-
tent behaviour; if everything is sent twice, then the cost for
TCP-XM is n + 1 compared to TCP, whose cost is n. At
best, the cost for TCP-XM is 1.

3. IMPLEMENTATION
Our implementation of TCP-XM has been built using

lwIP [6] as the baseline TCP/IP stack. It has been com-
piled and tested on FreeBSD, Linux and Solaris.

As stated before, a design choice was to implement TCP-
XM in userspace over UDP rather than build a kernel imple-
mentation. This facilitates our practical goals of widespread
test and deployment.

3.1 lwIP
lwIP is a small independent implementation of the TCP/IP

protocol stack that has been developed by Adam Dunkels
at the Swedish Institute of Computer Science (SICS).

The original focus of lwIP was to reduce RAM usage while
still having a full TCP implementation. This made lwIP
suitable for use in embedded systems with limited memory
resources. Now open source, these small scale goals still
remain.

The size and simplicity of the implementation lends itself
to ease of use as a userspace library. This was an impor-
tant consideration in choosing lwIP over extracting a kernel
implementation of TCP from Linux or FreeBSD.

The price paid for this compactness, however, is an in-
evitable limit on functionality. One key feature missing is
TCP window scaling. While clearly not essential for the
embedded applications where lwIP would normally be de-
ployed, it does impact on our ability to compete with native
kernel TCP on speed.

We make use of lwIP by creating applications that link
to the lwIP code and comprise three threads. One thread
runs our UDP driver to handle packets coming to and from
other hosts; a second thread looks after the operation of
the TCP-XM protocol; the third thread is the application
mainline itself.

3.2 API
The only API changes necessary for TCP-XM are when

the sender initiates a new connection. The user needs a
mechanism for specifying multiple destination addresses, and
an optional multicast group address.

lwIP applications typically use its “netconn” API, although
a traditional socket API is also available. To open a new
TCP-XM connection with the “netconn” API:

conn = netconn_new(NETCONN_TCPXM);
netconn_connectxm(conn,

remotedest, numdests, group, port);

Instead of netconn connect(), three argument changes
are introduced for the netconn connectxm() call: an array
is used to specify destination address(es); the number of des-
tination addresses is supplied; and an optional group address
is supplied.

Again, note that all other API calls, such as send() and
recv(), remain unaltered.

3.3 PCBs
TCP PCBs are stored on a linked list. This has not been

changed, however some extra variables have been added to
the PCB structure:

struct tcp_pcb {
...
struct ip_addr group_ip;
enum tx_mode txmode;
u8t nrtxm;

struct tcp_pcb *nextm;
}

The group address and transmission mode are dependent
on the TCP group option in the SYN/SYNACK.

The nrtxm variable keeps track of how many times a uni-
cast retransmission has been necessary for segments that
have previously been multicast. Too many of these retrans-
missions will result in the transmission mode of the PCB
falling back to unicast.

The nextm pointer references the next PCB that is part of
a chain of PCBs associated with a single TCP-XM connec-
tion. Figure 2 shows how five PCBs would be represented
in a kernel implementation – M1, M2 and M3 are all part of
a single TCP-XM connection, while U1 and U2 are separate
independent unicast connections.

U2

nextm

next

nextm

next

nextm

next

nextm

next

nextm

next

M1 U1 M2 M3

Figure 2: Multicast TCP PCBs

Some additional TCP PCB variables are also required to
introduce the multicast feedback functionality:

struct tcp_pcb {
...
struct segrcv msegrcv[128];

u8_t msegrcvper;
u8_t msegrcvcnt;
u8_t msegsntper;

};

struct segrcv {

u8_t ismcast; /* received via mcast? */
u32_t seqno; /* sequence number */

};

msegrcv is an array of struct segrcv. It is used to record
details of the last n packets. The sequence number is stored

in seqno while ismcast is true if the packet was received via
multicast.
msegrcvper is the percentage of the last n packets that

have been received by multicast. The content of this variable
is placed directly into the ACK feedback option.
msegrcvcnt is a simple looping counter that indexes the

most recent packet received in msegrcv.
msegsntper is the percentage of the last n packets that a

remote receiver has received via multicast according to the
ACK feedback option.

3.4 mcp & mcpd
As a vehicle for TCP-XM experimentation and deploy-

ment, we have created a simple file transfer application.
mcp is the client transmitter. It uses native TCP for con-

trol connections and TCP-XM (over UDP) for data trans-
fers to mcpd receivers on one or more hosts. Both TCP and
TCP-XM connections are opened in parallel to destination
hosts.

To transfer a file ‘myfile’ to hosts ‘host1’ and ‘host2’,
mcp would be invoked as follows: mcp myfile host1 host2

On invocation, mcp begins by opening TCP connections
to the destination hosts. It sends the name and size of the
file to be transmitted, along with the UDP source port it
will use for the subsequent TCP-XM data connection, and a
suggested UDP destination port for the servers. The servers
check for availability of this suggested port and report back
to the client with confirmation or an alternative suggestion.
mcp negotiates with the servers until an agreed destination
port has been found.

With UDP ports agreed, mcp initiates its TCP-XM en-
gine, and then opens a TCP-XM connection to the destina-
tion hosts. The file to be transferred is read from disk and
sent on this connection. On completion, the servers send
confirmation of the number of bytes received on the TCP
control connection. mcp then closes both control and data
connections.

Figure 3 shows how TCP control traffic and TCP-XM over
UDP data traffic are combined to implement mcp & mcpd.

mcp sender

TCP

TCP−XM (over UDP)

TCP
close connection

3−way handshake

mcp control

mcp control

mcp data transfer

mcpd receiver

Figure 3: mcp control & data flow

3.5 Grid Support
As mentioned earlier, today’s Grid environments demon-

strate an application domain where bulk data transfer to a

small number of receivers takes place on a regular basis. For
this reason, we have focused some of our efforts on working
with Globus [10].

The Globus Toolkit is an open source software toolkit pri-
marily developed by the Globus Alliance. It has become the
de-facto standard for middleware used to build Grid services
[8, 7].

Globus XIO is an eXtensible Input/Output library for the
Globus Toolkit. It provides a POSIX-like API to swappable
I/O implementations – essentially “I/O plugins” for Globus
[3].

One of the main goals for Globus XIO is to provide a
single user API to all Grid I/O protocols. There are many
different APIs for many different protocols, and XIO should
abstract this complexity for Grid developers.

Globus XIO provides an ideal mechanism for introducing
new protocols to Grid users deploying Globus applications.
We have wrapped our TCP-XM implementation with XIO
to create a multicast transport driver for Globus that can
benefit many applications.

4. PERFORMANCE EVALUATION
We have carried out experiments on both local and wide

area networks. For local experiments, a selection of depart-
mental workstations were used, along with a smaller bespoke
testbed. For wide area experiments, shell accounts on ma-
chines at eScience Centres around the UK were obtained.
These machines and locations were primarily chosen as they
are representative of one of the target audiences for our work
i.e. physicists requiring bulk data transfer to a relatively
small number of regional sites.

Figure 4 illustrates the geographical connections.

Figure 4: The UK eScience Network

Table 1 lists the eScience Centre hosts used. As the table
shows, many of these sites have functional multicast connec-
tivity.

The specifications, network connectivity and operating
systems used by the hosts varies widely from site to site.
Some hosts are high speed machines connected close to the
WAN backbone. Others are smaller and older departmental
machines with poorer connectivity.

Table 2 shows the average round-trip times and transfer
rates seen from Cambridge to other sites around the net-

Table 1: UK eScience Testbed Hosts

Site Hostname Mcast

Belfast gridmon.cc.qub.ac.uk No
Cambridge mimiru.escience.cam.ac.uk Yes
Cardiff agents-comsc.grid.cf.ac.uk Yes
Daresbury ag-control-2.dl.ac.uk Yes
Glasgow cordelia.nesc.gla.ac.uk No
Imperial mariner.lesc.doc.ic.ac.uk Yes
Manchester vermont.mvc.mcc.ac.uk Yes
Newcastle accessgrid02.ncl.ac.uk Yes
Oxford esci1.oucs.ox.ac.uk Yes
Southampton beacon1.net.soton.ac.uk Yes
UCL sonic.cs.ucl.ac.uk Yes

work. The round-trip times vary in range from approxi-
mately 5 to 21 milliseconds. The transfer rates attainable
on single TCP connections varied from as little as 1.5 Mb/s
to over 50 Mb/s.

While this mixture may not be conducive to optimal head-
line results, it allows a truly representative set of protocol
performance results for a live wide area network.

Table 2: WAN RTTs & Bandwidth

Site RTT (ms) B/W (Mb/s)

Belfast 18.6 16.0
Cardiff 13.5 22.4
Daresbury 21.3 28.1
Glasgow 16.2 33.9
Imperial 17.1 51.0
Manchester 9.9 34.5
Newcastle 11.8 1.5
Oxford 7.0 4.0
Southampton 8.8 39.3
UCL 4.9 42.1

All experiments were conducted using mcp & mcpd and
compare TCP-XM (in userspace over UDP) with native
kernel-based TCP. Because our implementation of TCP-XM
is in userspace, it is at an immediate performance disadvan-
tage to native TCP. Nevertheless, the results provide a useful
indicator of the protocol’s worth.

Figure 5 shows a comparison of the TCP and TCP-XM
data transfer rates to n non-dedicated hosts on a typical lo-
cal departmental LAN. As would be expected, TCP’s through-
put declines as the host count increases. TCP-XM peaks at
a much lower rate (the speed of the slowest receiver), but
then consistently maintains this rate despite the introduc-
tion of more destination hosts. Eventually, as the bottleneck
increases, TCP-XM outperforms TCP.

Figure 6 shows the number of bytes being sent on the wire
for the same transfer. Because TCP-XM is multicasting, it
naturally scales. TCP is sending more and more data as
the host count increases, so performance inevitably suffers.
Note that the TCP-XM data is split in two: unicast bytes
and multicast bytes. The unicast bytes are barely visible
at the bottom of the graph. These account for connection
setup, close, and retransmissions. The majority of the TCP-
XM data transfer is composed of multicast bytes.

10

20

30

40

50

60

70

 1 2 3 4 5 6 7 8 9 10

Tr
an

sf
er

 S
pe

ed
 (M

bp
s)

Number of Hosts

TCP
TCP-XM

Figure 5: LAN Speed

10

20

30

40

50

60

70

80

90

100

 1 2 3 4 5 6 7 8 9 10

B
yt

es
 T

ra
ns

fe
rr

ed
 (M

eg
ab

yt
es

)

Number of Hosts

TCP
TCP-XM Unicast
TCP-XM Multicast

Figure 6: LAN Efficiency

Figure 7 shows how TCP and TCP-XM compare when a
transfer to n hosts takes place using a wide area network.
As in the local area, TCP can outperform TCP-XM, but
less so than might be expected. The inherent bottlenecks
present across the WAN, and the varied performance speci-
fication of receivers, prevent TCP from achieving the same
strong results that are possible on a LAN. For the particular
order and set of hosts used in this experiment, the increased
bottleneck allows TCP-XM to match or outperform TCP
for five or more hosts.

Note that the order in which hosts are added is important.
In this experiment, faster hosts with multicast capability are
added before slower hosts without multicast.

Figure 8 once again shows TCP’s inefficiencies as the host
count increases. More interestingly, we can see more clearly
how TCP-XM is combining unicast and multicast. Unlike
the LAN experiment above, not all destinations are multi-
cast capable, so TCP-XM cannot quickly switch to multi-
cast after connection setup. The number of bytes unicast
by TCP-XM is therefore much more significant. There is an
obvious step up in unicast bytes sent each time TCP-XM
encounters a destination host without multicast.

We should mention again that lwIP currently lacks fea-
tures such as TCP window scaling. Coupled with some op-
timisation in our implementation, we would expect consid-

10

20

30

 1 2 3 4 5 6 7 8 9

Tr
an

sf
er

 S
pe

ed
 (M

bp
s)

Number of Hosts

TCP
TCP-XM

Figure 7: WAN Speed

10

20

30

40

50

60

70

80

90

 1 2 3 4 5 6 7 8 9

B
yt

es
 T

ra
ns

fe
rr

ed
 (M

eg
ab

yt
es

)

Number of Hosts

TCP
TCP-XM Unicast
TCP-XM Multicast

Figure 8: WAN Efficiency

erable improvements in performance to be possible. And, of
course, while kernel-based TCP will always have an advan-
tage over a userspace implementation of TCP-XM encapsu-
lated in UDP, the same would not be true of a kernel-based
TCP-XM implementation.

In addition, the key benefit from TCP-XM and its mul-
ticast capability is not its raw data transfer rate, but its
ability to reliably transfer large amounts of data in a far
more efficient manner. In an appropriate application do-
main, end-users may find that the benefits offered by this
improved efficiency compensate for any performance penal-
ties incurred by running in userspace.

4.1 Multiple flows
To evaluate how multiple TCP-XM flows compete with

each other to share a fixed bandwidth pipe, we have used
a small testbed (Figure 9) with Dummynet [13] to perform
three TCP-XM file transfers of 256 MB each: PC-C trans-
mits simultaneously to the three receiver pairings of PC-A
and PC-B, PC-A and PC-X, and PC-X and PC-B. Sessions
are denoted as AB, AX, and XB, respectively.

The sessions run simultaneously, starting approximately
at the same time. The network is configured with fixed static
delays (5ms each queue) and a loss probability of 0.01%. The
bandwidth is varied over time to verify that TCP-XM can

Figure 9: Multiple flow testbed

adapt its transmission rate dynamically. Figure 10 shows
the result of the experiment.

0 50 100 150 200 250 300 350
0

2.5

5

7.5

10

12.5

Time (seconds)

Tr
an

sf
er

 S
pe

ed
 (M

bp
s)

Session AB
Session AX
Session XB

Figure 10: Multiple TCP-XM flows

The experiment is divided into six parts:

1. (t=0...60s) Link bandwidth: A=15, B=25, C=35
Session bandwidth: AB=7.5, AX=7.5, XB=10.4
Sessions AB and AX fairly share Link-A bottleneck
(50%/50%). Link-B permits Session XB to run up to
its maximum bitrate. Link-C is not a bottleneck.

2. (t=60...160s) Link bandwidth: A=15, B=5, C=35
Session bandwidth: AB=2.4, AX=10.4, XB=2.4
Link-B bandwidth is cut down to 5Mbps. In this time
frame Sessions AB and XB fairly shared the band-
width. Since Session AB runs at 2.4 Mbps, Session
AX can raise its bitrate from 7.5 to 10.4 Mbps.

3. (t=160...215s) Link bandwidth: A=20, B=20, C=20
Session bandwidth: AB=6.4, AX=6.4, XB=6.4
Bandwidths are levelled to 20Mbps. All sessions are
carried through Link-C: they fairly share the bottle-
neck and achieve the same bitrate.

4. (t=215...285s) Link bandwidth: A=15, B=25, C=35
Session bandwidth: AB=7.5, AX=7.5, XB=10.4
Network is reconfigured as part 1. Bitrates are as ex-
pected.

5. (t=285...335s) Link bandwidth: A=15, B=25, C=35
Session bandwidth: AB=10.4, XB=10.4
Session AX terminates at t=285s. Bandwidth of Link-
A, the bottleneck, is now enough to run Session AB at
its maximum bitrate.

6. (t=335...370s) Link bandwidth: A=15, B=25, C=35
Session bandwidth: AB=10.4
Session XB terminates at t=335s. The network does
not have any bottleneck, so Session AB keeps on run-
ning at 10.4 Mbps until t=350s.

Similar results are obtained even if TCP-XM sessions do
not originate from the same machine. The throughput has
negative spikes since random loss probability is not zero. As
we can clearly observe at t=110s and t=130s, when a loss
affects the performances of one session (Session AB in our
example), other competing sessions (Session XB) immedi-
ately saturate the bandwidth left unused by the first.

TCP-XM fairly and optimally shares the available band-
width with other TCP-XM sessions.

To evaluate how TCP-XM performs in the presence of
TCP, we have run a 64 MB file transfer from PC-C to PC-A
and PC-B using TCP-XM. During the experiment, we used
iperf to generate TCP traffic from PC-X to PC-A. The
network configuration is static: 8 Mbps, 5ms delay and no
packet loss on each queue. Figure 11 illustrates the result of
the experiment.

0 5 10 15 20 25 30 35 40 45 50 55
0

1

2

3

4

5

6

7

8

9

Time (seconds)

Tr
an

sf
er

 S
pe

ed
 (M

bp
s)

TCP
TCP−XM

Figure 11: TCP-XM vs TCP flows

Given that TCP-XM is derived from TCP, we would ex-
pect this experiment to demonstrate TCP-XM’s inherent
ability to be TCP friendly. As can be seen, the link capac-
ity is shared with both TCP and TCP-XM taking approxi-
mately 50% of the available bandwidth.

4.2 Other Protocols
MDP/NRL & NORM/NRL are two recent reliable mul-

ticast protocols with readily available implementations. We
discuss these protocols in more detail in Section 5.

We have carried out a number of WAN experiments in
order to evaluate how TCP-XM performs compared to im-
plementations of MDP, NORM and multiple TCP streams.

As before, files were reliably transmitted by each protocol to
a set of remote machines. The sending host was in BT Re-
search, with receivers in Cambridge, Cardiff, BT Research,
Imperial College, Manchester, Southampton (x2) and New-
castle.

Figure 12 shows the transfer speed achieved by each pro-
tocol. The performance of TCP drops quickly but pre-
dictably, due to the multiple redundant transmissions: a
transfer speed of 71Mbps, for a group size of 1 (unicast),
and 11Mbps, for a group size of 8. In contrast, the weak
performance of implementations of reliable multicast is not
predictable, and points to inefficiencies in their error con-
trol and congestion control mechanisms. In general, there is
no clear winner with best performance, alternating among
protocols according to group size. The only highlight is the
difference between MDP and NORM, consistently in favour
of the former for group size, which is in line with the fact
that the congestion control algorithm of MDP is more ag-
gressive than that of NORM.

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8

Tr
an

sf
er

 S
pe

ed
 (M

bp
s)

Number of Hosts

TCP
MDP

NORM
TCP-XM

Figure 12: Protocol Performance

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8

B
yt

es
 T

ra
ns

fe
rr

ed
 (M

eg
ab

yt
es

)

Number of Hosts

TCP
MDP

NORM
TCP-XM

Figure 13: Protocol Efficiency

Figure 13 shows the efficiency of each protocol. The over-
head of TCP grows rapidly, and linearly with group size,
due to the multiple redundant streams. In comparison, the
overhead of the other protocols is small. Recall that TCP-
XM is capable of using multicast and unicast at the same

time; a change in the transmitter, from multicast to unicast,
in the eighth receiver explains why the cost is a little higher
for a group size of 8.

The implementations of all three reliable multicast pro-
tocols are clearly at an early stage, hence their inability to
compete effectively with TCP on performance. As stated
earlier, we believe that there are some clear areas where
we can improve the performance of our TCP-XM imple-
mentation. With this in mind, we are encouraged that our
modified TCP approach performs comparably with current
NACK-based protocol implementations.

4.3 Deployment Feedback
When deploying multicast-capable code in the wide area,

there can be few assumptions about the state of multicast in
the network. It is not just a case of checking whether or not
multicast is available. Any number of network devices may
be in the end-to-end path, and all of these must be properly
configured.

In our experiments, we have found that very often mul-
ticast connectivity appears to be temporarily non-existent,
only to find that some time later connectivity suddenly ap-
pears. Simple misconfiguration of devices and bugs in router
code are the prime suspects, especially in their handling of
multicast routing state timers. One clearly repeatable ex-
ample of this kind is the frequent long latencies experienced
on initially joining a group.

The extent to which these join latencies existed was tested
on the WAN by continuously sourcing multicast data to ran-
dom new group addresses and asking WAN hosts to join
these groups. The time taken to receive data using multi-
cast was recorded.

Table 3 shows the results of one such experiment. In this
case, while the majority of hosts received multicast data al-
most immediately, some hosts took consistently longer to
receive data. Again note that this says nothing about the
hosts themselves (which would have issued IGMP join re-
quests instantly) but rather the configuration of upstream
network elements.

Table 3: Join latency (seconds)

Site Median Mean Min Max

Oxford 40 25 0 57
Imperial 59 31 4 59
Cardiff 49 31 2 60
Newcastle 1 0 0 1
Southampton 1 0 0 1
Manchester 0 0 0 1
Daresbury 0 0 0 1
All sites 1 1 1 1

Problems like these within a multicast-enabled network
are notoriously difficult to troubleshoot and diagnose. From
an end-to-end transport protocol perspective, we must adopt
a black box approach. All we can do is take into considera-
tion the fact that join latencies will vary and multicast con-
nectivity may be prone to dropouts if configuration errors
in the network allow state to be lost when timers expire.

This practical aspect of our work has fed into the develop-
ment of our protocol’s design. TCP-XM is smart enough to
handle losses in multicast connectivity. It will fall back and

fall forward appropriately. The issue of long join latencies
is a good example of how our design has been influenced.
Unlike other protocols, we make no assumptions about mul-
ticast on initiating a connection; we neither assume multi-
cast is present, nor blindly transmit packets and timeout on
failure. We always unicast first. Only when we know multi-
cast packets are getting through will we switch to multicast
transmission.

5. RELATED WORK
Unlike many reliable multicast protocols, TCP-XM is sender

initiated. This basic difference combined with per-receiver
sender-side state means that much of the previous work in
receiver-driven multicast and the associated congestion con-
trol issues, while relevant to a certain extent, is concerned
with solving a different problem set.

There has been some precedent for attempting reliable
multicast transmission by modifying TCP, but most research
has focused on building new protocols. Probably the most
obvious reason for not extending TCP is the ACK implosion
problem. This is enough justification for most researchers
to dismiss the idea, however, the significance of the ACK
implosion problem depends entirely on the scale intended
for the protocol. If a small or modest number of receivers
are intended, ACK implosion is far less of an issue.

While few of the following have real implementations, all
have combined (or have proposed to combine) multicast and
TCP-like functionality in some way:

• UCL Extension [5] - UCL’s Simple TCP Extension was
a proposal to extend TCP to allow a connection from
one application to many. SYN packets and data pack-
ets are sent to a group address. A number of mech-
anisms for dealing with internal data structures, API
and dynamic window adjustment are suggested.

• Single Connection Emulation [15] - SCE is a sublayer
between the unicast transport layer and the multicast
network layer i.e. between TCP and IP. This new layer
allows an application to open a reliable connection us-
ing TCP to a group address. The SCE intercepts this
connection and provides the mechanism necessary to
send and receive data over the underlying multicast IP
layer while fooling the upper TCP layer into believing
that a single connection exists.

• TCP-SMO [12] - The Single-source Multicast Opti-
mization protocol extends TCP to allow senders and
receivers to include multicast transmission when com-
municating. A single-source server can maintain a
common multicast channel that is associated with n
unicast channels. The work addresses problems such
as connection management, ACK processing send win-
dow advancement, RTT estimation and packet retrans-
mission, and congestion and flow control.

• M/TCP [16] - Multicast-extension to TCP is an exten-
sion to TCP that introduces multicast capability, how-
ever not conventional IP multicast, but small group
multicast schemes such as SIM or Xcast where the
sender attaches a list of receiver addresses onto the
packet header. M/TCP is sender-initiated, requires
no changes at the receiver, and provides multiple rates
by classifying receivers into multiple groups.

• PRMP [2] - Polling-based Reliable Multicast Protocol
is a TCP-like (but not based on actual TCP code)
protocol that implements reliable multicast. It uses
a polling system to avoid ACK implosion, and has its
own form of session, error, flow and congestion control.

Other than TCP-SMO, none of the above have provided
an implementation that combines the actual TCP proto-
col with native multicast as deployed in the network today.
Functional reliable multicast code is thin on the ground.

TCP-SMO differs from TCP-XM in a number of ways.
Unlike our sender-initiated “push” model, TCP-SMO adopts
a server-side subscription model. The client makes a TCP
connection to the server and then joins a specific multicast
group. TCP-SMO matches the subsequent incoming mul-
ticast data with the existing TCP connection. TCP-SMO
has been implemented as a modification to the Linux kernel.
This has led to strong performance results, but at the cost
of limited deployment potential. This contrasts with our
userspace approach which is instantly deployable. Finally,
TCP-XM’s ability to switch between TCP unicast and UDP
multicast by falling back and forward is unique among reli-
able multicast protocols.

With regard to non-TCP protocols, there is a family of
protocols called NACK only, or NORM, which attempt to
reduce the amount of feedback packets through NACK-based
mechanisms and timer-based packet suppression. A NORM
protocol [1], seeks to offer end-to-end reliable transfers of
great amount of data from a sender to multiple receivers.
Its instantiation combines NACK and FEC-based loss de-
tection and recovery mechanisms, and either TFMCC [17]
or PGMCC [14] for its congestion control.

MDP/NRL and NORM/NRL [11] are two protocols that
follow this NORM approach (NORM is derived from MDP).
Both use a selective NACK mechanism to obtain reliabil-
ity, with potential help of FEC. MDP/NRL has a conges-
tion control mechanism, but it is not friendly to TCP. The
NORM/NRL congestion control mechanism, in contrast, is
friendly; it dynamically selects the worst receiver, called
CLR, and makes it send feedback information (including
ACKs) to the sender. The feedback of the slowest receiver
is used to feed an algorithm that is similar to those used
by TCP. NORM/INRIA [11], part of the MCL library, is
another implementation of a NORM protocol, but is not
mature enough for deployment.

The performance of the NRL implementations of MDP
and NORM was compared with our TCP-XM implementa-
tion in Section 4.2.

5.1 The Overlay Argument
An alternative to any transport or network layer protocol

changes is to build an overlay or Application Level Multicast
(ALM) network [4]. We believe this is side-stepping the
issue. While alternatives to native network multicast are
available, people will inevitably make use of these systems.
This does nothing to improve the case for native deployment,
as sceptics will argue that with application layer systems,
there is no real requirement for network deployment.

By modifying the transfer protocol running on hosts, no
changes are required in the network. Certainly, multicast
should be enabled, but nothing new is required from the
network. If applications make use of the new features of
the protocol, they get a benefit, and users in turn have an
incentive for more native multicast.

While the ALM approach does not demand changes to
the network, a practical disadvantage is that to achieve effi-
ciency approaching that of native network multicast, in cer-
tain topologies, the physical installation of new nodes at key
points in the network will often be required. The logistics
and financial expenditure required to procure co-location fa-
cilities for the installation of such nodes is a difficulty that is
typically overlooked by ALM advocates. ALMs will not op-
erate close to their stated efficiency without nodes in these
key locations. We believe that this deployment cost out-
weighs that of enabling native IP multicast in the network.

In terms of driving multicast deployment, installing inter-
mediate nodes is essentially the same as proposing to up-
grade routers: it’s an extra barrier. Certainly, in a Grid
environment, this could be just another dæmon in a mid-
dleware release, but that confines such an approach to a
restricted and controlled environment.

When building ALM networks, we would encourage the
use of native network multicast. Using an approach such
as ours can help achieve this, and can therefore be a use-
ful building block in creating a “native multicast friendly”
ALM. By using our protocol, such an ALM would provide
upper-layer multicast functionality to its clients, while tak-
ing advantage of any deployed native network multicast.

6. CONCLUSION
We have described our design and implementation of TCP-

XM, a modified TCP that supports multicast. It differs from
other reliable multicast protocols in its novel hybrid combi-
nation of unicast and multicast transmission.

The protocol goals have been clearly stated, and the test
environment extensive and realistic. Our practical approach
has led to an implementation that has been evaluated over
both local and wide area networks. These experiments have
demonstrated its efficient use of network resources when
compared to TCP.

We believe that our combined approach of theoretical de-
sign and practical network implementation are complemen-
tary, and create a valuable feedback loop. By continuing in
this manner, we hope to further the state of reliable multi-
cast research while delivering practical software to end-users.

7. REFERENCES
[1] B. Adamson, C. Bormann, M. Handley, and

J. Macker. NACK-Oriented Reliable Multicast
(NORM) Building Blocks. RFC 3940, IETF, Nov.
2004. ftp://ftp.rfc-editor.org/in-notes/rfc3941.txt.

[2] M. P. Barcellos, A. Detsch, G. B. Bedin, and H. H.
Muhammad. Efficient TCP-like Multicast Support for
Group Communication Systems. In Proceedings of the
IX Brazilian Symposium on Fault-Tolerant
Computing, pages 192–206, Mar. 2001.

[3] J. Bresnahan. Globus XIO.
www-unix.globus.org/developer/xio/, Dec. 2003.

[4] Y.-H. Chu, S. G. Rao, and H. Zhang. A case for end
system multicast. In ACM SIGMETRICS 2000, pages
1–12, Santa Clara, CA, June 2000. ACM.

[5] J. Crowcroft, Z. Wang, and I. Wakeman. A Simple
TCP Extension to Achieve Reliable 1 to Many
Multicast. University College London, Internal Note,
Mar. 1992.

[6] A. Dunkels. Minimal TCP/IP implementation with
proxy support. Technical report, Swedish Institute of
Computer Science, SICS-T-2001/20-SE, Feb. 2001.

[7] I. Foster, C. Kesselman, J. Nick, and S. Tuecke. The
Physiology of the Grid: An Open Grid Services
Architecture for Distributed Systems Integration.
Open Grid Service Infrastructure WG, Global Grid
Forum, June 2002.

[8] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy
of the Grid: Enabling Scalable Virtual Organizations.
International Journal of Supercomputer Applications,
15(3), 2001.

[9] L. Fusco, V. Guidetti, and J. van Bemmelen.
e-Collaboration and Grid-on-Demand Computing for
Earth Science at ESA. ERCIM News, 61, Apr. 2005.

[10] The Globus Project. Globus Quick Start Guide, June
2001.

[11] J. P. Macker. The Multicast Dissemination Protocol
(MDP) Toolkit. In IEEE MILCOM, volume 1, pages
626–630, 1999.

[12] S. Liang and D. Cheriton. TCP-SMO: Extending TCP
to Support Medium-Scale Multicast Applications. In
Proceedings of IEEE INFOCOM, 2002.

[13] L. Rizzo. Dummynet: a simple approach to the
evaluation of network protocols. ACM Computer
Communication Review, 27(1):31–41, 1997.

[14] L. Rizzo. pgmcc: a TCP-friendly single-rate multicast.
In SIGCOMM, pages 17–28, 2000.

[15] R. Talpade and M. H. Ammar. Single Connection
Emulation: An Architecture for Providing a Reliable
Multicast Transport Service. In Proceedings of 15th
IEEE Intl Conf on Distributed Computing Systems,
Vancouver, June 1995.

[16] V. Visoottiviseth, T. Mogami, N. Demizu,
Y. Kadobayashi, and S. Yamaguchi. M/TCP: The
Multicast-extension to Transmission Control Protocol.
In Proceedings of ICACT2001, Muju, Korea, Feb.
2001.

[17] J. Widmer and M. Handley. TCP-Friendly Multicast
Congestion Control (TFMCC): Protocol Specification.
INTERNET DRAFT: draft-ietf-rmt-bb-tfmcc-04.txt,
Oct. 2004.

