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Abstract

We present a next-generation architecture that addresses
problems of dependability, maintainability, and manage-
ability of I/O devices and their software drivers on the PC
platform. Our architecture resolves both hardware and soft-
ware issues, exploiting emerging hardware features to im-
prove device safety. Our high-performance implementa-
tion, based on the Xen virtual machine monitor, provides
an immediate transition opportunity for today’s systems.

1 Introduction

Device drivers are one of the most troublesome aspects
of commodity operating systems — a weakness that has
received scant attention as the PC platform has evolved,
driven by the overriding goal of affordable performance.
It is now no longer sufficient to merely provide ever-
improving data speeds; as these systems are increasingly
used in business-critical applications, it is essential to re-
view their management and dependability

Driver code is written for, and runs within a specific OS.
For purposes of execution, the two are inseparable on mod-
ern systems. This entanglement leads directly to three
problems that urgently need addressing given the growing
stake PCs hold in today’s enterprise server environments:

1. Dependability: The lack of isolation between execu-
tion of driver and OS code sacrifices dependability.
Driver errors often cause catastrophic system crashes.

2. Maintainability: Device drivers must be rewritten for
each OS, and driver code is difficult and expensive to
develop and maintain.

3. Manageability: The troubleshooting and resolution
of driver-related problems is often difficult and time
consuming in the ongoing administration of a system.

These concerns reflect the roots of the PC architecture as a
desktop platform. Although inconvenient, system crashes
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and tedious diagnosis of hardware problems are accepted as
part of the PC experience by workstation users and admin-
istrators. However, in recent years the PC has supplanted
mainframes and special-purpose operating systems in the
enterprise. When every second of downtime impacts rev-
enue, the traditional limitations of the architecture can no
longer be tolerated.

This paper presents a set of changes intended to tran-
sition toward dependable, maintainable and manageable
systems. We present a new system architecture which
addresses fundamentally unsafe issues in the current I/O
model, such as unrestricted device DMA. Our architec-
ture is built upon three key ideas. First, we mitigate the
risks of device misbehaviour by enforcing isolation be-
tween device-granularity protection domains. Second, we
introduce a set of simple, unified interfaces between OS
and driver software. These interfaces provide the required
separation of concerns between these hitherto conflated as-
pects of systems software. Finally, we unify the control and
configuration of devices in a single OS-agnostic system in-
terface.

Our approach is not merely an academic proposal. We
have taken advantage of our experience with high perfor-
mance virtualization techniques to construct a complete
implementation of this proposal on existing hardware. Our
prototype solves all the above problems, except where con-
strained by the shortfalls of existing hardware, and provides
a transition path toward a new system architecture as well
as immediate benefit to present-day systems. In the follow-
ing subsections we discuss each of the fundamental con-
cerns more specifically.

1.1 Dependability

Drivers on the PC architecture are frequently blamed as
a leading cause of system instability [1]. The fact that
driver code runs with the same privilege and in the same ad-
dress space as the operating system means that even simple
pointer errors may compromise system stability. However,
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Figure 1: Isolation in a traditional OS (lhs) versus the Safe
Device approach (rhs) which isolates device drivers from
the kernel and from each other, and uses a safe hardware
interface to extend this isolation to the device level.

driver misbehaviour is not confined to just pointer errors:
drivers may leak memory, deadlock, fail to correctly man-
age interrupts, or wedge the system inside an infinite loop.

The broad spectrum of failure possibilities means that
making systems dependable requires complete isolation of
driver execution from that of the OS, applications and other
drivers. More importantly, it is crucial that mechanisms be
provided to ensure ongoing device availability, by recog-
nising and reacting to driver failures. Our approach is to
enforce complete vertical isolation of resources including
device hardware, driver code, and operating system.

The difference between this new approach and traditional
OS structure is shown in Figure 1 — device drivers are ex-
ecuted in a protection domain which restricts their access
to host memory, I/O instructions, device registers and in-
terrupt lines. Section 3 discusses our use of I/O Spaces, the
mechanism by which we achieve these vertically isolated
slices through the system. In Section 4 we present a set of
techniques to address the difficult problem of recognising
driver failure, and go on to identify problems that simply
cannot be solved with current hardware.

1.2 Maintainability

Although hardly a simple undertaking, isolating driver
code for safety only addresses a symptom of a consider-
ably broader, architectural problem. Today, the develop-
ment of driver code is tightly coupled with the individual
target operating system. Device vendors must maintain
separate source trees for each OS that they hope to sup-
port. Moreover, the individual driver OS interfaces are in-
credibly complex; Swift et al identify more than four hun-
dred interface points between the Linux kernel and driver

code [2]. This, combined with the fact that OS interfaces
differ not only syntactically but also semantically (e.g., pro-
viding very different threading models and communication
primitives) means that each driver requires developers with
OS-specific expertise.

This coupling benefits no one, except as an inertial force
behind established operating systems. Even Windows is
victim to the interface problem: Microsoft recently an-
nounced that the move to a 64-bit OS will require a new
version of every device driver [3]. The lack of a common
driver—OS interface is also an inhibitor to new OSs.

Our approach is to unify the driver—OS interface and use
the isolation techniques discussed above to execute driver
code in a completely separate execution context from that
of the OS. The OS is presented with an idealized interface
that describes a class of hardware, for instance storage de-
vices or network interfaces. This approach allows a single
driver to be used under any number of operating systems
— each OS-specific driver serves an entire class of devices
and typically comprises just a few hundred lines of code.

1.3 Manageability

Unified access to drivers is not just needed from a data ac-
cess perspective, but also for administration. Presently, the
tasks of diagnosing and configuring hardware are specific
to each driver and OS instance. This has led, for instance,
to specific device functionality being exposed under Win-
dows but not Linux, and vice versa. The ad hoc means by
which devices are currently administered equates to wasted
administrator time and all the costs that entails. By unify-
ing the control of devices in addition to their access, we
hope to address these administrative concerns.

2 Related Work

The current I/O architecture presents a multifaceted set of
challenging problems. This section attempts to summarize
the great breadth of previous work that has attempted to
tackle individual aspects of the problem. We have drawn
on many of these efforts in our own research. There are
two broad classes of work related to our own. First is a
large set of efforts both in systems software and hardware
development toward safe isolation. Second are attempts
to better structure the interfaces between devices and their
software, and the OSs and applications they interact with.

2.1 Safe Isolation

Researchers have long been concerned with the inclusion
of extension code in operating systems. Extensible oper-
ating systems [4, 5] explored a broad range of approaches
to support the incorporation of foreign, possibly untrusted



code in an existing OS. Swift et al [2] leverage the experi-
ences of extensibility, particularily that of interposition, to
improve the reliability of Linux device drivers. While their
work claims an improvement in system reliability it demon-
strates the risk of a narrow focus: their approach sacrifices
performance drastically in an attempt to add dependabil-
ity without modifying the existing OS. By addressing the
larger architectural problem and not fixating on a single
OS instance, we provide higher performance and solve a
broader set of issues, while still remaining compatible with
existing systems.

Our implementation, presented in Section 4, uses a virtu-
alization layer to achieve isolation between drivers and the
OS (or OSs) that use them. Providing a low-level systems
layer that is principly responsible for managing devices was
initially explored in Nemesis [6] and the Exokernel [7].
Our work refines these approaches by applying them to ex-
isting systems. Additionally, Whitaker et al [8] speculate
as to the potential uses of a virtualized approach to system
composition, drawing strongly on early microkernel efforts
in Mach [9] among others [10, 11]. Our work represents a
realization of these ideas, demonstrating that isolation can
be provided with a surprisingly low performance overhead.

Commercial offerings for virtualization, such as VMWare
ESX Server [12], allow separate OSs to share devices.
While we have previously demonstrated [13] that our ap-
proach to virtualization provides higher performance, this
work moves to focus specifically on additional concerns
such as driver dependability; our implementation is now
not only faster but also accommodates a strictly higher level
of driver dependability.

Several research efforts have investigated hardware-
assisted approaches to providing isolation on the PC plat-
form. The Recovery-Oriented Computing [14] project,
whose goals are similar to our own, have used hardware
for system diagnostics [15], but defer to ‘standard mecha-
nisms’ for isolation. Intel’s SoftSDV [16], which is a de-
velopment environment for operating systems supporting
the IA-64 instruction set, uses PCI riser cards to proxy I/O
requests. While their concern is in mapping device inter-
rupts and DMA into the simulated 64-bit environment, the
same approach could be used to provide device isolation.
Intel has also announced that their new LaGrande architec-
ture [17] will protect memory from device DMA.

2.2 Better Interfaces

Our goal of providing more rigid OS—device interfaces
is hardly new. Most notably, corporate efforts such as
UDI [18] have attempted to do just this. There are two key
limitations of UDI that we directly address. Firstly, we en-
force isolation whereas UDI-compliant drivers still execute
in the same protection domain as the operating system, and
thus there is no mitigation of the risks posed by erroneous
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Figure 2: Example of the next-generation I/O architecture.

drivers. Secondly, our external perspective avoids the trap
to which vendor consortiums such as UDI often fall victim:
that of ‘interface unioning’. Rather than providing the ag-
gregate interface present in all existing drivers, we settle on
a narrower, idealized interface. While we provide mecha-
nisms to directly (and safely) expose the hardware should
our interface be too constrictive, we have not found this
to be a problem in our experiences with a large number of
network and storage devices and several OSs.

Novel OS architectures have long struggled with a lack of
device driver support. The vast number of available de-
vices has compounded this problem, making the adoption
of an existing driver interface attractive for fledgling sys-
tems. Microkernel systems such as Fluke [19] and L4 [20]
have investigated wrapping Linux device drivers in cus-
tomized interfaces [21, 22]. Although the structure of our
architecture is not entirely dissimilar to that of a microker-
nel, our intent is to solve the driver interface issue for all
operating systems on the PC architecture, rather than make
some set of existing drivers work for a single developmen-
tal OS.

The LinuxBIOS project [23] replaces the proprietary BIOS
on systems with a specialized Linux image. This approach
allows fast startup and eases management, especially in
cluster environments where console access is not available.
This is closely related to our device control interface which
we intend should be directly integrated with the BIOS.

3 Architecture

In this section we outline a new architecture that addresses
the dependability, maintainability and manageability of de-
vices and their control software. Note that we incorporate
hardware modifications where they are necessary or desir-
able, deferring until Section 4 a more pragmatic design that
allows for the limitations of existing systems.

As illustrated by Figure 2, our architecture comprises three
parts which correspond directly to the problems identified.



Requirement 1: Driver Isolation

Memory: execute in logical fault domain
CPU: schedule to prevent excessive consumption
Privilege: limit access to instruction set

Requirement 2: Driver — Device Isolation

I/O Registers:  restrict access to permitted ranges
Interrupts: allow to mask/receive only device’s interrupt

Requirement 3: Device Isolation

Memory: prevent DMA to arbitrary host memory
Other Devices:  prevent access to arbitrary other devices

Table 1: Requirements for Safe Hardware

Firstly, we introduce I/O Spaces which arrange that devices
perform their work in isolation from the rest of the system.
This increases reliability by restricting the possible harm
inflicted by device faults. Secondly, we define a set of per-
class unified interfaces that are implemented by all devices
of a particular type. This provides driver portability, avoid-
ing the need to reimplement identical functionality for a
range of different OS interfaces. Finally, our device man-
ager provides a consistent control and management inter-
face for all devices, simplifying system configuration and
diagnosis and treatment of device problems.

3.1 Isolation

One reason for the catastrophic effect of driver failure on
system stability is the total lack of isolation that pervades
device interactions on commodity systems. The issues that
must be addressed to achieve full isolation are outlined in
Table 1. The concerns are divided into three requirements:
isolating the execution of driver code from other software
components, ensuring that drivers may only access the de-
vice they manage, and enforcing safe device behaviour.

Previous attempts at driver isolation [2] have placed driver
code in a separate logical fault domain, essentially provid-
ing virtual memory protection between the driver and the
rest of the system. However, this is only a partial solution
as it primarily protects memory; a logical isolation layer
must be used to provide isolation of scheduling and access
to privileged instructions.

The implementation that we present in Section 4 uses a vir-
tual machine monitor (VMM) to achieve the required logi-
cal isolation between driver and OS code. By tracking and
retaining full control of each driver’s CPU and memory use,
the VMM provides isolation guarantees analogous to an OS
and its application processes. For example, if a faulty driver
becomes livelocked, or attempts to access a memory loca-
tion outside its heap, then this is disallowed by the VMM
and signalled to the device manager (described in Section
3.3) which takes appropriate remedial action.

Importantly, our approach also addresses the problem of
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Figure 3: Achieving Safe Hardware. The outlined region
denotes an I/O Space: a vertical slice through the system
providing isolation for device and driver.

isolating physical device access. Currently, drivers may
write to arbitrary device registers or mask inappropriate in-
terrupts, and devices may DMA to invalid memory. We
introduce /O Spaces, which extend the notion of logical
protection domains to incorporate resources specific to de-
vices and their driver code (Figure 3).

An I/O Space is a vertical slice through the system, pro-
viding an isolated context for each device and its driver.
A controller within the I/O chipset maintains tables of ac-
cess permissions for each I/O Space, identifying accessible
ranges of memory addresses, device registers and interrupt
lines. Each I/O Space is represented by a numeric iden-
tifier that is attached to every I/O transaction by a device
or driver operating within that Space. The controller uses
this identifier to validate the requested operation against the
appropriate permission table.

Further advantages can be gained by allocating a range of
I/0 Spaces to each device. Incorporating a notion of client
identity into each I/O Space would enable features such as
client scheduling within the device, and safe DMA to ap-
plication buffers [24]. It is also a small step to predicate
bus arbitration on the requesting I/O Spaces, thus allowing
differentiated service to be provided to different clients.

As the implementation that we present in Section 4 uses
virtualization, we have been able to address the physical
isolation problems of host-to-device access by implement-
ing within the VMM the I/O-Space functionality of a next-
generation chipset. We believe that the isolation we have
achieved is the strongest possible without hardware mod-
ifications. Although our current implementation cannot
protect against unsafe device DMA, we describe the mi-
nor modifications that would be necessary to take advan-
tage of a safe DMA controller. Emerging hardware re-
search [15, 16, 17] indicates that these hardware improve-
ments may soon be incorporated into the PC platform.



3.2 Unified Interfaces

Although the PC has standardized hardware interfaces
there is no such accepted standard for the interface to sys-
tem software, despite industry efforts [18]. Our solution
is to define a set of idealized high-level interfaces tai-
lored for each class of device. OS vendors then need im-
plement only a single, small driver per device class that
communicates via the unified interface: this can be de-
veloped in-house by developers with intimate knowledge
of the OS, and subjected to appropriate quality-control
checks. By implementing the unified interface, hardware
vendors automatically support every PC system. Further-
more, they may arbitrarily choose how the implementation
is divided between hardware and software, perhaps incor-
porating more functionality into higher-cost products that
include advanced features such as I/O processors [25].

Our unified device interfaces are based on those provided
by the Xen VMM which, as we have previously demon-
strated [13], provides low-overhead access to common de-
vice classes. The essential features required for efficient
data-path communication are to avoid data copies, to pro-
vide back pressure to the data source, and to use a flex-
ible and asynchronous notification primitive. Within our
architecture we incorporate these principles into device
channels, linking the unified interfaces exported by device
drivers to the operating systems using them. We provide
details of a software implementation of device channels in
Section 4.2. However, we were careful in our design not to
exclude the possibility of a hardware implementation.

Concerns regarding the feasibility of adopting standardized
device interfaces are very relevant, as acceptance is more
of a political problem than a technical one. Our efforts to
date have had a great deal of success in allowing a vari-
ety of networking and storage devices to function through
a common interface to Linux, NetBSD, and Windows XP.
We have focused on these classes of device as we believe
that network and disk are the two most crucial device in-
terfaces in a server environment. We do not presume that
the interfaces we have identified are complete, and expect
them to evolve over time. However, experience so far has
shown that our model is valid; other groups (e.g. [26]) have
independently ported new devices to our architecture with
minimal effort.

The end-to-end argument [27] has been invoked by efforts
in the past, particularly Exokernels [7], as motivation to ex-
pose rather than to abstract hardware interfaces. While we
believe that unified interfaces provide considerable benefit,
we must also acknowledge that it is likely impossible to ef-
fectively model all devices: emerging devices and special-
purpose applications must be considered. In these situa-
tions, we allow device access to be exposed directly, and
it is through this mechanism that we address video and
sound devices in our current implementation. Note that

even when we do not use a unified virtualized device in-
terface, the architecture still provides isolation and safety.
This transitional approach allows our architectural benefits
to be realized in the short term, while we move to focus on
the challenging problems of sound and video interfaces in
the future.

It is additionally worth observing that organisations con-
tinue to move toward OS virtualization as a means of
making better use of server hardware. Unified interfaces
are particularly advantageous in a virtualized environment
where they can enable device sharing.

An example of unified interfaces, legacy support, and de-
vice sharing was shown in Figure 2 in which two operat-
ing systems and three device drivers all run on a single
machine. The two leftmost device drivers present a uni-
fied interface which ‘wraps’ existing driver code. Using
this interface means that device drivers may be individually
scheduled, shared between operating systems, and restarted
in case of error. The rightmost operating system contains
a legacy driver; although this prevents separate scheduling
or sharing, the safe hardware interface can still be used to
limit the driver’s privileges.

3.3 Control and Management

The final concern addressed by our architecture is that of
device control and configuration — an area that has been
particularly neglected during the PC’s evolution. The lack
of standardized platform-wide control interfaces has led to
the implementation of unique and proprietary configuration
interfaces for each OS and device!. A significant disad-
vantage of this ad hoc approach is that system administra-
tors require additional training for each OS environment
and machine setup that they support, simply to understand
multiple different configuration interfaces that ultimately
provide identical functionality.

The transition of the PC platform into the server room
means that manageability is now more important than ever.
The current jumble of configuration tools is inappropriate
for configuring and managing the large-scale clusters that
are common in enterprise environments. Console-based in-
terfaces, although suitable for configuring small numbers
of desktop machines, are a major hindrance when configu-
ration changes must be applied to hundreds of machines at
a time. The growing problem of remote management is a
primary motivation for the LinuxBIOS project [23].

This final aspect of our architecture is handled by a device
manager — essentially an extension to the system BIOS
that provides a common set of management interfaces for
all devices. The device manager is responsible for boot-
strapping isolated device drivers, announcing device avail-

'Some common device classes do enjoy a consistent control interface,
but even this consistency is not carried across different OSs.



ability to OSs, and exporting configuration and control in-
terfaces to either a local OS or to a remote manager.

4 Design and Implementation

We have implemented our next-generation I/O architecture
for current PC hardware, based on the Xen virtual machine
monitor. As described in [13], Xen divides the resources
of a PC system amongst a set of secure and performance-
isolated domains, each of which runs a separate guest oper-
ating system and applications. Xen implements only isola-
tion mechanisms: management tasks, such as domain cre-
ation and resource allocation, are performed by a system
controller running in a special domain with access to a priv-
ileged control interface.

We begin this section by describing how we extended Xen’s
virtual-machine and control interfaces to allow safe ac-
cess to hardware. By placing device drivers in a resource-
controlled domain separate from OS and application code,
configured with suitably restrictive hardware-access privi-
leges, Xen provides the isolation of processor and hardware
contexts that we identified in requirements one and two of
Section 3.1. We incorporate the necessary control and man-
agement services, provided by a device manager in our ar-
chitectural outline, into a device-management subsystem of
the system controller.

We then proceed to describe how guest OSs connect to
drivers in other domains. We introduce an efficient method
for inter-domain communication based on shared memory
and asynchronous notifications, and outline the protocol for
setting up device channels using a core interface that links
every domain to the system controller. Device channels
provide a unified abstraction for high-performance data
transfer: we describe how this abstraction is safely imple-
mented by device drivers and used by guest OSs.

4.1 Safe Hardware Interface

Our safe hardware interface enforces isolation of device
drivers by restricting the hardware resources that they can
access. To this end, we restrict access privileges to device
I/O registers (whether memory-mapped or accessed via ex-
plicit I/O ports) and interrupt lines. Furthermore, where it
is possible within the constraints of existing hardware, we
protect against device misbehaviour by isolating device-
to-host interactions. Finally, we virtualize the PC’s hard-
ware configuration space, allowing the system controller
unfettered access so that it can determine each device’s re-
sources, while restricting each driver’s view of the system
so that it cannot see resources that it cannot access.

4.1.1 1/0 Registers

Xen ensures memory isolation amongst domains by check-
ing the validity of address-space updates. Access to a
memory-mapped hardware device is permitted by extend-
ing these checks to allow access to non-RAM page frames
that contain memory-mapped registers belonging to the de-
vice. Page-level protection is sufficient to provide isolation
because register blocks belonging to different devices are
usually aligned on no less than a page boundary.

In addition to memory-mapped I/O, many processor fam-
ilies provide an explicit I/O-access primitive. For exam-
ple, the x86 architecture provides a 16-bit I/O port space to
which access may be restricted on a per-port basis, as speci-
fied by an access bitmap that is interpreted by the processor
on each port-access attempt. Xen uses this hardware pro-
tection by rewriting the port-access bitmap when context-
switching between domains. Since the bitmap is large and
sparse, for each domain Xen tracks and rewrites only the
active words within the bitmap.

4.1.2 Interrupts

Whenever a device’s interrupt line is asserted it triggers
execution of a stub routine within Xen rather than caus-
ing immediate entry into the domain that is managing that
device. In this way Xen retains tight control of the sys-
tem by scheduling execution of the domain’s interrupt ser-
vice routine (ISR). Taking the interrupt in Xen also allows
a timely acknowledgement response to the interrupt con-
troller (which is always managed by Xen) and allows the
necessary address-space switch if a different domain is cur-
rently executing. When the correct domain is scheduled
it is delivered an asynchronous event notification which
causes execution of the appropriate ISR.

Xen notifies each domain of asynchronous events, includ-
ing hardware interrupts, via a general-purpose mechanism
called event channels. Each domain can be allocated up
to 1024 event channels, each of which comprises a pair of
bit flags in a memory page shared between the domain and
Xen. The first flag is used by Xen to signal that an event is
pending. When an event becomes pending Xen schedules
an asynchronous upcall into the domain; if the domain is
blocked then it is moved to the run queue. Unnecessary up-
calls are avoided by triggering a notification only when an
event first becomes pending: further settings of the flag are
then ignored until after it is cleared by the domain.

The second event-channel flag is used by the domain to
mask the event. No notification is triggered when a masked
event becomes pending: no asynchronous upcall occurs
and a blocked domain is not woken. By setting the
mask before clearing the pending flag, the domain is able
to prevent unnecessary upcalls for partially-handled event
sources. When the mask is eventually cleared the domain



can reread the pending flag to see whether another batch of
work has arrived from the event source.

Each domain specifies a single upcall handler for all event-
channel notifications. To avoid the expense of linearly
scanning all pending flags, a selector word indicates which
aligned groups of 32 channels are pending. This two-level
hierarchy permits fast scanning in the common situation
that few channels are pending.

To avoid unbounded reentrancy, a level-triggered interrupt
line must be masked at the interrupt controller until all rel-
evant devices have been serviced. Because of this, after
handling an event relating to a level-triggered interrupt, the
domain must call down into Xen to unmask the interrupt
line. However, if an interrupt line is not shared by multiple
devices then Xen can usually safely reconfigure it as edge-
triggering. This obviates the need for unmask downcalls,
as they are not required for edge-triggered interrupt lines.

When an interrupt line is shared by multiple hardware
devices, Xen must delay unmasking the interrupt until a
downcall is received from every domain that is managing
one of the devices. Xen cannot guarantee perfect isolation
of a domain that is allocated a shared interrupt: if the do-
main never unmasks the interrupt then other domains can
be prevented from receiving device notifications. However,
shared interrupts are rare in server-class systems which typ-
ically contain IRQ-steering and interrupt-controller com-
ponents with enough pins for every device. The problem of
sharing is set to disappear completely with the introduction
of message-based interrupts as part of PCI Express [28].

4.1.3 Device-to-Host Interactions

As well as preventing a device driver from circumvent-
ing its isolated environment, we must also protect against
possible misbehaviour of the hardware itself, whether due
to inherent design flaws or misconfiguration by the driver
software. The two general types of device-to-host interac-
tion that we must consider are assertion of interrupt lines,
and accesses to host memory space.

Protecting against arbitrary interrupt assertion is not a sig-
nificant issue because, except for shared interrupt lines,
each hardware device has its own separately-wired connec-
tion to the interrupt controller. Thus it is physically im-
possible for a device to assert any interrupt line other than
the one that is assigned to it. Furthermore, Xen retains full
control over configuration of the interrupt controller and so
can guard against problems such as ‘IRQ storms’ that could
be caused by repeated cycling of a device’s interrupt line.

The main ‘protection gap’ for devices, then, is that they
may attempt to access arbitrary ranges of host memory. For
example, although a device driver is prevented from using
the CPU to write to a particular page of system memory
(perhaps because the page does not belong to the driver),

it may instead program its hardware device to perform a
DMA to the page. Unfortunately there is no good method
for protecting against this problem with current hardware
as it is infeasible for Xen to validate the programming of
DMA-related device registers. Not only would this re-
quire intimate knowledge of every device’s DMA engine,
it also would not protect against bugs in the hardware it-
self: buggy hardware would still be able to access arbitrary
system memory.

A full implementation of this aspect of our design requires
integration of an IOMMU into the PC chipset. Similar
to the processor’s MMU, this translates the addresses re-
quested by a device into valid host addresses. Inappropriate
host addresses are not accessible to the device because no
mapping is configured in the IOMMU. In our design, Xen
would be responsible for configuring the IOMMU in re-
sponse to requests from domains. The required validation
checks are identical to those required for the processor’s
MMU; for example, to ensure that the requesting domain
owns the page frame, and that it is safe to permit arbitrary
modification of its contents.

It is entirely reasonable to expect that IOMMU functional-
ity will be included in commodity chipsets in the near fu-
ture: 64-bit systems already include an IOMMU that allows
32-bit devices to access the full range of host memory. Al-
though the IOMMU is intended to perform only translation,
and devices are not prevented from bypassing its memory
window, it is a small step to require that all memory trans-
actions pass through the IOMMU and thus also use it to
enforce protection.

4.1.4 Hardware Configuration

The PCI standard defines a generic configuration space
through which PC hardware devices are detected and con-
figured. Xen restricts each domain’s access to this space so
that it can only read and write registers belonging to a de-
vice that it owns. This serves a dual purpose: not only does
it prevent cross-configuration of other domains’ devices,
but it also restricts the domain’s view so that a hardware
probe detects only devices that it is permitted to access.

The method of access to the configuration space is system-
dependent, and the most common methods are potentially
unsafe (either protected-mode BIOS calls, or a small I/O-
port ‘window’ that is shared amongst all device spaces).
Domains are therefore not permitted direct access to the
configuration space, but are forced to use a virtualized
interface provided by Xen. This has the advantage that
Xen can perform arbitrary validation and translation of ac-
cess requests. For example, Xen disallows any attempt to
change the base address of an I/O-register block, as the new
location may conflict with other devices.

The system controller is permitted access to the entire con-
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figuration space. This eases configuration of the safe hard-
ware interface because the configuration space comprehen-
sively describes the hardware resources that belong to each
device. Thus the controller can automatically configure the
correct access permissions for a new device-driver domain
without assistance from the system administrator.

4.2 Device Channels

Although the safe hardware interface can be configured to
allow a guest OS to run its own device drivers, this misses
the potential improvements in reliability, maintainability
and manageability of running device drivers in isolation. It
is therefore expected that each device driver will run within
an isolated driver domain (IDD) which limits the impact of
driver faults.

Guest OSs access a device through a device channel link
with its IDD. The channel is a point-to-point communica-
tion link through which each end can send messages asyn-
chronously to the other. A device channel is established
by using the system controller to introduce the IDD to the
guest OS, and vice versa. To make this possible, the system
controller automatically establishes an initial control chan-
nel with each domain that it creates. Figure 4 shows a guest
OS requesting a data transfer through a device channel. The
individual steps involved in the request are discussed later
in this section.

Instead of treating IPC as a fundamental primitive, as in
most compartmentalized systems [8, 20], Xen itself has no
concrete notion of a control or device channel. Messages
are communicated via shared memory pages that are allo-
cated by the guest OS but are simultaneously mapped into
the address space of the IDD or system controller. For this
purpose, Xen permits restricted sharing of memory pages
between domains.

4.2.1 Sharing Memory

The sharing mechanism provided by Xen differs from tradi-
tional application-level shared memory in two key respects:
shared mappings are asymmetric and transitory. Each page
of memory is owned by at most one domain at any time
and, with the assistance of Xen and the system controller,
that owner may force reclamation of mappings from within
other misbehaving domains.

To add a foreign mapping to its address space, a domain
must present a valid grant reference to Xen in lieu of the
page number. A grant reference comprises the identity of
the domain that is granting mapping permission, and an in-
dex into that domain’s grant table. Every domain owns a
private grant table that it shares only with Xen, in which
each entry is a tuple (grant, D, P, R,U) permitting do-
main D to map page P into its address space; asserting
the boolean flag IR restricts D to read-only mappings. The
flag U is written by Xen to indicate whether D currently
maps P (i.e., whether the grant tuple is in use).

When Xen is presented with a grant reference (A, G) by a
domain B, it first searches for index G in domain A’s active
grant table (AGT), a private table that is only accessible
by Xen. If no match is found, Xen reads the appropriate
tuple from the guest’s grant table and checks that T'=grant
and D=B, and that R=false if B is requesting a writeable
mapping. Only if the validation checks are successful will
Xen copy the tuple into the AGT and mark the grant tuple
as in use.

Xen tracks uses of grant references by associating a usage
count with each AGT entry. Whenever a foreign mapping
is created with reference to an existing AGT entry, Xen in-
crements that entry’s count. The grant reference cannot be
reallocated or reused by the granting domain until the for-
eign domain destroys all mappings that were created with
reference to it.

Although it is clear that this mechanism allows strict check-
ing of foreign mappings when they are created, it is less
obvious how these mappings might be revoked. For exam-
ple, if a faulty IDD stops responding to service requests
then guest OSs could end up owning unusable memory
pages. We handle the possibility of driver failure by tak-
ing a deadline-based approach: if a guest observes that a
grant table entry is still marked as in use when it deter-
mines that it ought to have been relinquished (e.g., because
it requested that the device channel should be destroyed),
then it signals a potential domain failure to the system con-
troller.

The system controller checks whether the specified grant
reference exists in the notifying domain’s AGT and, if so,
sets a deadline by which the suspect domain must relin-
quish the stale mappings. If a registered deadline passes
but stale mappings still exist then Xen notifies the system



controller. At this point the system controller may choose
to destroy and restart the driver, thereby forcibly reclaiming
the foreign mappings.

4.2.2 Descriptor Rings

I/O descriptor rings are used for asynchronous trans-
fers between a guest OS and an IDD. Ring updates are
based around two pairs of producer-consumer indexes: the
guest OS places service requests onto the ring, advancing
a request-producer index, while the IDD removes these
requests for handling, advancing an associated request-
consumer index. Responses are queued onto the same ring
as requests, albeit with the IDD as producer and the guest
OS as consumer. There is no requirement that requests be
processed in order: the guest OS associates a unique identi-
fier with each request which is reproduced in the associated
response. This allows the IDD to unambiguously reorder
1/O operations due to scheduling or priority considerations.

The guest OS and IDD use a shared inter-domain event
channel to send asynchronous notifications of queued de-
scriptors. An inter-domain event channel is similar to the
interrupt-attached channels described in Section 4.1.2. The
main differences are that notifications are triggered by the
domain attached to the opposite end of the channel (rather
than Xen), and that the channel is bidirectional: each end
may independently notify the other, or mask incoming no-
tifications.

We decouple the production of requests or responses on
a descriptor ring from the notification of the other party.
For example, in the case of requests, a guest may enqueue
multiple entries before notifying the IDD; in the case of re-
sponses, a guest can defer delivery of a notification event
by specifying a threshold number of responses. This al-
lows each domain to independently balance its latency and
throughput requirements.

4.2.3 Data Transfer

Although storing I/O data directly within ring descriptors is
a suitable approach for low-bandwidth devices, it does not
scale to high-performance devices with DMA capabilities.
When communicating with this class of device, which in-
cludes fast network interfaces and disc arrays, data buffers
are instead allocated out-of-band by the guest OS and indi-
rectly referenced within I/O descriptors.

When programming a DMA transfer directly to or from its
hardware device, the IDD must first pin the data buffer. As
described in Section 4.2.1, we enforce driver isolation by
requiring the guest OS to pass a grant reference in lieu of
the buffer address when requesting a device transfer: the
IDD specifies this grant reference when pinning the buffer.
Xen applies the same validation rules to pin requests as it
does for address-space mappings. These include ensuring

that the memory page belongs to the correct domain, and
that it isn’t attempting to circumvent memory-management
checks (for example, by requesting a device transfer di-
rectly into its page tables).

Returning to the example in Figure 4, the guest’s data-
transfer request includes a grant reference GR for a buffer
page P». The request is dequeued by the IDD which sends
a pin request, incorporating GR, to Xen. Xen reads the
appropriate tuple from the guest’s grant table, checks that
P, belongs to the guest, and copies the tuple into the AGT.
The IDD receives the address of P, in the pin response, and
then programs the device’s DMA engine.

On systems with protection support in the chipset (Sec-
tion 4.1.3), pinning would trigger allocation of an entry in
the IOMMU. This is the only modification required to en-
force safe DMA (Requirement 3 in Table 1). Moreover,
this modification affects only Xen: the IDDs are unaware
of the presence or otherwise of an IOMMU (in either case
pin requests return a bus address through which the device
can directly access the guest buffer).

In addition to pinning a guest buffer for DMA, an IDD may
also use the grant reference to map the buffer into its ad-
dress space. This allows support of legacy devices which
do not support DMA; the IDD instead uses the main CPU
to transfer data to or from the device. Buffer mapping is
also useful for network-driver domains, which may choose
to copy each packet header into a guest-inaccessible buffer
before applying filtering rules. In this case the driver will
usually both map and pin the packet buffer: all modern net-
work interfaces support scatter-gather DMA, so they can
transfer the packet payload directly from the guest buffer.

4.2.4 Device Sharing

Since Xen can simultaneously host many guest OSs it is
essential to consider issues arising from device sharing.
The control mechanisms for creating and destroying device
channels naturally support multiple channels to the same
IDD. In this section we describe how our block-device
and network IDDs support multiplexing of service requests
from different clients.

Within our block-device driver we service batches of re-
quests from competing guests in a simple round-robin fash-
ion; these are then passed to a standard elevator scheduler
before reaching the disc controller. The low-level schedul-
ing provided by the elevator, and also by many disc con-
trollers, gives us good throughput, while request batching
provides reasonably fair access. We take a similar approach
for network transmission, where we implement a credit-
based scheduler allowing each device channel to be allo-
cated a bandwidth share of the form x bytes every y mi-
croseconds. When choosing a packet to queue for trans-
mission, we round-robin schedule amongst all the channels



that have sufficient credit.

Sharing a high-performance network-receive path requires
careful design because, apart from a few smart network
interfaces that perform packet demultiplexing in hard-
ware [24], it is not possible to DMA directly into a guest-
supplied buffer. Rather than copying the packet into a
guest buffer after performing demultiplexing, we instead
exchange ownership of the page containing the packet with
an unused page provided by the guest OS. This avoids
copying overheads but requires the IDD to queue page-
sized buffers at the network interface. When a packet is
received, the IDD immediately checks its demultiplexing
rules to determine the destination device channel. If no un-
used pages are queued on the guest’s network-receive ring
then the packet is dropped.

For safety, Xen does not permit IDDs to exchange own-
ership of arbitrary memory pages. Instead we extend
the grant table (Section 4.2.1) to include exchange tuples,
(exchange, D, P, ), permitting domain D to acquire own-
ership of page P in exchange for relinquishing ownership
of another page. Unused exchange tuples are denoted by
@=0; when the table entry is used, Xen rewrites ) with
the address of the page that was relinquished by the IDD.
When exchanging page ownerships, the IDD sends a re-
quest exchange(P, G) to Xen, where P is a page frame be-
longing to the IDD, and G is an exchange grant passed to
the IDD by the guest OS in a network-receive descriptor.

4.3 Control and Management

We embed our device manager within the system con-
troller: a small privileged management kernel that is loaded
from firmware when the system boots. During bootstrap,
the device manager probes device hardware and creates an
IDD, loaded with the appropriate driver, for each detected
device. The device manager’s ongoing responsibilities then
include per-guest device configuration, managing setup of
device channels, providing interfaces for hardware config-
uration, and reacting to driver failure.

4.3.1 Guest Configuration and Bootstrap

The device manager extends the domain-management
functions of the system controller by allowing configura-
tion of restricted IDD access for each guest OS. For ex-
ample, a network-device channel may be prevented from
sending packets with a spoofed source address, or a block-
device channel may be limited to isolated regions of a
shared disc.

As each guest OS boots, the manager informs it of the
devices to which it has been granted access. The guest
OS then initiates device-channel creation by allocating a

memory page for the I/O-communications ring and pass-
ing a grant reference to the IDD via the device manager.
The manager allocates an inter-domain event channel link-
ing the guest OS to the IDD, and passes one endpoint of
this channel, together with the grant reference, to the IDD.
When the IDD acknowledges setup of the device channel,
the response is forwarded to the guest OS together with its
event-channel endpoint.

4.3.2 Driver Failure and Restartability

In our design, the device manager is responsible for detect-
ing driver failure and coordinating recovery. There are sev-
eral ways in which the manager may determine that a driver
has failed: for example, it may receive notification from
Xen that the IDD has crashed, or an unresponsive IDD may
fail to unmap or unpin guest buffers within a specified time
period. The subsequent recovery phase is greatly simpli-
fied by the componentized design of our I/O architecture:
firstly, the shared state associated with a device channel is
small and well-defined; and secondly, IDD-internal state
is ‘soft’ and therefore may simply be reinitialized when it
restarts.

The recovery phase comprises several stages. First, the de-
vice manager destroys the offending IDD and replaces it
with a freshly-initialized instance. The manager then sig-
nals to the connected guest OSs that the IDD has restarted;
each guest is then responsible for connecting itself to the
new device channel, using the normal signalling mecha-
nisms provided by the device manager. At this point, the
guest may also opt to reissue requests that may have been
affected by the failure (i.e., outstanding requests for which
no response was received before the IDD failed).

We have implemented OS-specific network and block-
device drivers that are able to recover from an IDD restart.
During recovery, the drivers retain a small amount of state
to reestablish channel connections and reissue incomplete
requests. State held within the shared device-channel mem-
ory (which may have been corrupted by the failed IDD)
is discarded, increasing our tolerance to potential driver
faults.

5 Evaluation

In this section we present an evaluation of our prototype
implementation. We begin by evaluating the impact of our
isolation mechanisms on realistic application workloads
using industry standard benchmarks such as Postmark [29],
SPEC WEB99? and OSDB®. We then proceed to investi-
gate our overheads on individual device subsystems using

Zhttp://www.spec.org/osg/web99/
3http://osdb.sourceforge.net/
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a series of network and disk micro-benchmarks to deter-
mine the overhead of implementing the I/O Space protected
hardware interface, and the additional overhead of device-
driver isolation via the device channel interface. Finally,
we provoke a series of device-driver failures and measure
system availability while recovering.

All experiments were performed on a Dell PowerEdge
2650 dual processor 3.06Ghz Intel Xeon server with 1GB
of RAM, two Broadcom Tigon 3 Gigabit Ethernet network
cards, and an Adaptec AIC-7899 Ultral60 SCSI controller
with two Fujitsu MAP3735NC 73GB 10K RPM SCSI
disks. Linux version 2.4.26 and RedHat 9.0 Linux were
used throughout, installed on an ext3 file-system. Identi-
cal device driver source code from Linux 2.4.26 is used
throughout our experiments, allowing us to measure only
those performance variations that are caused by varying the
I/O system configuration.

Our current implementation of Isolated Driver Domains
(IDDs) is based on the Xen virtual machine monitor. Xen’s
paravirtualized interface results in a very low virtualiza-
tion overhead for CPU and memory intensive applications.
When running benchmarks like SPEC CPU2000 over Xen,
the measured overhead is less than 1% [13]. In the follow-
ing experiments we can therefore attribute any slow down
relative to native Linux to our I/O modifications. We be-
lieve this establishes a good upper bound on the additional
costs, but note that the overhead may reduce if future x86
processors provide hardware assistance to reduce the cost
of virtualization, or if client-aware devices reduce the load
on the host processor.

We compare the performance of our IDD prototype against
a number of other configurations, using a vanilla Linux
2.4.26 SMP kernel as our baseline (L—SMP). To estab-
lish the overhead of implementing protected hardware ac-
cess we measure a version of Xen/Linux containing disk
and network drivers that access the hardware via the pro-
tected interface, which provides virtualization of interrupts

and segregation of hardware access. We label these re-
sults TO-Space. We also evaluate the performance of
our full-blown architecture using IDDs for each of the net-
work and disk devices, communicating with an instance of
Xen/Linux using device-channel I/O interfaces. Each IDD
and Xen/Linux instance runs in its own isolated Xen do-
main; the CPU to which each domain is bound depends
on the test configuration. We include results in which
the Xen/Linux instance executes on the same CPU as the
IDDs (IDD-UP), in which the Xen/Linux instance runs on
a different physical CPU (IDD-SMP), and in which the
Xen/Linux instance is bound to a different ‘hyper thread’
within the same physical CPU (IDD-HT).

5.1 Application-Level Benchmarks

We subjected our test systems to a battery of application-
level benchmarks, the results of which are displayed in Fig-
ure 5. Our first benchmark measures the elapsed time to do
a complete build of the default configuration of a Linux
kernel tree stored on the local ext3 file system. The kernel
compile performs a moderate amount of disk I/O as well
as spending time in the OS kernel for process and memory
management, which typically introduces some additional
overhead when performed inside a virtual machine. The
results show that the I/O Space virtualized hardware inter-
face incurs a penalty of around 7%, whereas the full IDD
architecture exhibits a 9% overhead.

Postmark is a file system benchmark developed by Network
Appliance which emulates the workload of a mail server. It
initially creates a set of files with varying sizes (2000 files
with sizes ranging from 500B to 1MB) and then performs a
number of transactions (10000 in our configuration). Each
transaction comprises a variety of operations including file
creation, deletion, and appending-write. During each run
over 7GB of data is transferred to and from the disk. Post-
mark reports three figures for each configuration: the num-
ber of transactions per second, and the aggregate read and



write throughputs. Since the relative results for all three
metrics are very similar, we present only transaction rates.
The additional overhead incurred by I/O Spaces and the full
IDD architecture are just 1% and 5% respectively.

OSDB is an Open Source database benchmark that we
use in conjunction with PostgreSQL 7.3.2. The bench-
mark creates and populates a database and then, in multi-
user mode, exercises two types of workload: Informa-
tion Retrieval (IR), which performs read-only operations
over the entire database; and On-Line Transaction Process-
ing (OLTP), which both queries and updates tuples in the
database. As the default dataset of 40MB fits entirely into
the buffer cache, we created a dataset containing one mil-
lion tuples per relation, resulting in a 400MB database. We
only present the results for the OLTP workload as IR does
not generate significant disk activity. We investigate the
surprisingly high result achieved by IDD in our disk mi-
crobenchmark in Section 5.3.

httperf-0.8 was used to generate requests to an Apache
2.0.40 server to retrieve a single 64kB static HTML docu-
ment. The benchmark was configured to maintain a single
outstanding HTTP request, thus effectively measuring the
response time of the server. The resulting network band-
width generated by the server is around 200Mb/s. The I/O
Space result exposes the overhead of virtualizing interrupts
in this latency-sensitive scenario in which there is no op-
portunity to amortise the overhead by pipelining requests.
Communicating with the IDD via the device channel inter-
face compounds the effect by requiring a significant num-
ber of inter-domain notifications. Despite this, the response
time is within 19% of that achieved by native L-SMP.

SPEC WEB99 is a complex application-level benchmark
for evaluating web servers and the systems that host them.
The workload is a complex mix of page requests: 30% re-
quire dynamic content generation, 16% are HTTP POST
operations and 0.5% execute a CGI script. As the server
runs it generates access and POST logs, so the disk work-
load is not solely read-only. During the measurement pe-
riod there is up to 200Mb/s of TCP network traffic and con-
siderable disk read-write activity on a 2.7GB dataset.

A number of client machines are used to generate load for
the server under test, with each machine simulating a col-
lection of users concurrently accessing the web site. The
benchmark is run repeatedly with different numbers of sim-
ulated users to determine the maximum number that can
be supported. SPEC WEB99 defines a minimum Quality
of Service that simulated users must receive in order to
be ‘conformant’ and hence count toward the score: after
an initial warm-up phase, users must receive an aggregate
bandwidth in excess of 320Kb/s over a series of requests.

For our experimental setup we used the Apache HTTP
server version 1.3.27 with the modspecweb99 plug-in to
perform most of the dynamic content generation (SPEC

TCP MTU 1500 TCP MTU 552

TX RX X RX
L-SMP 897 897 808 808
I/O Space 897 (0%) 898 (0%) 718 (-11%) 769 (-5%)
IDD-UP | 897 (0%) 843(-5%) 436(-46%) 379 (-53%)
IDD-HT | 897 (0%) 897 (0%) 651 (-19%) 577 (-29%)
IDD-SMP| 897 (0%) 898 (0%) 778 (-3%) 663 (-18%)

Table 2: ttcp: Bandwidth in Mb/s

rules require 0.5% of requests to use full CGI, forking a
separate process). Under this demanding workload we find
that the overhead of I/O Spaces and even full device driver
isolation to be minimal: just 1% and 2% respectively.

5.2 Network performance

We evaluated the network performance of our test config-
urations by using ftfcp to measure TCP throughput over
Gigabit Ethernet to a second host running L—SMP. Both
hosts were configured with a socket buffer size of 128KB
as this is recommended practice for Gigabit networks. We
repeated the experiment using two different MTU sizes, the
default Ethernet MTU of 1500 bytes, and a smaller MTU
of 552 bytes. The latter was picked as it is commonly used
by dial-up PPP clients, and puts significantly higher stress
on the I/O system due to the higher packet rates generated
(190,000 packets a second at 800Mb/s).

Using a 1500 byte MTU all configurations achieve within a
few percent of the maximum throughput of the Gigabit Eth-
ernet card, which is the system bottleneck (Table 2). The
552 byte MTU provides a far more demanding test, expos-
ing the different per-packet CPU overheads between the
configurations. The virtualized interrupt dispatch model
provided by I/O Spaces incurs an overhead of 11% on
transmit and 5% on receive. This shows that, even under
extreme load, retaining safe control of interrupt dispatch
and device acces can be achieved at reasonable cost.

The figures for our IDD implementation reflect the extra
CPU cost of full driver isolation. The single CPU result
represents close to a worst case scenario, recording per-
formance slow downs of around 50% relative to L—SMP.
This reflects the cost of rapid switching between protec-
tion domains and the deleterious effect that this has on the
cache and TLB. Enabling hyper-threading (IDD-HT) on
our single-CPU configuration provides some relief, avoid-
ing the context switching and allowing a better data-flow
through the processor’s cache. Adding a second CPU
(IDD-SMP) provides further benefits, reducing the relative
deficit to 3% on transmit and 18% on receive.



\ read write

L-SMP | 66.01 47.36
I/O Space| 65.78(-0%)  46.74(-1%)
IDD-SMP| 65.16(-1%)  58.47(+23%)

Table 3: dd: Bandwidth in MB/s

5.3 Disk performance

Unlike networking, disk I/O typically does not impose
a significant strain on the CPU because data is typically
transferred in larger units and with less per-operation over-
head. We performed experiments using dd to repeatedly
write and then read a 4 GB file to and from the same ext3
file system (Table 3). Read performance is nearly identical
in all cases, but attempts to measure write performance are
hampered due to an oscillatory behaviour of the Linux 2.4
memory system when doing bulk writes. This leads to our
IDD configurations actually outperforming standard Linux
as the extra stage of queueing provided by the device chan-
nel interface leads to more stable throughput.

5.4 Device Driver Recovery

In these tests we provoked our network driver to perform
an illegal memory access, and then measured the effect on
system performance. In this scenario detection of the de-
vice driver failure is immediate, unlike internal deadlock
or infinite looping where there will be a detection delay de-
pendent on system timeouts.

To test driver recovery we caused an external machine to
send equally-spaced ping requests to our test system at a
rate of 200 packets per second. Figure 6 shows the inter-
arrival latencies of these packets at a guest OS as we inject
a failure into the network driver domain at 10-second in-
tervals. During the recovery period after each failure we
recorded network outages of around 275ms. Closer exam-
ination revealed that much of this period is spent execut-
ing the device driver’s media detection routines while de-
termining the link status.

During driver restart, packets that are received at the net-
work interface are lost. A 275ms average recovery time
can interact with TCP’s congestion control mechanism to
cause a longer effective interruption to service. We have
performed experiments running full-rate TCP connections
between two hosts while restarting the network driver. In
this scenario we observed the TCP connection begin RTO-
triggered retransmissions during the outage, effectively
adding additional time to complete system recovery.

We have repeated these experiments using a ‘hot standby’
driver domain that resets the network interface and read-
vertises device channels when signalled by the system con-
troller. This approximately halves the network outage.
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Figure 6: Effect of driver restart on packet arrivals.

Since each driver domain requires just 3MB of memory,
this solution may be attractive in some scenarios.

We have also conducted similar experiments restarting
block device drivers. The driver downtime in such exper-
iments is largely determined by the time to scan the SCSI
bus for devices. In situations where this is known in ad-
vance the driver could be restarted with a specific list of
devices, avoiding the scan time.

6 Conclusion

We have presented a next-generation I/O architecture
which solves existing problems of dependability, maintain-
ability and manageability. Key to achieving this is the sep-
aration of device drivers from operating systems; by run-
ning each device driver in a separately protected and sched-
uled environment, we increase the robustness of systems to
bugs in hardware and software. By using unified device
driver interfaces we can share devices between a number
of co-existing operating system instances, and dynamically
restart device drivers in case of error or upgrade.

Unified interfaces also increase portability, allowing dif-
ferent kinds of operating systems to use the same device-
specific code; the operating system need provide only a
simple generic driver for an entire class of devices. Even
when generic interfaces are inappropriate (e.g. for non-
mainstream or non-shareable devices), the isolation we of-
fer can still increase reliability and aid management.

Although the hardware required to fully support our I/O
architecture is not yet available, we have implemented a
prototype which makes use of a virtual machine monitor to
provide the requisite functionality. The prototype supports
nearly all the features of our architecture (a notable excep-
tion being protection against erroneous DMA), and gives
surprisingly good performance — overhead is generally less
than a few percent, and restartability can be achieved within
a few hundred milliseconds. Furthermore, we believe that



our implementation can naturally incorporate and benefit
from emerging hardware support for protection.
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