
Honeycomb
Automated NIDS Signature Creation using Honeypots

Message Pattern Detection
Honeycomb employs two pattern detection
strategies:
ÿHorizontal Detection applies LCS to

individual messages at the same depth.
ÿVertical Detection concatenates a

number of messages before applying LCS.
This improves detection in interactive

Initial Results
Our tests have produced encouraging
results , particularly for worm detection :
ÿThe system generated full signatures for

the SQL Slammer and Code Red II worms.

ÿAggregating identical signatures by
destination ports reduces the number of
signatures and is well-suited to capture
portscans .

Summary
The system works and creates useful signa-
tures. Future work will include minimizing
the per-packet overhead and approximate
pattern detection to allow generation of
regular-expression type signatures.

Signature Creation Algorithm
The algorithm triggers on two major events:
ÿPacket interception

In- and outgoing packets are intercepted
and analyzed in two phases:

to augment existing signatures.

ÿPeriodic timeouts

The signature pool is periodically reported
to configurable output mechanisms,
currently producing Bro or Snort signatures.

Flow Reassembly
Honeycomb performs per-direction flow
reassembly, creating connection state as a
sequence of messages . Terminated
connections are marked

LCS Algorithm
Honeycomb uses an O(n) longest-common-
substring algorithm based on a suffix tree
implementation to detect patterns in the flow
messages.

Christian Kreibich
christian.kreibich@cl.cam.ac.uk

The Problem
Creating signatures for Network Intrusion
Detection Systems is difficult for a number of
reasons:
ÿThe process is manual, slow and error-

prone , leading to signatures that often are
either too narrow (causing false negatives)
or too loose (causing false positives).

ÿGood signatures require detailed
knowledge of the specific traffic
phenomenon they are designed to capture.

Our Approach
Honeycomb applies protocol analysis and
pattern detection techniques to network traffic
on honeypots, without hardcoding any
application-specific knowledge. This approach
has the following benefits:
ÿTraffic on a honeypot can be assumed to

be malicious .
ÿTraffic volumes are manageable as

honeypots see comparatively little traffic.
The results are automatically-generated,
precise signatures for malicious traffic.

System Design

itself into the connection state engine and the
traffic entering and leaving honeyd.

but not immediately
released, as the sys-
tem uses them to look
for traffic patterns later
on.

h
tt

p
:/

/w
w

w
.c

l.c
a

m
.a

c.
u

k/
~

cp
k2

5
/h

o
n

e
yc

o
m

b

ÿProtocol Analysis
tests headers for
protocol compliance.

ÿPayload Analysis
looks for repeated
patterns within flow data.

New signatures are
added to a signature
pool, dropped if they
are duplicates, or used

Our system is a
pluggable extension
to the open-source
honeypot honeyd.
The Honeycomb
plugin runs within
honeyd and hooks

alert udp any any -> 192.168.169.2/32 1434 (msg: "Honeycomb Thu May 8 09h58m38 2003 "; content:
"|04 01
01 01
01 01
01 01 DC C9 B0|B|EB 0E 01 01 01 01 01 01 01|p|AE|B|01| p|AE|B|90 90 90 90 90 90 90 90|h|DC C9
B0|B|B8 01 01 01 01|1|C9 B1 18|P|E2 FD|5|01 01 01 05|P|89 E5|Qh.dllhel32hkernQhounthickChGetTf
|B9|llQh32.dhws2_f|B9|etQhsockf|B9|toQhsend|BE 18 10 AE|B|8D|E|D4|P|FF 16|P|8D|E|E0|P|8D|E|F0|P
|FF 16|P|BE 10 10 AE|B|8B 1E 8B 03|=U|8B EC|Qt|05 BE 1C 10 AE|B|FF 16 FF D0|1|C9|QQP|81 F1 03 01
04 9B 81 F1 01 01 01 01|Q|8D|E|CC|P|8B|E|C0|P|FF 16|j |11|j|02|j|02 FF D0|P|8D|E|C4|P|8B|E|C0|P
|FF 16 89 C6 09 DB 81 F3|<a|D9 FF 8B|E|B4 8D 0C|@|8D 14 88 C1 E2 04 01 C2 C1 E2 08|)|C2 8D 04 90
01 D8 89|E|B4|j|10 8D|E|B0|P1|C9|Qf|81 F1|x|01|Q|8D|E|03|P|8B|E|AC|P |FF D6 EB|";)

sessions and masks
TCP protocol dyna-
mics.

