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Abstract
We present the design of Mnemosyne1, a peer-to-peer
steganographic storage service. Mnemosyne pro-
vides a high level of privacy and plausible deniability
by using a large amount of shared distributed storage
to hide data. Blocks are dispersed by secure hashing,
and loss codes used for resiliency. We discuss the de-
sign of the system, and the challenges posed by traffic
analysis.

1 Introduction and Motivation
A steganographic file system, first presented in [2],
has the property that it gives a user strong protection
against being compelled to disclose (all) its contents.
Attackers not in possession of the secret are unable
to acquire the contents of files, and they cannot even
gain information about whether a given file is present
or not. In effect, the system allows an author to plau-
sibly deny the existence of most files2 in the system.

A distributed, peer-to-peer steganographic stor-
age system like Mnemosyne has further interesting
properties. Firstly, in common with systems like
FreeNet [6], storage providers can offer a service
without being able to know what is being stored.
This property may be attractive to a service provider
concerned about liability as itde factoconfers some-
thing akin to common-carrier status on the provider.

Secondly, for a single user desiring to store files
securely, a distributed steganographic storage system
makes information less susceptible to machine fail-
ure or denial-of-service: a local storage medium can
always be stolen, but a peer-to-peer system is harder
to shut down.
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1Pronouncedne moz’nē.
2At least some files must be revealed to justify the existence

of the system itself.

Thirdly, such a system may also be used as
a shared-memory communication medium with
steganographic properties: this allows interpersonal
messaging with a high degree of privacy.

A system with these properties is of great potential
use to the modern business traveler.

Mnemosyne takes advantage of the widespread
availability and low cost of network bandwidth and
disk space. The system comprises servers that pro-
vide unreliable block storage, and clients which write
and read blocks to and from the servers. A node
can serve the function of server and client simulta-
neously. The servers collectively comprise a peer-to-
peer system: a centralized organisation or authority
is neither required nor desirable.

Before describing Mnemosyne itself, we present a
description of ourlocal steganographic file system.
We do this for two reasons. Firstly, many of the prin-
ciples of local steganographic systems carry over to
the distributed case, and discussion of these helps es-
tablish context for describing Mnemosyne later. Sec-
ondly, our implementation of the local case differs
from previous systems (most notably that described
in [13]) in ways significant when extending the con-
cept to a full peer-to-peer system.

2 A Local Steganographic File System
Anderson et. al. [2] describe two approaches to
the steganographic storage of data. In the first,
randomly-filled “cover files” are created, and user
files are “written” by altering a subset of the cover
files (determined by a passphrase) so that the user
file is theXOR of that subset.

The second construction, followed here, assumes
a disk which can storeX blocks of data. To pre-
pare this for use, we first write random data to every
block. Then to store a file we simply encrypt each
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block and write it to a pseduo-randomly chosen lo-
cation (e.g. one determined by hashing the filename
and block number with a secret key). With a suf-
ficiently good cipher and key, the encrypted blocks
will be indistinguishable from the random substrate,
and so an attacker cannot even determine the exis-
tence of the file. On the other hand, someone privy
to the filename and key can reconstruct the pseudo-
random sequence, retrieve the encrypted blocks, and
decrypt them.

This leads to the problem ofcollisions, where
blocks are overwritten on the disk by subsequent
files. The well-known “birthday paradox” makes this
quite likely with even a small load factor (ratio of file
blocks to total blocks on the disk), and so replication
is used: each block is written to the disk atn inde-
pendent locations.

We describe our implementation of this scheme
(over Linux) by first describing the process for repli-
cating a block on the disk, and then discussing file
structures built over this facility.

Writing and Reading a Single Block
Writing a block to the local steganographic file sys-
tem requires a user’s keyK, the block data itself,
and two further pieces of information: aninitial hash
valueh0 for the block, and avalidity check(a way
of determining whether the block data has been cor-
rupted or not). The initial hash value and validity
check vary according to whether one is storing di-
rectory blocks, inodes, or file blocks (see below). To
write (or overwrite) a block, the procedure is:

� The user computes a sequence ofn hash values
h0; h1 = H(h0); : : : ; hn�1 = H(hn�2)

� Replicai (0 � i < n) is encrypted under the
key ki = EK(hi) and stored at block number
bi = hi mod X, whereX is the number of
blocks on the disk3.

To read a block given the keyK and an initial hash
valueh0, we read and decrypt each replica in turn
from block bi until we have a block which passes
the validity check. If no blocks pass the check, the
block is deemed lost. The use of a per-replica keyki
ensures that replicas are not identical on disk. It also

3We believe that using subkeyski = EK(hi) improves over
ki = K � hi, used in an earlier version of this paper.

means thatK alone is not sufficient to determine the
validity of a given block.

In our implementation we use SHA256 as the hash
functionH and AES as the block cipher for encrypt-
ing blocks, choosing a key size of 256 bits to match
the size of hash values.

Directories, Inodes and Files
We build a file system over this basic block facility
usingdirectories, inodes, andfile blocks.

In Mnemosyne directories are used to aggregate
files which share a common keyK. A directory
block contains a known textual name for the direc-
tory itself, and a list of textual file names. The valid-
ity check for a directory block is the presence of the
name of the directory in the block. The initial hash
value used for writing a directory block is obtained
by hashing the directory name andXORing the result
with the key,K. UsingK in this way prevents dif-
ferent users from overwriting each others’ blocks de-
terministically when they choose identical directory
names.

Each file is represented in the file system by an
inode block. The inode block is stored using an
initial hash value obtained by concatenating the di-
rectory name and file name to produce a pathname,
hashing this pathname, and thenXORing the result
with the keyK as before; this is the reason direc-
tory blocks need only store filenames. The filename
is also stored in the inode block, acting as the valid-
ity check. Note that in this scheme directories them-
selves are completely optional, serving simply as a
mnemonic device for a set of file names. Directory
names, on the other hand, are necessary components
of path names.

In addition to this file name, the inode block for a
file consists of a list of zero or morefinitval, check-
valg pairs, one for each block in the file. These pairs
of 256-bit values are analogous to the block point-
ers in a conventional file system.initval, chosen at
random, is the initial hash value for locating the file
block replicas.checkvalis a secure hash of the file
block and is used as the validity check for file blocks
since, unlike directories and inodes, no redundant in-
formation is stored within file blocks.

Discussion
As discussed in [2], the choice ofn (the number of

2



replicas) is critical. Intuitively, there is a tension be-
tween increasingn to make an individual replica set
more resilient and decreasingn to reduce the over-
all number of blocks written (and hence potentially
overwritten). Analytical solutions are difficult to ob-
tain, but initial experiments (seex5) suggest overall
replication factors of 2 to 8.

This results in a significant cost in disk space, but
the factor is constant (while large) over a conven-
tional file system and so we consider it acceptable
since what is offered is a specialised service for cer-
tain types of information. The key point is that the
service scales well in disk size, not how much disk
space is required for a given load.

The systems in [2] and [13] present a hierarchical
security model, which can be generalised to a ma-
trix controlling access by a fixed number of users (or
principals) to a fixed number of security “levels”. We
eschew such an approach in favor of a simpler, flat
key space: if a user possesses a key and the name of
a directory, he or she is able to read and write files in
that directory. This has two advantages. Firstly, the
indefinite number of keys makes it less likely that all
the keys can be extracted from a user under duress.
Secondly, and more importantly, when we extend
the system to a distributed, peer-to-peer scenario, we
cannot know in advance how many users, files, or
available blocks there will be. The matrix model im-
plies an authority that at least allocates rows of the
matrix to users; the flat key space model is more ap-
propriate for a federated, peer-to-peer world.

Note also that even in this local implementation,
users don’t have to trust the block store, as long as
most of the time it doesn’t throw away blocks, and
the load factor isn’t so great that too many blocks
have all their replicas overwritten. This feature is
significant when we extend the system to the peer-
to-peer case.

3 Distributing the Block Store
We first present here the obvious extension of the lo-
cal system to the distributed case, and then discuss
refinements and modifications of this inx4.

Assume there exists a set ofM nodes each of
which wishes to contributeN blocks of storage to
the collective. We can logically treat this as an ar-
ray ofMN blocks, and proceed to store and retrieve
files and directories as described in the previous sec-

tion. Rather than storing the block replicai at block
number (hi modX), we need to derive both a node
identifier and a block number on that node from the
256-bit hash value.

We can do this by leveraging existing work on
peer-to-peer object location and routing schemes.
We use Tapestry [21], although any of [15, 18, 19]
could serve. All we require is routing of messages
tagged with arbitraryn-bit identifiers to nodes.

In Mnemosyne, even in the local case, blocks read
from the disk need not be correct. Instead, the va-
lidity of blocks is explicitly checked after they have
been retrieved. This allows us to build a distributed
block store in which there is little reliance on the
integrity of any single node. The only operations a
node need implement are:

� putBlock(blockid, data)

� getBlock(blockid) ! data

The semantics of these are weak:putBlock simply
requests that the node store the blockdata in such
a way that it may be subsequently retrieved byget-
Block using an identicalblockid. However, the node
is not required (and may not even be able) to ensure
this — that is, theputBlock operation has at-most-
once semantics.

getBlock requests that the node return whatever
data it has associated with the givenblockid. How-
ever the node may ignore the request, or return any
block of data it chooses. The client will determine if
the information is valid after it has been received.

Using this service we construct a first attempt at
a distributed steganographic storage system. We as-
sume a set of Tapestry nodes, each of which exports
the same amount of storage space (e.g. 1GB arranged
as220 blocks of 1KB each).

To store a block, we follow the block replication
algorithm described inx2, except that we choose the
leading 160 bits ofhi as the Tapestry node identifier
Ni, and the next (e.g.) 20 bits as the blockidbi on
that node.

To retrieve a block, the client requests blockidsbi
from nodesNi. We note that these requests may pro-
ceed in parallel. The client then tries to decrypt and
verify each block until a valid one is found. If none
is found, the block is deemed lost.

We can build directories and files over this basic
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system as in the local case. Note that it is not nec-
essary for an individual node to respond “correctly”
or even at all. All that the client requires is that at
least one of the replicas for a block is still available.
This makes it difficult for an attacker without a key
to destroy any particular piece of information.

We note that with lookup services having a notion
of unique “successor” for a node (such as Chord), a
new node joining the system can initialize by dupli-
cating the entire block store of its successor; neither
the new nor the existing node need be aware of which
blocks are “valid”. This duplication means that the
new node will immediately respond correctly to any
getBlock requests made of it. With Plaxton-based
systems like Tapestry, there are several nodes anal-
ogous to a Chord successor (roughly 4 in Tapestry),
but we can still usefully copy fractions of the stores
of these nodes.

Discussion
This system has the following useful properties:

Firstly, given the obvious implementation for a
“cooperative” node (viz. to reserve 1GB of space
and then store and retrieve blocks as requested), the
owner of the node can plausibly deny knowledge of
any of the contents. Indeed, they will in general be
unaware even of which blocks are in use.

Secondly, a node can choose to use a smaller
amount of storage by mapping the 20-bit block iden-
tifiers down tok < 20 bits. This produces a less
resilient but still valid store.

Finally, a node can provide more than220 blocks
simply by obtaining more than one node identifier
(e.g. as with “virtual servers” in CFS [7]).

In summary, Mnemosyne provides information
hiding at two levels: first, data is striped widely
across different nodes each of which is unaware of
the other nodes holding parts of the file. Second,
each individual node embeds encrypted blocks in a
random substrate, thus making them indistinguish-
able from one another (without a valid key).

4 Enhancements
Our first enhancement to this basic scheme is to re-
place simple replication with the information dis-
persal algorithm (IDA) [14]. Using this, an author
chooses two numbersm � n and encodes informa-
tion to be published intom blocks such that anyn of

these are sufficient to reassemble the original data.
Using the IDA gives us much better resilience for a
given “redundancy factor” (m=n).

The IDA requires that we replace our simple
redundancy-based validity checks with a crypto-
graphic authenticity check on each dispersed block;
our current implementation uses the AES in the new
OCB mode [17] to get both privacy and authenti-
cation in one pass, although CBC-MAC, XCBC, or
IACBC [11] would also suffice.

Readers now independently retrievem0 of them
blocks wherem0 � n is chosen by each user so as
to obtain a “reasonable” expectation that at leastn
blocks will be valid. The publisher choosesm so that�
m

m0

�
is large enough for likely values ofm0. Con-

currently, readers retriever other blocks chosen at
random and discard them on receipt.

This allows us to more efficiently address the prob-
lem of traffic analysis whereby an adversary who can
snoop packet transfers can infer the existence (and
possibly location) of a file. If desired some of ther
blocks could represent a known piece of content to
provide “deniable encryption” [3].

We also use the flexible dispersal of the IDA to
address the problem that any reader of a file can re-
place or destroy its contents. To combat hijacking we
can simply allow authors to use pseudonymous digi-
tal signatures, much as in [8]. To prevent destruction
of file content we introduce explicitlocation keys:
randomly chosen values which areXORed with a (di-
rectory or file) name’s hash in order to choose the set
of m storage locations. An author can now choose
anyl different location keys and writelm blocks (as-
suming no collisions).

Each reader is now provided with the name, the
encryption key, a location key, andm. This prevents
a single reader from destroying more than a fraction
of the total replicas. Furthermore, ifl is never dis-
closed, an author under duress can claim to delete
all copies but later recover the information, as in the
Eternity Service [1].

Writing of data under Mnemosyne also holds in-
teresting challenges. A per-node rate limiter protects
against brute-force denial-of-service attacks, as an
alternative to the Hash-Cash scheme in [20]. We note
that Mnemosyne is less susceptible to such attacks
due to its sparse use of storage space.

Nonetheless, over time more and more of a doc-
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umentD’s replicas will be overwritten until at some
point it is no longer accessible. To avoid this we need
to periodically refreshD. Choosing a good refresh
interval in the absence of global knowledge is dif-
ficult, and so we expect users to err on the side of
caution (i.e. to rewrite rather frequently).

The refresh of files provides us with another traffic
analysis problem. We could attempt to resolve this
as before: i.e. arrange for additional writes to occur
so that the “real” ones may be concealed. Unfortu-
nately this would result in a large number of addi-
tional writes, and hence collisions.

A better scheme is to require that all messages to
block stores are encrypted and of the same size. A
single bit in a request is used to specify if the ac-
companying payload is to be written. In all cases,
a block of data is returned. This makes it impossi-
ble for an eavesdropper to distinguish between reads
and writes, making traffic analysis more difficult. If
bandwidth is cheap, an obvious extension is for all
users to issue an isochronous stream of requests in
which “real” requests are occasionally embedded.

5 Simulation
Two of the key parameters in the system are the
choices ofm and n for a given file since there is
a tension between maximizing the capacity of the
store, and increasing the resilience of each file. This
is further complicated in the decentralized case since
users are free to choosem andn independently, and
no-one knows how many users there are, or how
much traffic they are generating. Nevertheless, to
give some idea of the trade-offs involved, we present
here some initial simulation results for fixed-size
files and uniform coding schemes.

The simulation repeatedly adds files to a store of 4
million blocks and keeps track of how many files are
still retrievable: i.e. files for whichn blocks have not
been overwritten in the store. Starting with an empty
store, this number converges to a limit for eachm as
files are added, and we call this limit the capacity of
the store. Figure 1 shows how the capacity changes
with choice ofm. For low values, the birthday para-
dox comes into play and capacity is limited. Asm
increases, capacity increases until the large number
of writes per file reduce it again.

Of more importance to actual users of the system
is the expected lifetime of a file: how long a file lasts

before it becomes inaccessible. Figure 2 shows cu-
mulative distributions of file lifetimes (measured as
the number of subsequent file writes) for the same
coding parameters as before. Of interest to users is
where these curves intersect some low probability of
file loss, thus giving an idea of how often a file needs
to be refreshed.

6 Implementation
We have built a working implementation of
Mnemosyne. The client is implemented in C and
makes use of freely available implementations of
SHA256 and the AES; it provides a command-line
interface with operations for creating directories and
copying files between Mnemosyne and the Unix fil-
ing system.

We use the IDA with polynomials overGF (216)
for dispersal, and OCB-AES to provide combined
encryption and authenticity. Local performance is
plausible: we can copy in at around 64KB/s, and out
at circa 375KB/s (forn = 32, m = 96).

The distributed block storage functionality is im-
plemented in Java over Tapestry [21]. The client
uses a simple UDP-based protocol to communicate
with a randomly picked Tapestry node. Read and
write requests are then routed through Tapestry to
the appropriate block store. Responses are returned
to the client via the original Tapestry node. In early
tests using 3 co-located nodes we can copy in files at
around 80KB/s, and copy them out at 160KB/s.

We intend to make the code for Mnemosyne avail-
able in the near future.

7 Relation to Existing Work
Some recent systems have used distribution and self-
organisation to provide robustness and availability
[1, 7, 9, 10, 12]. Other systems use their decen-
tralised nature to provide anonymity of access and
prevent censorship [4, 6, 8, 20].

Mnemosyne is more aligned with the latter class
of system. However it provides in addition plausible
deniability for clients, and is more suited to private
storage and messaging applications than to the wide-
scale publishing of data. Mnemosyne also shares
some common ground with private information re-
trieval systems [5, 16].
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