
A Pragmatic Implementation of

Non-Blocking Linked-Lists

Timothy L. Harris

University of Cambridge Computer Laboratory,
Cambridge, UK, tim.harris@cl.cam.ac.uk

Abstract. We present a new non-blocking implementation of concur-
rent linked-lists supporting linearizable insertion and deletion operations.
The new algorithm provides substantial bene�ts over previous schemes:
it is conceptually simpler and our prototype operates substantially faster.

1 Introduction

It is becoming evident that non-blocking algorithms can deliver signi�cant bene-
�ts to parallel systems [MP91,LaM94,GC96,ABP98,Gre99]. Such algorithms use
low-level atomic primitives such as compare-and-swap { through careful design
and by eschewing the use of locks it is possible to build systems which scale to
highly-parallel environments and which are resilient to scheduling decisions.

Linked-lists are one of the most basic data structures used in program design,
and so a simple and e�ective non-blocking linked-list implementation could serve
as the basis for many data structures. This paper presents a novel implementa-
tion of linked-lists which is non-blocking, linearizable and which is based on the
the compare-and-swap (CAS) operation found on contemporary processors.

Section 5 sketches a proof of correctness, describes the use of model-checking
to perform exhaustive veri�cation within a limited application domain and also
describes empirical tests performed on execution traces from an actual imple-
mentation.

In Sect. 6 we compare the performance of the new algorithm against that
of a lock-based implementation and against an existing non-blocking algorithm.
Compared with these other thread-safe algorithms, ours provides the best perfor-
mance on each of three simulated workloads and for every level of concurrency.

2 Overview

In this section we present an overview of our algorithm and the diÆculty in im-
plementing non-blocking linked-lists. As a running example consider an ordered
list containing the integers 10 and 30 along with sentinel head and tail nodes:

H T3010

Such a data structure may comprise cells containing two �elds: a key �eld
used to store the element and a next �eld to contain a reference to the next cell
in the list.

Insertion is straightforward: a new list cell is created (below, left) and then
introduced using single CAS operation on the next �eld of the proposed prede-
cessor (below, right).

10H T30

20

10H T30

20

In this case the atomicity of the CAS ensures the the nodes either side of
the insertion have remained adjacent. This simple guarantee is insuÆcient for
deletions within the list. Suppose that we wish to remove the value 10. An
obvious way of excising this node would be to perform a CAS that swings the
reference from the head so that the node containing 30 becomes the �rst in the
list:

10H T30

Although this CAS ensures that the node 10 was still at the start of the
list it cannot ensure that no additional nodes were introduced between the 10
node and the 30 node. If this deletion took place concurrently with the previous
insertion then that new node would be lost:

10

20

H T30

The single CAS could neither detect nor prevent changes between 10 and
30 once the deletion procedure had selected 30. Our proposed solution { and
indeed the crux of the algorithms presented here { is to use two separate CAS
operations in place of that single one. The �rst of these is used to mark the next
�eld of the deleted node in some way (below, left), whereas the second is used to
excise the node (below, right):

H T3010 H T3010

We say that a node is logically deleted after the �rst stage and that it is
physically deleted after the second. A marked �eld may still be traversed but
takes a numerically distinct value from its previous unmarked state; the structure
of the list is retained while signalling concurrent insertions to avoid introducing
new nodes immediately after those that are logically deleted. In our example the
concurrent insertion of 20 would observe 10 to be logically deleted and would
attempt to physically delete it before re-trying the insertion.

3 Related Work

Generalized non-blocking implementations based on CAS were presented by Her-
lihy [Her91,Her93]. However, linked-lists based on this general scheme are highly
centralized and su�er poor performance because they essentially use CAS to
change a shared global pointer from one version of the structure to the next.

Valois was the �rst to present an e�ective CAS-based non-blocking implemen-
tation of linked-lists [Val95]. Although highly distributed, his implementation is
very involved. The list is held with auxilliary cells between adjacent pairs of or-
dinary cells. Auxilliary exist to provide an extra level of indirection so that a cell
may be removed by joining together the auxilliary cells adjacent to it. Valois'
algorithm exposes a more general and lower level interface than we do here; he
provides explicit cursors to identify cells in the list and operations to insert or
delete nodes at those points.

The originally-published algorithm contained a number of errors relating to
how reference-counted storage was managed. One has been reported previously
and others were identi�ed when implementing Valois' algorithm for comparison
in this paper [MS95,Val01].

To overcome the complexity of building linearizable lock-free linked-lists us-
ing CAS, Greenwald suggested a stronger double-compare-and-swap (DCAS)
primitive that atomically updates two storage locations after con�rming that
they both contain required values [Gre99]. DCAS is not available on today's
multi-processor architectures. However, it does admit a simple linearizable linked-
list algorithm: insertions proceed as described in Sect. 2 and deletions by atomic
updates to the next �eld of the cell being removed as well as that of its predeces-
sor. Greenwald's work was an extension of earlier non-linearizable DCAS-based
linked-list algorithms due to Massalin and Pu [MP91].

4 Algorithms

In this section we present our new algorithm in pseudo-code modeled on C++
and designed for execution on a conventional shared-memory multi-processor
system supporting read, write and atomic compare-and-swap operations. We as-
sume that the operations de�ned here are the only means of accessing linked
list objects. Each processor executes a sequence of these operations, de�ning a
history of invocations/responses and inducing a real-time order between them.
We say that an operation A precedes B if the response to A occurs before the
invocation of B and that operations are concurrent if they have no real-time
ordering.

A sequential history is one in which each invocation is followed immediately
by its corresponding response. Our basic correctness requirement is linearizabil-
ity which requires that (a) the responses received in every concurrent history
are equivalent to those of some legal sequential history of the same requests
and (b) the ordering of operations within the sequential history is consistent
with the real-time order [HW90]. Linearizability means that operations appear

class List<KeyType> {

Node<KeyType> *head;

Node<KeyType> *tail;

List() {

head = new Node<KeyType> ();

tail = new Node<KeyType> ();

head.next = tail;

}

}

class Node<KeyType> {

KeyType key;

Node *next;

Node (KeyType key) {

this.key = key;

}

}

Fig. 1. An instance of the List class contains two �elds which identify the head and
the tail. Instances of Node contain two �elds identifying the key and successor of the
node.

public boolean List::insert (KeyType key) {
Node *new_node = new Node(key);
Node *right_node, *left_node;

do {
right_node = search (key, &left_node);
if ((right_node != tail) && (right_node.key == key)) /*T1*/

return false;
new_node.next = right_node;
if (CAS (&(left_node.next), right_node, new_node)) /*C2*/

return true;
} while (true); /*B3*/

}

Fig. 2. The List::insert method attempts to insert a new node with the supplied
key.

to take e�ect atomically at some point between their invocation and response.
Our implementation is additionally non-blocking, meaning that some operation
will complete in a �nite number of steps, even if other operations halt.

We write CAS(addr,o,n) for a CAS operation that atomically compares the
contents of addr against the old value o and { if they match { writes n to that
location. CAS returns a boolean indicating whether this update took place. Our
design was guided by the assumption that a CAS operation is slower to execute
than a write which in turn is slower than a read.

4.1 Implementing Sets

Initially we will consider a set object supporting three operations: Insert(k),
Delete(k), Find(k). Each parameter k is drawn from a set of totally-ordered
keys. The result of an Insert, a Delete or a Find is a boolean indicating success
or failure. The set is represented by an instance of List which contains a singly-
linked list of instances of Node. As sketched in Sect. 2 these are held in ascending
order with sentinel head and tail nodes.

public boolean List::delete (KeyType search_key) {
Node *right_node, *right_node_next, *left_node;

do {
right_node = search (search_key, &left_node);
if ((right_node == tail) || (right_node.key != search_key)) /*T1*/

return false;
right_node_next = right_node.next;
if (!is_marked_reference(right_node_next))

if (CAS (&(right_node.next), /*C3*/
right_node_next, get_marked_reference (right_node_next)))

break;
} while (true); /*B4*/
if (!CAS (&(left_node.next), right_node, right_node_next)) /*C4*/

right_node = search (right_node.key, &left_node);
return true;

}

Fig. 3. The List::delete method attempts to remove a node containing the supplied
key.

public boolean List::find (KeyType search_key) {
Node *right_node, *left_node;

right_node = search (search_key, &left_node);
if ((right_node == tail) ||

(right_node.key != search_key))
return false;

else
return true;

}

Fig. 4. The List::find method tests whether the list contains a node with

the supplied key.

The reference contained in the next �eld of a node may be in one of two
states: marked or unmarked. A node is marked if and only if its next �eld is
marked. Marked references are distinct from normal references but still allow
the referred-to node to be determined { for example they may be indicated by
an otherwise-unused low-order bit in each reference. Intuitively a marked node
is one which should be ignored because some process is deleting it. The function
is marked reference(r) returns true if and only if r is a marked reference.
Similarly get marked reference(r) and get unmarked reference(r) convert
between marked and unmarked references.

The concurrent implementation comprises four methods (Fig. 2-5). The �rst
three, List::insert, List::delete and List::find implement the Insert,
Delete and Find operations respectively. The fourth, List::search, is used dur-
ing each of these operations. It takes a search key and returns references to two
nodes called the left node and right node for that key. The method ensures that
these nodes satisfy a number of conditions. Firstly, the key of the left node must
be less than the search key and the key of the right node must be greater than

private Node *List::search (KeyType search_key, Node **left_node) {
Node *left_node_next, *right_node;

search_again:
do {

Node *t = head;
Node *t_next = head.next;

/* 1: Find left_node and right_node */
do {

if (!is_marked_reference(t_next)) {
(*left_node) = t;
left_node_next = t_next;

}
t = get_unmarked_reference(t_next);
if (t == tail) break;
t_next = t.next;

} while (is_marked_reference(t_next) || (t.key<search_key)); /*B1*/
right_node = t;

/* 2: Check nodes are adjacent */
if (left_node_next == right_node)

if ((right_node != tail) && is_marked_reference(right_node.next))
goto search_again; /*G1*/

else
return right_node; /*R1*/

/* 3: Remove one or more marked nodes */
if (CAS (&(left_node.next), left_node_next, right_node)) /*C1*/

if ((right_node != tail) && is_marked_reference(right_node.next))
goto search_again; /*G2*/

else
return right_node; /*R2*/

} while (true); /*B2*/
}

Fig. 5. The List::search operation �nds the left and right nodes for a particular
search key.

or equal to the search key. Secondly, both nodes must be unmarked. Finally, the
right node must be the immediate successor of the left node. This last condition
requires the search operation to remove marked nodes from the list so that the
left and right nodes are adjacent. As we will show the List::search method
is implemented so that these conditions are satis�ed concurrently at some point
between the method's invocation and its completion.

List::search is divided into three sections. The �rst section iterates along
the list to �nd the �rst unmarked node with a key greater than or equal to
the search key. This is the right node. The left node preliminarily refers to the
previous unmarked node that was found. The second stage examines these nodes.
If left node is the immediate predecessor of right node then List::search

returns. Otherwise, the third stage uses a CAS operation to remove marked
nodes between left node and right node.

List::insert uses List::search to locate the pair of nodes between which
the new node is to be inserted. The update itself takes place with a single CAS
operation (C2) which swings the reference in left node.next from right node

to the new node.

List:delete uses List::search to locate the node to delete and then uses
a two-stage process to perform the deletion. Firstly, the node is logically deleted
by marking the reference contained in right node.next (C3). Secondly, the node
is physically deleted. This may be performed directly (C4) or within a separate
invocation of search.

The List::find method is shown in Fig. 4. It invokes List::search and
examines the resulting right node.

5 Correctness

In this section we describe three approaches taken to checking the correctness
of the algorithms presented here. Section 5.1 outlines a proof of linearizability
and progress, Sect. 5.2 describes the exhaustive testing of some cases through
model checking and Sect. 5.3 describes a method we used for examining traces
from particular program runs.

5.1 Proof Sketch

We will take a fairly direct approach to outlining the linearizability of the op-
erations by identifying particular instants during their execution at which the
complete operation appears to occur atomically.

Conditions Maintained by Search. Our argument relies on the conditions
identi�ed in Sect. 4.1 which the implementation of List::search guarantees
hold at some point during its invocation. For the ordering constraints, note
that when right node is initialized the preceding loop ensured that search key

� right node.key. Similarly left node.key < search key because otherwise
the loop would have terminated earlier.

For the adjacency condition and the mark state of the left node we must
separately consider each return path. If List::search returns at R1 then the
test guarding the return statement ensures that right node was the immediate
successor of the left node when the next �eld of that node was read into the
local variable t next. The same value of t next is found to be unmarked before
initializing left node. If List::search returns at R2 then C1 establishes the
required conditions.

For the mark state of the right node, observe that both return paths con�rm
that the right node is unmarked after the point at which the �rst three conditions
must be true. Nodes never become unmarked and so we may deduce that the
right node was unmarked at that earlier point.

Linearization points. Let opi;m be the mth operation performed by processor
i and let di;m be the �nal real-time at which the List::search post-conditions
are satis�ed during its execution. These di;m identify the times at which the
outcome of the operations become inevitable and we shall take the ordering
between them to de�ne the linearized order of Find(k) operations or unsuccessful
updates. For a successful �nd at di;m the right node was unmarked and contained
the search key. For an unsuccessful insertion it exhibits a node with a matching
key. For an unsuccessful deletion or �nd it exhibits the left and right nodes which,
respectively, have keys strictly less-than and strictly greater-than the search key.

Furthermore let ui;m be the real-time at which the update C2 inserts a node or
C3 logically deletes a node. We shall take ui;m as the linearization points for such
successful updates. In the case of a successful insertion the CAS at ui;m ensures
that the left node is still unmarked and that the right node is still its successor.
For a successful deletion the CAS at ui;m serves two purposes. Firstly, it ensures
that the right node is still unmarked immediately before the update (that is, it
has not been logically deleted by a preceding successful deletion). Secondly, the
update itself marks the right node and therefore makes the deletion visible to
other processors.

Progress. We will show that the concurrent implementation is non-blocking.
We will show that each successful insertion causes exactly one update, that each
successful deletion causes at most two updates and that unsuccessful operations
do not cause any updates.

The CAS instructions C1 and C4 each succeed only by unlinking marked nodes
from the list. Therefore the number of times that these CAS instructions succeed
is bounded above by the number of nodes that have been marked. Exactly one
node is marked during each successful deletion (C3) and therefore at most one
update may be performed by C1 or C4 for each successful deletion. The remaining
CAS instructions (C2 and C3) occur respectively exactly once on the return paths
from successful insertions and deletions.

Since there are no recursive or mutually-recursive method de�nitions consider
each backward branch in turn:

{ Each time B1 is taken the local variable t is advanced once node down the
list. The list is always contains the unmarked tail node and the nodes visited
have successively strictly larger keys.

{ Each time B2 is taken the CAS at C1 has failed and therefore the value of
left node.next 6= left node next. The value of the �eld must have been
modi�ed since it was read during the loop ending at B1. Modi�cations are
only made by successful CAS instructions and each operation causes at most
two successful CAS instructions.

{ Each time B3 or B4 is taken the CAS at C2 or C4 has failed. As before, the
value held in that location must have been modi�ed since it was read in
List::search and at most two such updates may occur for each operation.

{ Each time G1 or G2 is taken then a node which was previously unmarked
has been marked by another processor. As before, at most two updates may
occur for each operation.

5.2 Model Checking

The dSPIN model checker was used to exhaustively verify the operations for
certain problem domains. dSPIN is an extension of the SPIN model checker
with adds support for pointers, storage management, function calls and local
scopes [Hol97,IS99]. This made it more suitable than SPIN for a natural repre-
sentation of these algorithms.

The modeled state contains two representations of the set: one comprises a
linked list of cells whereas the other is summarized as a bit vector. The linked
list is updated as proposed here using atomic d step instructions to implement
CAS. The bit vector is checked or updated using further d steps at the proposed
linearization points.

The model was parameterized according to the number of concurrent threads,
the number of operations that each would attempt and the range of key values
that could be used. The two largest con�gurations we could practicably test were
with four threads, each performing one operation with three potential keys and
with two threads each performing two operations with four potential keys.

5.3 Practical Testing

The linearizability of the operations has also been tested pragmatically. Although
such tests cannot provide the assurances of formal methods they are nonethe-
less important because they avoid the need to make simplifying assumptions
for tractability. In particular, the use of relaxed memory models means that
the operations supported by a conventional shared memory machine are not
linearizable; a direct implementation is likely to fail without further memory
barrier instructions.

It is not generally possible to record actual timestamp values for arbitrary
operations within an running process. Instead, we surrounded the code exe-
cuted at each linearization point with further instructions to record coherent
per-processor cycle counts.

The resulting intervals were recorded to an in-memory log which was then
replayed sequentially in timestamp order. The results thus obtained were com-
pared with those from the concurrent execution. The replay program contains
simple heuristics to deal with overlapping intervals. If these cannot determine a
consistent linearized order then the replay program reports unresolved inconsis-
tencies for manual inspection and re-ordering.

6 Results

The algorithm described in Sect. 4 has been implemented in a combination of C
and SPARC V9 assembly language. We evaluated its performance on an E450

0

10

20

30

40

50

60

70

80

0 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

/ s
ec

on
ds

Number of threads

Mutex
Valois

New

Valois (ref-count)

New (ref-count)

0

2

4

6

8

10

12

0 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

/ s
ec

on
ds

Number of threads

Mutex

Valois

New

(a) All �ve algorithms operating with
keys in the range 0 : : : 255.

(b) Non-reference-counted algorithms
with keys 0 : : : 255.

0

1

2

3

4

5

6

0 2 4 6 8 10 12 14 16

C
P

U
 ti

m
e

/ s
ec

on
ds

Number of threads

Mutex

Valois

New

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16
C

P
U

 ti
m

e
/ s

ec
on

ds
Number of threads

Mutex

Valois

New

(c) Non-reference-counted algorithms
all operating on key 0.

(d) Non-reference-counted algorithms
on keys 0 : : : 8191.

Fig. 6. CPU time (user+system) accounted to the benchmark appliction for each algo-
rithm on a variety of workloads. In each case the x-axis shows the number of concurrent
threads.

server running Solaris 8 and �tted with four 400MHz SPARC V9 processors
and 4GB physical memory. It is worth emphasising that the code in Fig. 1-4
is intended merely as pseudo-code and does not reect an optimised (or even
necessarily correct) implementation. Processors may require additional memory
barriers { for example between initializing the �elds of a new node and intro-
ducing it into the list, or between the CAS that logically deletes a node and the
CAS that physically deletes it.

The test application compared our implementation against Valois' lock-free
algorithm and against a straightforward one in which the list is protected by
a mutual exclusion lock1. Both lock-free algorithms were evaluated with and
without reference-counting. All list cells were allocated ahead of time so that the
performance of particular memory allocation functions was not included in the

1 This comparison against a lock-based algorithm is somewhat unfair: the simpli�ed
programming model there makes it straightforward to implement a more eÆcient
data structure such as a tree or skiplist.

results. The code to manipulate reference-counts is based on Valois' as modi�ed
by Michael and Scott with the exception that reference counts are recursively
decremented when a cell is freed.

We generated a workload of insertion and deletion operations by randomly
choosing keys uniformly distributed within a particular range, selecting equiprob-
ably between insertions and deletions. We used per-thread linear congruential
random number generators with the same parameters as the lrand48 function
from the Solaris 8 libc library. Seeds were chosen to give non-overlapping series.

The test harness was parameterized on the algorithm to use, the number
of concurrent threads to operate and the range of keys that might be inserted
or deleted. In each case every thread performed 1 000 000 operations. Figure 6
shows the CPU accounted to the process as a whole for each of the algorithms
tested on a variety of workloads.

It is immediately apparent that our algorithm performs notably better for
every experiment using more than one thread. In the case of single-threaded
execution it outperforms Valois' algorithm in these tests and its performance
equals that the lock-based implementation. The relative performance compared
with Valois' algorithm is not surprising: we avoid the need to create, traverse
and excise auxilliary nodes.

In addition to the workloads presented in those graphs we also tested con-
�gurations with larger ranges of keys, or where the list was initially `primed'
with a long sequence of nodes that would never be deleted. In each case this
increased the total number of nodes in the list and thereby added to the cost of
retrying operations when CAS instructions fail. One fear was that the lock-free
algorithms would start to perform poorly because of the potential for multiple
retries. We studied workloads up to lists of 65536 elements and were unable to
�nd any con�guration for which the algorithms based on mutual-exclusion give
the best performance. We suspect that although each retry becomes more costly,
the likelihood of retries decreases as the rate of conicting updates falls.

Figure 6a shows the performance of reference-counted implementations. The
CPU requirements of Valois' algorithm are degraded by a factor of 5 in the
single-threaded case, rising to over 11 for sixteen threads. Similarly, the CPU
time required by our algorithms is degraded by a factor of 10 rising to over 15.
In each case this is a consequence of need to manipulate reference-counts (using
CAS operations) at each stage during a list's traversal. Valois reports that he
had originally intended to assume the use of a tracing garbage collector [Val01].

The performance of reference-count manipulation is hampered because the
SPARC processor does not provide atomic fetch-and-add. However, measure-
ments taken on a dual-processor Intel x86 machine (with that facility [PPr96])
suggest that the degradation is low when compared with the overall costs seen
here. When the reference counts lie on separate lines in the L1 data cache then
updates implemented through CAS are 10% slower than those using fetch-and-
add. This rises to a factor of 2 degredation when the two processors attempt to
update the same address.

Of course, our results are optimistic in that they do not consider the cost of
performing GC. However, as Jones and Lins write, if the size of the active data
structure is �xed then the cost of copying collectors may be reduced arbitrarily
at the expense of the total heap size [JL96]. More practically, they report that
overall costs of around 10-20% are typical in modern well-implemented systems.

We examined a further approach to storage reclamation based on the deferred
freeing of nodes. In this scheme each node contains an additional �eld through
which it can be linked onto a to-be-freed list when it is excised from the main
list. Each thread takes a snapshot of a global timer as its current time before
starting each operation. Entries are removed from a to-be-freed list when the
time of their excision precedes the minimum current time of any thread: at that
point no thread can still have a reference to the node held in any of its local
variables.

Our implementation allocates a pair of to-be-freed lists for each thread. These
are termed the old list and the new list and are held along with a separate per-
thread timer snapshot that is more recent than the excision time of any element
of the old list. When the minimum current time exceeds the snapshot then the
entire contents of the old list are freed and the elements of the new list are moved
to the old list.

This deferred freeing scheme introduces two principal overheads when com-
pared with the used of garbage collection. Firstly, a CAS operation is needed
to place nodes on a to-be-freed list { in our implementation this increased the
CPU requirements by 15% compared with the results from Fig. 6a operating
with 16 threads. The second overhead is the cost of removing elements from the
to-be-freed lists and establishing when it is safe to do so. This was a further
1% when performed every 1000 operations and 5% every 100, rising to 52% if
performed after every operation.

Figure 7 presents a further analysis of the run-time performance of the three
non-reference-counted algorithms, showing the distribution of execution-times
for four di�erent kinds of operation. These results were gathered when 8 concur-
rent threads performing insertions and deletions of keys in the range 0 : : : 255.
In the case of successful operations the lock-based implementation is able to
achieve lower execution times than either lock-free scheme. However, it is also
occasionally prone to much longer execution times which explain the higher mean
execution time suggested by Fig. 6.

The situation is somewhat di�erent for unsuccessful operations in that both
lock-free algorithms obtain some execution times which are lower than those of
the lock-based implementation { recall that unsuccessful operations may occur
without requiring any CAS operations or other updates to the data structure.

7 Delete Greater-than-or-equal

Now consider the problem of implementing a further operation of the form
DeleteGE(k) which returns and removes the smallest item that is greater than
or equal to k. It is tempting to implement this by modifying List::delete so

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s

Duration (cycles)

Mutex

Mutex

Valois

New

New

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s

Duration (cycles)

Mutex

New

Valois

Mutex

New

(a) Successful insertions (b) Unsuccessful insertions

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s

Duration (cycles)

Mutex

New

Valois

Mutex

New

0

500

1000

1500

2000

2500

3000

3500

100 1000 10000

N
um

be
r

of
 o

cc
ur

an
ce

s
Duration (cycles)

Mutex

New

Valois

Mutex

New

(c) Successful deletions (d) Unsuccessful deletions

Fig. 7. Operation-time distributions. Each graph shows execution times (in processor
cycles) on the x-axis and numbers of occurances on the y-axis.

that the test T1 does not fail if the key of the right node is greater than the
search key.

Unfortunately this implementation is not linearizable. Suppose that three
insertion operations are executed in sequence: Insert(20), Insert(15), Insert(20).
The �rst two succeed and the third must fail because 20 is already in the set.
However, consider a concurrent DeleteGE(10) operation, attempting to delete
any node with a key greater than or equal to 10. Concurrent execution may
proceed as follows:

{ List::deleteGE invokes List::search immediately after the �rst insertion
of 20. It takes the head of the list as the left node and the node containing
20 as the right.

{ The successful insertion of 15 occurs.

{ The unsuccessful insertion of 20 occurs, observing 15 as the key of its left
node and 20 as the key of its right node.

{ List::deleteGE(10) completes after logically deleting the node containing
20.

We must order this DeleteGE(10) operation such that its result of 20 would
be obtained by a sequential execution. This requires it to be placed before the
insertion of 15 because otherwise the key 15 should have been returned in prefer-
ence to 20. However, we must also linearize the deletion after the failed insertion
of 20 because otherwise that insertion would have succeeded. These constraints
are irreconcilable.

Intuitively the problem is that at the execution of C3 the right node need
not be the immediate successor of the left node. This was acceptable when
considering the basic Delete(k) operation because we were only concerned with
concurrent updates a�ecting nodes with the same key. Such an update must
have marked the right node and so C3 would have failed. In contrast, during the
execution of List::deleteGE, we must be concerned with updates to any nodes
whose keys are greater than or equal to the search key.

We can address this by retaining the implementation of List::deleteGE but
changing List::insert in such a way that C3 must fail whenever a new node
may have been inserted between the left and right nodes. This would mean that,
whenever C3 succeeds, the key of the right node must still be the smallest key
that is greater than or equal to the search key.

This is achieved by using a single CAS operation to (a) introduce a pair of new
nodes, one that contains the value being inserted and another that duplicates
the right node and (b) mark the original right node:

30

20 30

10H T

Such a CAS conceptually has two e�ects. Firstly, it introduces the new node
into the list: beforehand the next �eld of the successor is unmarked and there-
fore the right node must still be the successor of the left node. Secondly, by
marking the contents of that next �eld, the CAS will cause any concurrent
List::deleteGE with the same right node to fail. Note that the key of the
now-marked right node is not in the correct order. However, the existing imple-
mentations of List::search, List::delete, List::find and List::deleteGE

are written so that they do not rely on the correct ordering of marked nodes.

8 Conclusion

This paper has presented a new non-blocking implementation of linked lists. We
believe that the algorithms presented here are linearizable. They have also been
implemented and we have shown that their measured performance improves both
on previously published non-blocking data structures and also on a lock-based
implementation.

8.1 Acknowledgments

The work described in this paper was carried out during an internship with
the Java Technology Research Group at Sun Labs. The design presented here is

the result of much fruitful discussion with Dave Detlefs, Christine Flood, Alex
Garthwaite, Steve Heller, Nir Shavit and Guy Steele. The implementation and
evaluation have similarly bene�tted from feedback from Mike Burrows, Keir
Fraser, Steven Hand, Mark Moir and John Valois.

References

[ABP98] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling
for multiprogrammedmultiprocessors. In Proceedings of the 10th Annual ACM
Symposium on Parallel Algorithms and Architectures, pages 119{129, Puerto
Vallarta, Mexico, June 28{July 2, 1998. SIGACT/SIGARCH.

[GC96] Michael Greenwald and David Cheriton. The synergy between non-blocking
synchronization and operating system structure. In USENIX, editor, 2nd
Symposium on Operating Systems Design and Implementation (OSDI '96),
October 28{31, 1996. Seattle, WA, pages 123{136, Berkeley, CA, USA, Octo-
ber 1996. USENIX.

[Gre99] M Greenwald. Non-blocking synchronization and system design. PhD thesis,
Stanford University, August 1999. Technical report STAN-CS-TR-99-1624.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Program-
ming Languages and Systems, 13(1):124{149, January 1991.

[Her93] Maurice Herlihy. A methodology for implementing highly concurrent data ob-
jects. ACM Transactions on Programming Languages and Systems, 15(5):745{
770, November 1993.

[Hol97] Gerard J Holzmann. The moel checker SPIN. IEEE Transactions on Software
Engineering, 23(5):279{295, May 1997.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A correctness con-
dition for concurrent objects. ACM Transactions on Programming Languages
and Systems, 12(3):463{492, July 1990.

[IS99] Radu Iosif and Riccardo Sisto. dSPIN: A dynamic extension of SPIN. In
Proc. of the 6th International SPIN Workshop, volume 1680 of LNCS, pages
261{276. Springer-Verlag, September 1999.

[JL96] Richard Jones and Rafael Lins. Garbage Collection: Algorithms for Automatic
Dynamic Memory Management. John Wiley and Sons, July 1996.

[LaM94] Anthony LaMarca. A performance evaluation of lock-free synchronization
protocols. In Proceedings of the Thirteenth Symposium on Principles of Dis-
tributed Computing, pages 130{140, 1994.

[MP91] Henry Massalin and Calton Pu. A lock-free multiprocessor OS kernel. Tech-
nical Report CUCS-005-91, Columbia University, 1991.

[MS95] Maged M. Michael and Michael L. Scott. Correction of a memory management
method for lock-free data structures. Technical Report TR599, University of
Rochester, Computer Science Department, December 1995.

[PPr96] Pentium Pro Family Developer's Manual, volume 2, programmer's reference
manual. Intel Corporation, 1996. Reference number 242691-001.

[Val95] John D. Valois. Lock-free linked lists using compare-and-swap. In Proceed-
ings of the Fourteenth Annual ACM Symposium on Principles of Distributed
Computing, pages 214{222, Ottawa, Ontario, Canada, 2{23 August 1995.

[Val01] John D Valois. Personal communication. March 2001.

