
An Economic Approach to Adaptive Resource Management

Neil Stratford and Richard Mortier�

University of Cambridge Computer Laboratory, Cambridge, UK
fNeil.Stratford, Richard.Mortierg@cl.cam.ac.uk

Abstract

Resource management is a fundamental concept in operat-
ing system design. In recent years it has become fashion-
able to consider the problem as an aspect of heterogeneous
support for Quality of Service (‘QoS’). The desire for QoS
support leads to the dual management goals of global (sys-
tem) and local (application) optimisation. In this paper we
propose an architecture based on an economic model of re-
source management using frequently renegotiated timed re-
source contracts. We use dynamic pricing as a congestion
feedback mechanism to enable applications to make system
policy controlled adaptation decisions. We argue that this
scheme has many advantages over a traditional central re-
source management entity including scalability and appli-
cation specific adaptation.

1. Motivation

Resource management is the task undertaken by an op-
erating system to provide timely and correct allocation of
limited resources to applications according to some user
defined policy. Considering this as an optimisation task,
one can see that the operating system has the dual goals of
global (system) and local (application) optimisation across
multiple resources.

Global optimisationcorresponds to running an efficient
system, with the aim of maximising the user’s utility, where
a user’s utility is considered to be a linear combination of
the utilities of each of their applications. In the case of a
multi-user system, we consider the global optimum simi-
larly to be a linear combination of the optima of each user.
Local optimisationis performed per-application, and at-
tempts to enable an application to provide the highest qual-
ity output possible whilst fulfilling the users’ requirements,
and remaining within the constraint of the system’s finite
resources.

Managing the system’s resources in order to achieve
global and local optima is clearly a hard problem. The

�Supported by an EPSRC CASE award, in collaboration with BT.

desire to support QoS exacerbates this problem by intro-
ducing requirements of timeliness, along with the desire to
avoid cross-talk between applications. Further complica-
tions arise with the presence of adaptive applications which
may respond to their current resource allocation by adjust-
ing their behaviour in order to better fulfil the user’s re-
quests. Other approaches have either concentrated solely on
optimizing global performance, without consideration of lo-
cal performance, or on optimizing local performance, thus
achieving poor global performance.

Our approach consists of two phases:

� Low-level, firm or statistical guarantees of access to
resources by applications;

� Higher-level optimization across multiple resources,
and various time-scales, using feedback provided by
dynamic pricing.

1.1. Application Adaptation

The key to solving the resource management problem is
to provide support for differing types of application, includ-
ing those which are able to enter into some form of adapta-
tion, based on system and user policy. We refer to such ap-
plications asQoS-Adaptive. Two distinct classes of applica-
tion adaptation exist: user-triggered and resource-triggered.
In this paper we consider the latter—applications that re-
spond to resource availability in order to meet a fixed user
utility.

Currently the majority of adaptive applications only
adapt in reaction to variation in a single limited resource
(e.g. network bandwidth). These applications typically at-
tempt to maximise user utility by reducing quality in one
dimension (e.g. picture resolution) to increase a perceptu-
ally more important metric (e.g. frame-rate). However, due
to the many limited resources in an end-system it becomes
advantageous to develop applications that can adapt with re-
spect to multiple resources. This should allow greater over-
all utilization, but can give rise to complex tradeoffs.

Consider for example a ‘Movie Player’ application, play-
ing video from a CD-ROM and displaying it on the screen.



A traditionally adaptive application—see for example [4]—
might adapt solely in response to the CPU bandwidth avail-
able. However, if the format of the video on the disc is care-
fully chosen, adaptation across multiple resources becomes
possible; for example, between disc bandwidth, CPU band-
width and buffer memory. This allows for a spectrum of
operation modes, with each giving potentially similar util-
ity to the user.

In this case, resource management is then the task of se-
lecting from these multiple operation modes, with the aim
of achieving both the user’s desired utility,andmaximising
the amount of useful work that other applications may carry
out whilst this is occurring.

1.2. Conventional Approach

Traditional systems, such as variants of Unix, attempt to
solve the global optimisation problem solely through poli-
cies embedded in the kernel. Recently the resource allo-
cation problem forQoShas been approached by the intro-
duction of a centralQoS Manager[6, 8, 2]. This entity is
made responsible for both global and local optimisation of
resource allocation, requiring accurate, detailed models of
application behaviour. Various approximations to the solu-
tion are then obtained according to user policies. In general,
this approach has several major drawbacks:

� Application model description is complex and it is
hard to find a model that is suitable for all current ap-
plications. Experience suggests that it isnot possible
to predict a model suitable for future applications. It is
also desirable to present as simple an interface to the
user as possible, ideally through reduction of require-
ments to a single, simple parameter.

� Centralised QoS management attempts to solve a hard
optimisation problem given constraints not only un-
known to the system, but also inherently incomplete.

� Centralised management does not scale well across
multiple cooperating hosts.

� Co-scheduling artifacts make resource demand hard to
predict; an application’s demand for a resource de-
pends not only on the application and the other re-
sources it requires, but also on the demands of other
applications for any of the system’s resources.

� Resource demand depends on inputs that are under
control of the user, and therefore external to the sys-
tem and very hard to model.

In this paper we present a new resource management
architecture that enables the resource allocation and man-
agement task to be distributed among applicationsand the

resources themselvesin a controlled and scalable manner.
This work is very much in progress and involves many re-
search challenges. We present our current thoughts in the
area.

2. Architecture Overview

We believe that there should be a clear distinction be-
tween local and global optimisation. Rather than approach-
ing the resource allocation problem by considering the sys-
tem as a whole, we propose to break the system up into
applicationsthat are involved in negotiating their own re-
source allocations, andresource managers; these are then
responsible for their own local optimisation. By correctly
setting up these local optimisation problems it should be
possible to achieve close to global optimisation as a side-
effect of the local optimisations.

The basic mechanism that we propose to use is that of
resource pricing[3, 7, 5]. Each resource manager is re-
sponsible for maximising its revenue, which is generated
by sellingresource contractsto applications. Applications
are responsible for maximising their utility (and thus the
user-perceived utility) by purchasing and trading resource
contracts. Applications are provided withcredits from a
User Agent, renewable over a given time-scale. User agents
are responsible for implementing the policy of a particu-
lar user of the system. In a multi-user system there may
exist system-wide policy which imposes limits on the cred-
its allocated to particular user agents. Figure 1 depicts an
overview of the architecture.

The separation between local and global optimisation
has several clear advantages over the traditional centralised
approach. Each application in this model is responsible for
its own utility function, so there is no requirement to specify
a limited form of this function to any external agent (e.g. a
central QoS-Manager). This enables application specific
forms of adaptation that may be developed by the appli-
cation’s writers. It is our belief that only an application’s
writers are in a position to understand the specific resource
requirements and potential tradeoffs that an application may
make. Application resource access requirements should be
translated by the application itself into system specific pa-
rameters, through the use of a QoS-Translation library. This
library may be provided by the system, presenting a stan-
dard interface, or supplied by the application itself, allow-
ing for more complex application specific parameters (such
as feedback queue lengths) to be taken into consideration.

Section 3 provides a detailed description of contracts,
their specification, pricing, trading, and negotiation. Sec-
tion 4 discusses the function of user agents in the architec-
ture and Section 5 gives a description of how the system
may be used to support differing types of application. Fi-
nally, Sections 6 and 7 present related work and some con-



Adaptive
Application

Resource Scheduler

Resource
Manager

Scheduler
Parameters

Resource
Contract

User Agent

Negotiation
Library

Resource Scheduler

Resource
Manager

Scheduler
Parameters

Resource
Contract

Current
Price

Current
Price

Policy

User
Interface User

Contract

Current
Price

QoS
Translation

Library

Figure 1. Architecture Overview.

clusions.

3. Contracts

The basic unit of negotiation in this system is thecon-
tract. Contracts come in two types:

User Agent-Application Contract These are between the
user agent, implementing the user’s policy, and an ap-
plication. They are specified in terms of an application
specific QoS specification, a credit allocation (Cuser)
and a time-period over which that allocation will be
renewed (Tuser).

Application-Resource Contract These are between an
application and a resource manager. They are speci-
fied in some platform and resource specific manner.

3.1. Application-Resource Contract Specification

An application-resource contractis specified in a plat-
form and resource specific manner and is obtained from
the application’s higher level QoS requirements by trans-
lation through aQoS-Translation Library. In addition the
application-resource contract is specified with a given time
span over which it remains valid. An example of this style
of platform dependent application-resource contract is a 3-
tuple for the CPU resource,(p; s; t) [9]. Herep is a schedul-
ing period measured in milliseconds during which the ap-
plication is guaranteed aslice, s milliseconds, of CPU time,
repeated over the length of the contract,t seconds. The
slice that the application is guaranteed may be allocated at
any point within the period, and this time of allocation may
change between periods; only the proportion allocated is
guaranteed. It is platform specific in that the required slice
and period parameters for a given application QoS will vary

over different platforms. Note that this is only one instance
of an application-resource contract for the CPU; we envis-
age others.

There are many possibilities for development of QoS-
Translation libraries having varying degrees of indepen-
dence from application and user involvement. In general a
translation library will need to employ a measurement and
feedback mechanism. One such possible translation scheme
borrows from the field of call admission control in ATM net-
works and is based on observations of past application be-
haviour [1]. Another scheme based on control theory, using
application level parameters such as queue lengths, is pre-
sented in [15]. It is the application writers’ decision to select
or develop a suitable QoS-Translation library for their spe-
cific purpose. We expect however that many applications
will utilise the interfaces presented by the system transla-
tion libraries provided to hide the scheduling parameters of
specific resource managers.

The resource manager is responsible for setting the price
of the contract to reflect the load that it will impose on the
resource for the full duration of the contract. Longer term
contracts would be expected to cost more to purchase, due
to the problem of unforeseen future demand. This will en-
courage applications to renegotiate, thus increasing global
utility; see Section 3.3 for further discussion of contract
trading. The resource manager is also responsible for set-
ting the underlying resource scheduler parameters, based on
the contracts into which it has entered. We do not impose a
parameter set for the resource schedulers since this is highly
dependent on the scheduling algorithm chosen and the the
resource in question.

Contract renewal will occur at various time-scales. We
expect user agent-application contracts to be renewed at
time-scales of the order of seconds and application-resource
contracts to be re-negotiated of the order of tens or hundreds
of milliseconds. Scheduling is likely to take place at time-
scales of single milliseconds.

3.2. Contract Pricing

Resource managers are required to price resource con-
tracts when they are presented with requests from applica-
tions. Applications may present requests periodically, either
for the renewal of contracts, or as probes for the current
price, pending adaptation.

Any suitable resource pricing algorithm must therefore
satisfy the following properties:

� Efficiency. It will be activated relatively often and thus
should not consume significant resource.

� Stability. It is highly desirable that the system remain
stable with respect to pricing fluctuations. Inflation is
a situation that probably should be avoided, although



it may prove useful as an indication to the owner that
it is time to expand the system.

� Independence of time-scale. It is desirable that the
contracts in such a system are not fixed to a particular
duration. Applications should be able to specify con-
tracts of varying lengths, dependent on their require-
ments, and resource managers should be able to spec-
ify maximum contract lengths, which may change as
the system evolves.

In general, the idea behind resource pricing is to provide
the user and application with incentives to act in a manner
compatible with other users and applications getting work
done whilst maintaining high resource utilization. This is
achieved by the feedback mechanism of pricing—as a re-
source becomes more congested, its price rises, encourag-
ing users to move to less congested resources and poten-
tially providing a revenue stream for increasing the capacity
of the congested resource, identifiable by its higher price.

3.3. Contract Trading

In order to support adaptation, applications may be al-
lowed to sell resource associated with the remaining part
of contracts back to the relevant Resource Manager, at
a “fair” price. Applications that wish to enter into fine-
grained adaptation over multiple resources will track the
current contract prices and trade their contracts to maximise
their utility functions. With a suitable pricing structure this
should result in demand shifting from congested resources
to less congested resources, since the less congested re-
sources should be cheaper. To those applications that cannot
adapt in any meaningful sense trading is unlikely to be of
any use, and the effect will be of a simple admission control
system. This aspect is discussed further in Section 5.

We envisage the use of third-party resource traders for
various purposes. The provision of shared library code,
shared data, and shared caches needs to be charged for in
some way. One possibility is to assign ownership of these
shared resources to a third-party, and have that third-party
charge for use by application of some pricing algorithm. It
should also be noted that, as contract trading is likely to
use resources itself, the pricing structure used should make
this explicit. This should help to damp the system, prevent-
ing resource being wasted by continually trading contracts,
without applications ever being able to use the resource as-
sociated with them for real work.

3.4. Contract Negotiation Library

Highly adaptive applications will wish to enter into ne-
gotiation with resource managers in some application spe-
cific manner using specially developed algorithms. These

algorithms will be able to use application specific knowl-
edge, such as progress indicators and traffic parameter es-
timation, in making negotiation decisions. However, many
applications will either not require complex adaptation sup-
port, or will be legacy applications that have been written
to some other QoS-Negotiation interface. We provide sup-
port for such applications by providing a set of negotiation
libraries that will enter into negotiation for resources on the
application’s behalf.

A negotiation library is responsible for tracking the cur-
rent price of all resources and reacting in accordance with
application supplied parameters. This is most sensibly im-
plemented as a call-back notification mechanism that is in-
voked when the price leaves a certain, specified range. Note
that it is only the price that will fluctuate through demand,
and not the level of received resource access throughout the
length of a contract.

As an example, consider an application written for a sys-
tem with a centralised QoS-Manager that accepts quality
mode definitions from applications; for instance [12]. A
suitable negotiation library will provide the interface tradi-
tionally presented by the QoS-Manager to the application,
and will be informed of the application’s operating modes.
The application may then purchase resources to enable it to
achieve the best mode available to it at the present time. The
user-agent’s credit allocation is effectively mapped onto the
old-style modal definition by the QoS-Negotiation library.
Using similar techniques we can support many types of
legacy applications, including those that have no concept
of adaptation or different modes of operation.

4. User Agent

Theuser agentis an application that acts on behalf of a
user with the aim of implementing policy decisions. It pe-
riodically supplies credits to each of the applications that
it oversees, including itself—it is an application, and must
therefore also purchase application-resource contracts. To
reflect user policy it may change both the allocation of cred-
its to a given application and the period over which this al-
location is renewed. The user agent can affect application
behaviour in a variety of ways.

Reducing the allocation of credits has the effect of re-
ducing the importance of the application in the system. This
may result in the application adapting its behaviour, possi-
bly decreasing the quality of its output with respect to other
applications. The application is responsible for communi-
cating the cost of its current quality level to the user agent,
providing information that can be used in policy decision
making.

Adjusting the period (Tuser) over which new credits
(Cuser) are allocated to an application effects the length and
type of contract the application is able to purchase. If this



period is long, an application may purchase long-term con-
tracts and therefore not need to adapt as resource conditions
vary (it may however choose to trade contracts to increase
its utility). Alternatively if this period is short, the applica-
tion will be forced to adapt more frequently, reflecting the
user’s preference concerning the stability of output quality.

These parameters provide mechanisms for the user agent
to apply policy, while still enabling applications to re-
spond in application specific ways—ultimate control of an
application’s behaviour in the face of scarce resource re-
mains with the application’s writers. Applications are free
to renegotiate individual resource contracts at any period
Tapp and for any level of resource, subject to the constraint
Tapp � Tuser .

In general a user agent will be extremely simplistic.
Many users prefer to make policy decisions themselves and
would act as their own agent. The user agent in our archi-
tecture is a placeholder to allow experimentation with the
issues involved. As a simple example, using this architec-
ture it is easy to develop a user agent that takes into account
user preferences when allocating credits. Such preferences
could include the application with window-focus receiving
more resource, and those that are occluded receiving less.
We intend to experiment with some of these user interface
issues in future work, in addition to the more basic user
agent and resource manager issues.

5. Application Support

Traditional batch style applications (such as compilers)
may be allocated credits at a rate according to their impor-
tance to the user. The application will use the credits from
its allocation to buy a contract for the allocation period with
as high a resource level as possible.

Interactive applications that require low latency access
to resources for short periods of time may be supported by
purchasing contracts with associated statistical guarantees.
These provide only a statistical bound on the likelihood of
violating a contract parameter. Such guarantees enable the
system to exploit the gains of statistical multiplexing while
providing some predictable level of service. The resource
manager will price such contracts according to some mea-
sure of the load that they will place on the resource. We
also envisage the possibility of interdependent contracts be-
tween multiple resource managers, possibly through the use
of a third-party trader. We intend to use such contracts to
experiment with resource co-scheduling.

Soft real-time applications that require some form of as-
surance are expected to purchase long-term contracts for
the desired resource level. The user agent should use a
very long period of allocation for such applications. This
will give the application the firm guarantees it requires to
achieve the desired QoS.

Finally, modern highly adaptive applications will be able
to make full use of this system. They will initially buy con-
tracts for the maximum length of the allocation period, and
then trade them as resource prices vary, in order to increase
their utility. This will allow them to make better use of the
resources that the system currently has available, while still
providing the user with the QoS they require.

6. Related Work

Resource management is a fundamental task of an oper-
ating system and has received much attention in the litera-
ture. Adaptive resource management has been addressed by
both the QoS and the Mobile Application community in de-
tail, with different goals in mind. Much of the recent work
in the QoS community has advocated the construction of a
centralised resource management entity. This work includes
AQUA [8], the QoS-Broker [10], the Resource Planner in
Rialto [6] and Q-RAM [13]. In general each application
specifies a set of valid operating modes and a utility value
for each mode. It is then the task of the resource manager
to perform global and local optimisation of the system. We
argue that it is possible to construct a distributed resource
management system based on simple economic models to
provide congestion feedback and policy control.

Applying economic models to resource management is
not a new idea in itself, having been sporadically attempted
over the past thirty years. An excellent overview of recent
work in the area is presented in [3]. Of particular relevance
is [17] which shares motivation with our work, but differs
through our development of a contract based architecture.
We believe that frequent firm light-weight contract renego-
tiation is the correct way to provide for application level
adaptation stability. Similar ideas have also been applied
to the Mariposa database system at Berkeley [16] for query
resource allocation.

Work in the field of mobility has also addressed the
adaptive resource management problem. An example is
Odyssey [11] which presents a scheme that is complemen-
tary to our work. Odyssey advocates the use ofApplication-
Aware Adaptation, which is similar to our separation of lo-
cal and global concerns, and makes the applications them-
selves responsible for adaptation decisions, based on re-
source availability feedback from the system. However,
Odyssey chooses to abandon resource reservations and
guarantees completely, whereas we believe them to be im-
portant for stability.

7. Conclusions

This paper has presented a novel approach to the prob-
lem of resource management in modern resource controlled



operating systems. We believe that the distribution of work
between the applications and the individual resources leads
to a scalable and functional solution. The application of re-
source pricing provides incentives for adaptation algorithms
by giving feedback on the current levels of congestion at
each resource to the applications causing the congestion.
We are currently developing multimedia applications that
can react to such information and adapt their resource usage
behaviour away from congested resources to lightly loaded
resources. We believe that there is interesting research to
be done to enable support for cross-resource adaptation, in
both the system support and application development are-
nas.

Although initial use of this architecture is in the end-
system, we believe that similar ideas could be applied to
server systems where real customers will be paying real
money for real resource; for example, in a Xenoservers sys-
tem [14]. The concept of contracts is essential in such a sys-
tem to enable the provision of predictable levels of service.
Dynamic pricing of individual resources should provide in-
centives for clients to make efficient use of the system. In
addition it should also maximise the revenue of the owners.
In essence we have generalised resource pricing as carried
out on multi-user mainframe systems, and are using it on a
shorter time-scale to influence the per-resource scheduling
decisions.

This work is far from complete and introduces many new
research challenges. The key to a successful system will
be in obtaining a sensible balance between efficiency and
complexity.

References

[1] P. Barham, S. Crosby, T. Granger, N. Stratford, M. Huggard,
and F. Toomey. Measurement based resource allocation for
multimedia applications. InProceedings of the Multimedia
Computing and Networking Conference, SPIE Volume 3310,
1998.

[2] S. Chatterjee, J. Sydir, and B. Sabata. Modeling applications
for adaptive QoS-based resource management. InProceed-
ings of High Assurance Systems Engineering Workshop, Au-
gust 1997.

[3] S. H. Clearwater, editor.Market-Based Control, A Paradigm
for Distributed Resource Allocation. World Scientific, 1996.

[4] C. L. Compton and D. L. Tennenhouse. Collaborative
load shedding for media-based applications. InProceed-
ings of the Workshop on the Role of Real-Time in Multime-
dia/Interactive Computing Systems, November 1993.

[5] C. Courcoubetis and V. A. Siris. An evaluation of pricing
schemes that are based on effective usage. Technical Report
214, Institute of Computer Science (ICS), Foundation for
Research and Technology, Hellas (FORTH), February 1998.

[6] M. Jones, P. Leach, R. Draves, and J. Barrera. Modular real-
time resource management in the Rialto operating system. In

Proceedings of the 5th Workshop on Hot Topics in Operating
Systems (HotOS-V), May 1995.

[7] F. P. Kelly. Charging and rate control for elastic traffic.Euro-
pean Transactions on Telecommunications, 8:33–37, 1997.

[8] K. Laksham and R. Yavatkar. Integrated CPU and network-
I/O QoS management in an endsystem. InProceedings
of the Fifth International Workshop on Quality of Service
(IWQOS’97), 1997.

[9] I. M. Leslie, D. McAuley, R. Black, T. Roscoe, P. Barham,
D. Evers, R. Fairbairns, and E. Hyden. The design and im-
plementation of an operating system to support distributed
multimedia applications.IEEE Journal on Selected Areas In
Communications, 14(7):1280–1297, September 1996. Arti-
cle describes state in May 1995.

[10] K. Nahrstedt and J. M. Smith. The QoS Broker.IEEE Mul-
timedia, 1995.

[11] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. R. Walker. Agile application aware adapta-
tion for mobility. In Proccesings of the 16th ACM Sympo-
sium on Operating System Principles, October 1997.

[12] D. Oparah. Adaptive resource management in a multime-
dia operating system. InProceedings of the 8th Interna-
tional Workshop on Network and Operating System Support
for Digital Audio and Video, July 1998.

[13] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A
resource allocation model for QoS management. InPro-
ceedings of The 18th IEEE Real-Time Systems Symposium,
1997.

[14] D. Reed, I. Pratt, S. Early, P. Menage, and N. Stratford.
Xenoservers: Accountable execution of untrusted programs.
In Proceedings of the 7th Workshop on Hot Topics in Oper-
ating Systems (HotOS-VII), March 1999.

[15] D. C. Steere, A. Goel, J. Gruenberg, D. McNamee, C. Pu,
and J. Walpole. A feedback-driven proportion allocator
for real-rate scheduling. InProceedings of the 3rd Sym-
posium on Operating System Design and Implementation
(OSDI’99), February 1999.

[16] M. Stonebraker, R. Devine, M. Kornacker, W. Litwin, A. Pf-
effer, A. Sah, and C. Staelin. An economic paradigm for
query processing and data migration in mariposa. Technical
Report 49, University of California, Berkley, April 1994.

[17] C. A. Waldspurger and W. E. Weihl. An object-oriented
framework for modular resource management. InProceed-
ings of the Fifth Workshop on Object-Orientation in Operat-
ing Systems (IWOOOS ’96), October 1996.


