
Chapter 1

LABEL Forwarding

1.1 Introduction
In this report, we demonstrate the implementation of LABEL forwarding algorithm in
Haggle framework.

1.2 LABEL forwarding strategy
In real world, people from the same affiliation/community tends to meet more fre-
quently than people outside the affiliation/community. The LABEL forwarding strat-
egy has been proposed to find a good forwarders to relay messages to the other mem-
bers in the same affiliation/community.

The LABEL is a simple forwarding strategy. Here we assume that each node has
a LABEL, which is used to indicate its community. The internal algorithm always
forwards messages to destinations, or to next-hop nodes belonging to the same label as
the destinations (as shown in Algorithm 1) .

for each EncounteredNode do1

if LabelOf(EncounteredNode) == LabelOf(destination) then2

SetAsDelegates(EncounteredNode);3

end4

end5

Algorithm 1: How to write algorithms

The advantage of LABEL forwarding strategy is that it requires very little routing
information and is easy to be implemented.

1.3 Implementation
Haggle provides a framework to run Delay and Tolerant Networks (DTNs) or Oppor-
tunistic Networks. Haggle framework has been chosen as the base architecture for our
LABEL forwarding strategy. Our LABEL implementation has been developed specif-
ically for the Linux testbed. The source code has been released via the Google code
repository in http://code.google.com/p/haggle-label/.

2



The key implementation relies in Haggle kernel, which is in charge of managing
the forwarding, network, connectivity, contacts, neighbours and more. At the moment,
the Haggle kernel only supports Prophet forwarding module1 as default. We aimed at
replacing the Prophet forwarding module with our LABEL module.

In line with the Haggle framework, the ForwarderLabel class is inherited from
the ForwarderAsynchronous class, and implements some functions as indicated in the
Forwarder class (see Figure 1.1).

The following functions are implemented in ForwarderLabel class:

• newRoutingInformation() parses metadata containing metrics received from neigh-
bor.

1 boo l F o r w a r d e r L a b e l : : n e w R o u t i n g I n f o r m a t i o n ( )
2 {
3

4 i f ( t h i s i s new node )
5 add n o d e i d t o i d t o s t r i n g t a b l e ;
6

7 w h i l e ( R o u t i n g I n f o r m a t i o n ) {
8

9 R o u t i n g I n f o r m a t i o n−>g e t P a r a m e t e r (LABEL) ;
10

11 s ave t h e n o d e i d and LABEL p a r a m e t e r t o r o u t i n g t a b l e ;
12

13 go t o n e x t R o u t i n g I n f o r m a t i o n ;
14

15 }
16

17 r e t u r n t r u e ;
18 }

Listing 1.1: newRoutingInformation()

• addRoutingInformation() adds new routing information that you want to give to
neighbor.

1 boo l F o r w a r d e r L a b e l : : a d d R o u t i n g I n f o r m a t i o n ( )
2 {
3

4 Add n o d e i d t o R o u t i n g I n f o r m a t i o n ;
5

6 Add myLabel t o R o u t i n g I n f o r m a t i o n ;
7

8 r e t u r n t r u e ;
9

10 }

Listing 1.2: addRoutingInformation()

• generateDelegatesFor() generates a list of neighbors that are good forwarders
for the target. The other targets parameter is a list of already found targets. It
returns delegates in an event.

1 vo id F o r w a r d e r L a b e l : : g e n e r a t e D e l e g a t e s F o r ( )
2 {

1However, there is currently no dynamic module loading in Haggle. ForwarderLabel module is made
default by replacing the ForwarderProphet.

3



ForwarderLabel

+ myLabel
+ myRank
+ myNodeId
+ myNodeStr
+ hostname
+ kernel
+ nodeid_to_id_number
+ id_number_to_nodeid
+ next_id_number
+ rib
+ rib_timestamp

+ getSaveState()
+ setSaveState()
+ id_from_string()
+ newRoutingInformation()
+ addRoutingInformation()
+ _newNeighbor()
+ _endNeighbor()
+ _generateTargetsFor()
+ _generateDelegatesFor()
+ _onForwarderConfig()
+ ForwarderLabel()
+ ~ForwarderLabel()

ForwarderAsynchronous

- eventType
- taskQ

+ ForwarderAsynchronous()
+ ~ForwarderAsynchronous()
+ quit()
+ newRoutingInformation()
+ newNeighbor()
+ endNeighbor()
+ generateTargetsFor()
+ generateDelegatesFor()
+ generateRoutingInformationDataObject()
+ _onForwarderConfig()
+ onForwarderConfig()
# newRoutingInformation()
# _newNeighbor()
# _endNeighbor()
# _generateTargetsFor()
# _generateDelegatesFor()
- run()

Forwarder

# max_generated_delegates
# max_generated_targets

+ Forwarder()
+ ~Forwarder()
+ quit()
+ createRoutingInformationDataObject()
+ hasRoutingInformation()
+ getNodeIdFromRoutingInformation()
+ getRoutingInformation()
+ isTarget()
+ addRoutingInformation()
+ newRoutingInformation()
+ newNeighbor()
+ endNeighbor()
+ generateDelegatesFor()
+ generateTargetsFor()
+ generateRoutingInformationDataObject()
+ getSaveState()
+ setSaveState()
+ onForwarderConfig()
+ onConfig()

Figure 1.1: Inheritance diagram for ForwarderLabel

4



3

4 c r e a t e s o r t e d d e l e g a t e l i s t ;
5

6 g e t t h e t a r g e t i d ;
7

8 g e t t h e t a r g e t l a b e l ;
9

10 f o r ( each node i n r o u t i n g t a b l e )
11 {
12 i f ( node i s n o t t a r g e t && node i s n o t c u r r e n t n o d e ) {
13

14 i f ( n e i g h b o r L a b e l == t a r g e t L a b e l ) ==0)
15 {
16 i n s e r t node i n t o s o r t e d d e l e g a t e l i s t ;
17 }
18 }
19 }
20 }
21

22 s o r t ( s o r t e d d e l e g a t e l i s t ) ;
23

24 k e r n e l−>addEvent (EVENT TYPE DELEGATE NODES) ;
25

26 }

Listing 1.3: generateDelegatesFor()

• generateTargetsFor() generates a list of targets that a neighbor is a good delegate
for. Return targets in an event.

In LABEL the routing table is a mapping between node id and LABEL. Each node
will maintain a table like this. As long as the nodes exchange the routing information,
It will send it LABEL to each other. When it receiving new routing information, the
nodes will add a new node id and LABEL to its new routing table. The implementation
of LABEL algorithm has been built on delegation forwarding. Finally the nodes which
are created as quality of the node as relay are generated as the delegates.

5



Chapter 2

ForwarderLabel Class

2.1 ForwarderLabel Class Attributes
A number of data structures are defined in ForwarderLabel Class.

• LABEL T myLabel

• RANK T myRank

• bubble node id t myNodeId

• string myNodeStr

• char hostname [HOSTNAME LEN]

• HaggleKernel ∗ kernel

• Map< string, bubble node id t > nodeid to id number

• Map< bubble node id t, string > id number to nodeid

• bubble node id t next id number

• bubble rib t rib

• Timeval rib timestamp

2.1.1 char ForwarderLabel::hostname[HOSTNAME LEN]
The hostname stores the hostname for this node.

2.1.2 HaggleKernel∗ ForwarderLabel::kernel
The kernel is a haggle kernel structure.

2.1.3 LABEL T ForwarderLabel::myLabel
The myLabel stores the LABEL information for this node.

6



2.1.4 bubble node id t ForwarderLabel::myNodeId
The myNodeId stores the NodeId for this node.

2.1.5 string ForwarderLabel::myNodeStr
The myNodeStr stores the StringId for this node.

2.1.6 bubble node id t ForwarderLabel::next id number
The next id number is the id number which is free to be used.

2.1.7 Map<string, bubble node id t> ForwarderLabel::nodeid -
to id number

The nodeid to id number is a mapping structure used to convert from the NodeStringId
to the NodeId

2.1.8 bubble rib t ForwarderLabel::rib
The rib is the local forwarding metrics table.

2.1.9 Map<bubble node id t, string> ForwarderLabel::id -
number to nodeid

The id number to nodeid is a mapping structure used to convert from the NodeId to
the NodeStringId

2.1.10 Timeval ForwarderLabel::rib timestamp
The rib timestamp stores the time information

2.2 ForwarderLabel Class Member Functions
ForwarderLabel class inherits a number of member functions from the super class.

• size t getSaveState (RepositoryEntryList &rel)

• bool setSaveState (RepositoryEntryRef &e)

• bubble node id t id from string (const string &nodeid)

• bool newRoutingInformation (const Metadata ∗m)

• bool addRoutingInformation (DataObjectRef &dObj, Metadata ∗parent)

• void newNeighbor (const NodeRef &neighbor)

• void endNeighbor (const NodeRef &neighbor)

• void generateTargetsFor (const NodeRef &neighbor)

7



• void generateDelegatesFor (const DataObjectRef &dObj, const NodeRef &tar-
get, const NodeRefList ∗other targets)

• void onForwarderConfig (const Metadata &m)

• ForwarderLabel (ForwardingManager ∗m=NULL, const EventType type=-1)

• ∼ForwarderLabel ()

2.2.1 Constructor and Destructor Functions
Constructor is called every time you create ForwarderLabel module, and destructor is
called every time you destroy ForwarderLabel module.

2.2.2 ForwarderLabel::ForwarderLabel ( ForwardingManager ∗
m = NULL, const EventType type = -1 )

2.2.3 ForwarderLabel::∼ForwarderLabel ( )

2.2.4 Class Member Function

2.2.5 void ForwarderLabel:: newNeighbor ( const NodeRef &
neighbor ) [virtual]

The newNeighbor is called when a neighbor node is discovered.

2.2.6 void ForwarderLabel:: endNeighbor ( const NodeRef &
neighbor ) [virtual]

The endNeighbor called when a node just ended being a neighbor.

2.2.7 void ForwarderLabel:: generateDelegatesFor ( const
DataObjectRef & dObj, const NodeRef & target, const
NodeRefList ∗ other targets ) [virtual]

The generateDelegatesFor function generates an EVENT TYPE DELEGATE NODES
event to provide all the nodes that are good delegate forwarders for the given node.

This function is given a target to which to send a data object, and answers the
question: To which delegate forwarders can I send the given data object, so that it will
reach the given target?

If no nodes are found, no event should be created.

2.2.8 void ForwarderLabel:: generateTargetsFor ( const NodeRef
& neighbor ) [virtual]

The generateTargetsFor function generates an EVENT TYPE TARGET NODES event
to provide all the target nodes that the given node is a good delegate forwarder for.

This function is given a current neighbor, and answers the question: For which
nodes is the given node a good delegate forwarder?

If no nodes are found, no event should be created.

8



2.2.9 void ForwarderLabel:: onForwarderConfig ( const
Metadata & m ) [virtual]

The onForwarderConfig function reads the configuration from config.xml file.

2.2.10 bool ForwarderLabel::addRoutingInformation (
DataObjectRef & dObj, Metadata ∗ parent )
[virtual]

The addRoutingInformation function is used to generate the Metadata containing rout-
ing information which is specific for that forwarding module.

2.2.11 bool ForwarderLabel::newRoutingInformation ( const
Metadata ∗ m ) [virtual]

The newRoutingInformation function is used when a data object has come in that has
a ”Routing” attribute.

Also called for each such data object that is in the data store on startup.
Since the format of the data in such a data object is unknown to the forwarding

manager, it is up to the forwarder to make sure the data is in the correct format.
Also, the given metric data object may have been sent before, due to limitations in

the forwarding manager.

2.2.12 size t ForwarderLabel::getSaveState (
RepositoryEntryList & rel ) [virtual]

The getSaveState function gets saved forwarding metrics table

2.2.13 bool ForwarderLabel::setSaveState ( RepositoryEntryRef
& e ) [virtual]

getSaveState function saves forwarding metrics table

2.2.14 bubble node id t ForwarderLabel::id from string ( const
string & nodeid )

The id from string function get the bubble node id t from the NodeStringId. If the
bubble node id t wasn’t in the map to begin with, it is inserted, along with a new id
number.

9



Index

∼ForwarderLabel
ForwarderLabel, 8

endNeighbor
ForwarderLabel, 8

generateDelegatesFor
ForwarderLabel, 8

generateTargetsFor
ForwarderLabel, 8

newNeighbor
ForwarderLabel, 8

onForwarderConfig
ForwarderLabel, 8

addRoutingInformation
ForwarderLabel, 9

ForwarderLabel
∼ForwarderLabel, 8
endNeighbor, 8
generateDelegatesFor, 8
generateTargetsFor, 8
newNeighbor, 8
onForwarderConfig, 8

addRoutingInformation, 9
ForwarderLabel, 8
getSaveState, 9
hostname, 6
id from string, 9
id number to nodeid, 7
kernel, 6
myLabel, 6
myNodeId, 6
myNodeStr, 7
newRoutingInformation, 9
next id number, 7
nodeid to id number, 7
rib, 7
rib timestamp, 7
setSaveState, 9

getSaveState

ForwarderLabel, 9

hostname
ForwarderLabel, 6

id from string
ForwarderLabel, 9

id number to nodeid
ForwarderLabel, 7

kernel
ForwarderLabel, 6

myLabel
ForwarderLabel, 6

myNodeId
ForwarderLabel, 6

myNodeStr
ForwarderLabel, 7

newRoutingInformation
ForwarderLabel, 9

next id number
ForwarderLabel, 7

nodeid to id number
ForwarderLabel, 7

rib
ForwarderLabel, 7

rib timestamp
ForwarderLabel, 7

setSaveState
ForwarderLabel, 9

10


	LABEL Forwarding
	Introduction
	LABEL forwarding strategy
	Implementation

	ForwarderLabel Class
	ForwarderLabel Class Attributes
	hostname
	kernel
	myLabel
	myNodeId
	myNodeStr
	next_id_number
	nodeid_to_id_number
	rib
	id_number_to_nodeid
	rib_timestamp

	ForwarderLabel Class Member Functions
	Constructor and Destructor Functions
	ForwarderLabel
	ForwarderLabel
	Class Member Function
	_newNeighbor
	_endNeighbor
	_generateDelegatesFor
	_generateTargetsFor
	_onForwarderConfig
	addRoutingInformation
	newRoutingInformation
	getSaveState
	setSaveState
	id_from_string





