
Chapter 1

BUBBLE Forwarding

1.1 Introduction
In this report, we demonstrate the implementation of BUBBLE forwarding algorithm
in Haggle framework.

1.2 BUBBLE forwarding strategy
BUBBLE is a delegation forwarding strategy which combines both LABEL and RANK.
Here we assume that each node has two metrics, i.e. LABEL and RANK. The BUB-
BLE forwarding strategy observes the community structure with LABEL and the cen-
trality of nodes with RANK and then decides the best forwarding node. The one simple
BUBBLE algorithm can be described in Algorithm 1.

for each EncounteredNode do1

if LabelOf(EncounteredNode) == LabelOf(DestinationNode) AND2

RANKOf(EncounteredNode) > RANKOf(CurrentNode) then3

SetAsDelegates(EncounteredNode);4

end5

end6

Algorithm 1: BUBBLE forwarding algorithm

1.3 Implementation
Our BUBBLE implementation has been developed specifically for the Linux testbed.
Haggle framework has been chosen as the framework for our BUBBLE1 forwarding
strategy. The key implementation relies in Haggle kernel, which is in charge of man-
aging the forwarding, network, connectivity, contacts, neighbours and more. At the
moment, the Haggle kernel only supports Prophet forwarding module2 as default. We

1The source code has been released via the Google code repository in http://code.google.com/p/haggle-
cambridge/.

2However, there is currently no dynamic module loading in Haggle. ForwarderBubble module is made
default by replacing the ForwarderProphet.

1

aimed at replacing the Prophet forwarding module with our BUBBLE module. The file
structure of our implementation is shown in 1.1.

ForwarderBubble.h

ForwarderAsynchronous.h

libcpphaggle/String.h

libcpphaggle/Map.h

Forwarder.h DataObject.h Node.h libcpphaggle/Mutex.h libcpphaggle/GenericQueue.h haggleutils.h

ManagerModule.h ForwardingManager.h RepositoryEntry.h Metadata.h

Figure 1.1: File structure for ForwarderBubble

In line with the Haggle framework, the ForwarderBubble class is inherited from
the ForwarderAsynchronous class, and implements some functions as indicated in the
Forwarder class (see Figure 1.2).

In BUBBLE the routing table is a mapping between node id and the metrics, i.e.,
LABEL and RANK. Each node will maintain a routing table. As long as the nodes
exchange the routing information, It will exchange the metrics with each other. When
receiving new routing information, the nodes will add a new node id and the metrics
to its new routing table. The implementation of BUBBLE algorithm has been built on
delegation forwarding. Finally the nodes which are created as relay node are generated
as the delegates.

The following functions are implemented in ForwarderBubble class:

• newRoutingInformation() parses metadata containing metrics received from neigh-
bor.

1 boo l Forwarde rBubb le : : n e w R o u t i n g I n f o r m a t i o n ()
2 {
3

4 i f (t h i s i s new node)
5 add n o d e i d t o i d t o s t r i n g t a b l e ;
6

7 w h i l e (R o u t i n g I n f o r m a t i o n) {
8

9 R o u t i n g I n f o r m a t i o n−>g e t P a r a m e t e r (RANK) ;
10

11 R o u t i n g I n f o r m a t i o n−>g e t P a r a m e t e r (LABEL) ;
12

13 s ave t h e node id , LABEL and RANK p a r a m e t e r s t o t h e m e t r i c
t a b l e ;

14

15 go t o n e x t R o u t i n g I n f o r m a t i o n ;
16

17 }
18

19 r e t u r n t r u e ;
20 }

Listing 1.1: newRoutingInformation()

• addRoutingInformation() adds new routing information that you want to give to
neighbor.

2

ForwarderBubble

+ myLabel
+ myRank
+ myNodeId
+ myNodeStr
+ hostname
+ nodeid_to_id_number
+ id_number_to_nodeid
+ next_id_number
+ rib
+ rib_timestamp

+ getSaveState()
+ setSaveState()
+ id_from_string()
+ newRoutingInformation()
+ addRoutingInformation()
+ _newNeighbor()
+ _endNeighbor()
+ _generateTargetsFor()
+ _generateDelegatesFor()
+ _printRoutingTable()
+ _onForwarderConfig()
+ ForwarderBubble()
+ ~ForwarderBubble()

ForwarderAsynchronous

- eventType
- taskQ

+ ForwarderAsynchronous()
+ ~ForwarderAsynchronous()
+ quit()
+ newRoutingInformation()
+ newNeighbor()
+ endNeighbor()
+ generateTargetsFor()
+ generateDelegatesFor()
+ generateRoutingInformationDataObject()
+ _onForwarderConfig()
+ onForwarderConfig()
newRoutingInformation()
_newNeighbor()
_endNeighbor()
_generateTargetsFor()
_generateDelegatesFor()
- run()

Forwarder

max_generated_delegates
max_generated_targets

+ Forwarder()
+ ~Forwarder()
+ quit()
+ createRoutingInformationDataObject()
+ hasRoutingInformation()
+ getNodeIdFromRoutingInformation()
+ getRoutingInformation()
+ isTarget()
+ addRoutingInformation()
+ newRoutingInformation()
+ newNeighbor()
+ endNeighbor()
+ generateDelegatesFor()
+ generateTargetsFor()
+ generateRoutingInformationDataObject()
+ getSaveState()
+ setSaveState()
+ onForwarderConfig()
+ onConfig()

Figure 1.2: Inheritance diagram for ForwarderBubble

3

1 boo l Forwarde rBubb le : : a d d R o u t i n g I n f o r m a t i o n ()
2 {
3

4 Add n o d e i d t o R o u t i n g I n f o r m a t i o n ;
5

6 Add myRANK t o R o u t i n g I n f o r m a t i o n ;
7

8 Add myLABEL t o R o u t i n g I n f o r m a t i o n ;
9

10 r e t u r n t r u e ;
11

12 }

Listing 1.2: addRoutingInformation()

• generateDelegatesFor() generates a list of neighbors that are good forwarders for
the target. The other targets parameter is a list of already found targets. It returns
delegates in an event.

1 vo id Forwarde rBubb le : : g e n e r a t e D e l e g a t e s F o r ()
2 {
3

4 c r e a t e s o r t e d d e l e g a t e l i s t ;
5

6 g e t t h e currentRANK ;
7

8 g e t t h e delegateRANK ;
9

10 g e t t h e n e i g h b o r L a b e l ;
11

12 g e t t h e t a r g e t L a b e l ;
13

14 f o r (each node i n r o u t i n g t a b l e)
15 {
16 i f (node i s n o t t a r g e t && node i s n o t c u r r e n t n o d e) {
17

18 i f (n e i g h b o r L a b e l == t a r g e t L a b e l && delegateRANK>
currentRANK)

19 {
20 i n s e r t node i n t o s o r t e d d e l e g a t e l i s t ;
21 }
22 }
23 }
24

25 s o r t (s o r t e d d e l e g a t e l i s t) ;
26

27 k e r n e l−>addEvent (EVENT TYPE DELEGATE NODES) ;
28

29 }

Listing 1.3: generateDelegatesFor()

• generateTargetsFor() generates a list of targets that a neighbor is a good delegate
for. Return targets in an event.

4

Chapter 2

ForwarderBubble Class

2.1 ForwarderBubble Class Reference

Public Member Functions
• size t getSaveState (RepositoryEntryList &rel)

• bool setSaveState (RepositoryEntryRef &e)

• bubble node id t id from string (const string &nodeid)

• bool newRoutingInformation (const Metadata ∗m)

• bool addRoutingInformation (DataObjectRef &dObj, Metadata ∗parent)

• void newNeighbor (const NodeRef &neighbor)

• void endNeighbor (const NodeRef &neighbor)

• void generateTargetsFor (const NodeRef &neighbor)

• void generateDelegatesFor (const DataObjectRef &dObj, const NodeRef &tar-
get, const NodeRefList ∗other targets)

• void printRoutingTable (void)

• void onForwarderConfig (const Metadata &m)

• ForwarderBubble (ForwardingManager ∗m=NULL, const EventType type=-1)

• ∼ForwarderBubble ()

Public Attributes
• LABEL T myLabel

• RANK T myRank

• bubble node id t myNodeId

• string myNodeStr

5

• char hostname [HOSTNAME LEN]

• Map< string, bubble node id t > nodeid to id number

• Map< bubble node id t, string > id number to nodeid

• bubble node id t next id number

• bubble rib t rib

• Timeval rib timestamp

2.1.1 Detailed Description
Forwarding module based on LABEL and RANK algorithms

Definition at line 51 of file ForwarderBubble.h.

2.1.2 Constructor & Destructor Documentation
ForwarderBubble::ForwarderBubble (ForwardingManager ∗ m = NULL, const
EventType type = -1)

ForwarderBubble::∼ForwarderBubble ()

2.1.3 Member Function Documentation
void ForwarderBubble:: endNeighbor (const NodeRef & neighbor)
[virtual]

The endNeighbor called when a node just ended being a neighbor.
Reimplemented from ForwarderAsynchronous.

void ForwarderBubble:: generateDelegatesFor (const DataObjectRef & dObj,
const NodeRef & target, const NodeRefList ∗ other targets) [virtual]

The generateDelegatesFor function generates an EVENT TYPE DELEGATE NODES
event to provide all the nodes that are good delegate forwarders for the given node. This
function is given a target to which to send a data object, and answers the question: To
which delegate forwarders can I send the given data object, so that it will reach the
given target? If no nodes are found, no event should be created.

Reimplemented from ForwarderAsynchronous.

void ForwarderBubble:: generateTargetsFor (const NodeRef & neighbor)
[virtual]

The generateTargetsFor function generates an EVENT TYPE TARGET NODES event
to provide all the target nodes that the given node is a good delegate forwarder for. This
function is given a current neighbor, and answers the question: For which nodes is the
given node a good delegate forwarder? If no nodes are found, no event should be
created.

Reimplemented from ForwarderAsynchronous.

6

void ForwarderBubble:: newNeighbor (const NodeRef & neighbor)
[virtual]

The newNeighbor is called when a neighbor node is discovered.
Reimplemented from ForwarderAsynchronous.

void ForwarderBubble:: onForwarderConfig (const Metadata & m)
[virtual]

The onForwarderConfig function reads the configuration from config.xml file.
Reimplemented from ForwarderAsynchronous.

void ForwarderBubble:: printRoutingTable (void)

The printRoutingTable function prints the routing table in debug mode.

bool ForwarderBubble::addRoutingInformation (DataObjectRef & dObj,
Metadata ∗ parent) [virtual]

The addRoutingInformation function is used to generate the Metadata containing rout-
ing information which is specific for that forwarding module.

Reimplemented from Forwarder.

size t ForwarderBubble::getSaveState (RepositoryEntryList & rel)
[virtual]

getSaveState function gets saved forwarding metrics table.
Reimplemented from Forwarder.

bubble node id t ForwarderBubble::id from string (const string & nodeid)

id from string function get the bubble node id t from the NodeStringId. If the bubble -
node id t wasn’t in the map to begin with, it is inserted, along with a new id number.

bool ForwarderBubble::newRoutingInformation (const Metadata ∗ m)
[virtual]

The newRoutingInformation function is used when a data object has come in that has
a ”Routing” attribute. Also called for each such data object that is in the data store on
startup. Since the format of the data in such a data object is unknown to the forward-
ing manager, it is up to the forwarder to make sure the data is in the correct format.
Also, the given metric data object may have been sent before, due to limitations in the
forwarding manager.

Reimplemented from ForwarderAsynchronous.

bool ForwarderBubble::setSaveState (RepositoryEntryRef & e) [virtual]

getSaveState function saves forwarding metrics table.
Reimplemented from Forwarder.

7

2.1.4 Member Data Documentation
char ForwarderBubble::hostname[HOSTNAME LEN]

MyHostname is the hostname for this node.

Map<bubble node id t, string> ForwarderBubble::id number to nodeid

id number to nodeid is used to convert table from the NodeId to the NodeStringId.

LABEL T ForwarderBubble::myLabel

MyLabel is the LABEL for this node.

bubble node id t ForwarderBubble::myNodeId

MyNodeId is the bubble node id t for this node.

string ForwarderBubble::myNodeStr

MyNodeStringId is the string id for this node.

RANK T ForwarderBubble::myRank

MyRank is the RANK for this node.

bubble node id t ForwarderBubble::next id number

next id number is free to be used.

Map<string, bubble node id t> ForwarderBubble::nodeid to id number

HaggleKernel is the kernel handler. / HaggleKernel ∗kernel;
/∗∗ nodeid to id number is used to convert table from the NodeStringId to the

NodeId.

bubble rib t ForwarderBubble::rib

This is the local forwarding metrics table.

Timeval ForwarderBubble::rib timestamp

The timestamp for local forwarding metrics.
The documentation for this class was generated from the following file:

• ForwarderBubble.h

8

Index

∼ForwarderBubble
ForwarderBubble, 6

endNeighbor
ForwarderBubble, 6

generateDelegatesFor
ForwarderBubble, 6

generateTargetsFor
ForwarderBubble, 6

newNeighbor
ForwarderBubble, 6

onForwarderConfig
ForwarderBubble, 7

printRoutingTable
ForwarderBubble, 7

addRoutingInformation
ForwarderBubble, 7

ForwarderBubble, 5
∼ForwarderBubble, 6
endNeighbor, 6
generateDelegatesFor, 6
generateTargetsFor, 6
newNeighbor, 6
onForwarderConfig, 7
printRoutingTable, 7

addRoutingInformation, 7
ForwarderBubble, 6
getSaveState, 7
hostname, 8
id from string, 7
id number to nodeid, 8
myLabel, 8
myNodeId, 8
myNodeStr, 8
myRank, 8
newRoutingInformation, 7
next id number, 8
nodeid to id number, 8
rib, 8
rib timestamp, 8

setSaveState, 7

getSaveState
ForwarderBubble, 7

hostname
ForwarderBubble, 8

id from string
ForwarderBubble, 7

id number to nodeid
ForwarderBubble, 8

myLabel
ForwarderBubble, 8

myNodeId
ForwarderBubble, 8

myNodeStr
ForwarderBubble, 8

myRank
ForwarderBubble, 8

newRoutingInformation
ForwarderBubble, 7

next id number
ForwarderBubble, 8

nodeid to id number
ForwarderBubble, 8

rib
ForwarderBubble, 8

rib timestamp
ForwarderBubble, 8

setSaveState
ForwarderBubble, 7

9

	BUBBLE Forwarding
	Introduction
	BUBBLE forwarding strategy
	Implementation

	ForwarderBubble Class
	ForwarderBubble Class Reference
	Detailed Description
	Constructor & Destructor Documentation
	Member Function Documentation
	Member Data Documentation

