
Summer Course Technion, Haifa, IL 2015 1

NetFPGA Summer Course

Presented by:
Noa Zilberman
Yury Audzevich

Technion
August 2 – August 6, 2015

http://NetFPGA.org

Summer Course Technion, Haifa, IL 2015 2

Section I: I/O Architectures

Summer Course Technion, Haifa, IL 2015 3

Reference NIC project
4x port NIC architecture:

H
os

t s
ys

te
m

PC
I e

nd
po

in
t

D
ire

ct
M

em
or

y
A

cc
es

s
10GE

10GE

10GE

10GE

In
pu

t
A

rb
ite

r

O
ut

pu
t

Po
rt

 L
oo

ku
p

O
ut

pu
t

Q
ue

ue
s

A
XI

In
te

rc
on

ne
ct

Summer Course Technion, Haifa, IL 2015 4

Host architecture

Legacy vs. Recent (courtesy of Intel)

Summer Course Technion, Haifa, IL 2015 5

Interconnecting components
• Need interconnections between

– CPU, memory, I/O controllers
• Bus: shared communication channel

– Parallel set of wires for data and
synchronization of data transfer

– Can become a bottleneck
• Performance limited by physical factors

– Wire length, number of connections
• More recent alternative: high-speed serial

connections with switches
– Like networks

Summer Course Technion, Haifa, IL 2015 6

Bus Types

• Processor-Memory buses
– Short, high speed
– Design is matched to memory organization

• I/O buses
– Longer, allowing multiple connections
– Specified by standards for interoperability
– Connect to processor-memory bus through a

bridge

Summer Course Technion, Haifa, IL 2015 7

I/O System Characteristics
• Performance measures

– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Dependability
– Particularly for storage devices (fault avoidance,

fault tolerance, fault forecasting)

Summer Course Technion, Haifa, IL 2015 8

I/O Management and strategies
• I/O is mediated by the OS

– Multiple programs share I/O resources
• Need protection and scheduling

– I/O causes asynchronous interrupts
• Same mechanism as exceptions

– I/O programming is fiddly
• OS provides abstractions to programs

Strategies characterize the amount of work done by the
CPU in the I/O operation:

• Polling
• Interrupt Driven
• Direct Memory Access

Summer Course Technion, Haifa, IL 2015 9

Programmed I/O
• Periodically check I/O status register

– If device ready, do operation
– If error, take action

• Common in small or low-performance real-time
embedded systems
– Predictable timing
– Low hardware cost

• Wastes CPU time

Summer Course Technion, Haifa, IL 2015 10

Interrupts
• When a device is ready or error occurs

– Controller interrupts CPU
• Interrupt is like an exception

– But not synchronized to instruction execution
– Can invoke handler between instructions
– Cause information often identifies the

interrupting device
• Priority interrupts

– Devices needing more urgent attention get
higher priority

– Can interrupt handler for a lower priority
interrupt

Summer Course Technion, Haifa, IL 2015 11

Direct memory access
DMA is the hardware mechanism that allows peripheral
components to transfer their I/O data directly to and from main
memory (usually bounded) without the need to involve the
system processor of individual transfers.

• CPU “programs” DMA with
range of block and memory
location

• CPU when interrupted, checks
errors & programs the new
operation

Summer Course Technion, Haifa, IL 2015 12

Direct memory access (cont.)
Scatter/gather DMAs are a special type of streaming DMAs:

• Handle cases when there are several discontinuous buffers,
all of which need to be transferred to or from the device

• Devices accept a scatterlist of array pointers and lengths, and
transfer them all in one DMA operation

• Good for "zero-copy" networking since packets can be built in
multiple pieces

Summer Course Technion, Haifa, IL 2015 13

Section II: PCI Express

Summer Course Technion, Haifa, IL 2015 14

PCIe introduction
• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the

PCIe interconnect
• Supports credit-based point-to-point flow control (not end-to-end)

Provides:
• processor independence &

buffered isolation

• Bus mastering

• Plug and Play operation

Summer Course Technion, Haifa, IL 2015 15

PCIe transaction types
• Memory Read or Memory Write. Used to transfer data from or

to a memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O
location

• Configuration Read or Configuration Write. Used to
discover device capabilities, program features, and check status in the
4KB PCI Express configuration space.

• Messages. Handled like posted writes. Used for event
signaling and general purpose messaging.

Summer Course Technion, Haifa, IL 2015 16

PCIe architecture

Summer Course Technion, Haifa, IL 2015 17

Interrupt Model
PCI Express supports three interrupt reporting
mechanisms:

1. Message Signaled Interrupts (MSI)

- interrupt the CPU by writing to a specific address in memory with a
payload of 1 DW

2. Message Signaled Interrupts - X (MSI-X)

- MSI-X is an extension to MSI, allows targeting individual interrupts to
different processors

3. INTx Emulation

- four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller

Summer Course Technion, Haifa, IL 2015 18

Section III: RIFFA DMA

Summer Course Technion, Haifa, IL 2015 19

Reference NIC project
4x port NIC architecture:

H
os

t s
ys

te
m

PC
I e

nd
po

in
t

D
ire

ct
M

em
or

y
A

cc
es

s
10GE

10GE

10GE

10GE

In
pu

t
A

rb
ite

r

O
ut

pu
t

Po
rt

 L
oo

ku
p

O
ut

pu
t

Q
ue

ue
s

A
XI

In
te

rc
on

ne
ct

Summer Course Technion, Haifa, IL 2015 20

RIFFA
RIFFA (Reusable Integration Framework for FPGA
Accelerators)
• Developed by UCSD

• RIFFA has been tested with both Altera and Xilinx devices

• Driver supports Windows and Linux OSes

• Provide bindings for C/C++, Python, MATLAB and Java

• Latest generation of the original engine

• At the moment supports only Gen 2.0 PCIe

• Github: https://github.com/drichmond/riffa

Summer Course Technion, Haifa, IL 2015 21

RIFFA Overview

achieves 76% of the theoretical max

Summer Course Technion, Haifa, IL 2015 22

RIFFA architecture
 Data Abstraction / DMA Layer is

responsible for making requests to
read data from, or write data to host
memory

 SG DMA Layer: reading from and
writing to scatter gather lists;
supplying addresses to data-
request logic

 Formatting Engine Layer is
responsible for formatting requests
and completions into packets.

 Translation Layer provides a set of
vendor-independent interfaces and
signal names

 Vendor IP interfaces provide low-
level access to the PCIe bus

Summer Course Technion, Haifa, IL 2015 23

RIFFA Data transfer example

FPGA -> Host Host-> FPGA

Summer Course Technion, Haifa, IL 2015 24

RIFFA Data transfer example (cont.)

1) User wants to make a of transfer 128 32-bit words;
2) The RIFFA driver writes {32'd128} to Channel 0's RX Length register, and {31'd0,1'b1} to Channel
0's RX OffLast register
3) The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at address
{64'h0000_ 0000_ BEEF_ 0000}
4) The driver fills the list with the length and address of the user data: {32'd0,32'd128,64'h0000_
0000_ FEED_ 0000}
5) driver communicates the address and length of the SGL by writing
{32'hBEEF0000} to Channel 0's RX SGL Address Low register, {32'd0} to Channel
0's RX SGL Address High register, and {32'd4} to Channel 0's RX SGL Length register
6) SG List Requester on the FPGA issues a read request for 4 32-bit starting at address 0xBEEF0000
7) The FPGA receieves a completion with 4 32-bit words
8) RX Port Reader removes the SG element from the FIFO, and issues several read requests to receive
all 128 32-bit words. Compl are reordered in reorder buffer.
9) RIFFA raises an interrupt with the last word of data put into main FIFO. driver reads the Interrupt
Status Register of the FPGA and determines that Channel 0 has nished the RX Transaction

Note: each channel has its own
SG DMA list logic

Host SEND case

Summer Course Technion, Haifa, IL 2015 25

Networking with RIFFA
SUME RIFFA driver:

 RIFFA DMA engine design dominated

 Single BAR for info and transfer programming

 2 channels: 1 for packets, 1 for registers

 Single interrupt

 Single global lock

 Supports 1..4 ports, Ethernet interfaces named nf<n>

Summer Course Technion, Haifa, IL 2015 26

Networking with RIFFA (cont.)
Packets – CHANNEL 0

• First PCIe channel (De)Multiplexes
ports to interfaces and vice versa
based on 128bit meta data

• Currently uses a 4k temporary buffer
per direction currently (with 16bit
offset for 32bit L3 alignment, will DMA
directly to “skb” data area in the
future)

• 1 packet per DMA transaction

IOCTL (Register r/w) – CHANNEL 1
• Based on an interface of the card (can

have multiple cards)
• Uses standard struct ifreq with struct

sume_ifreq data pointer
• Supports read write operations on

registers (see: nf_sume.h, rwaxi tool)
• Second PCIe channel
• Only one outstanding register r/w

possible at a time
• Writing initiates full DMA transaction

with address, value, and 0x1f STRB
• Read is like a write with 0x00 STRB,

followed by a 2nd DMA transaction to
read value back

• Each read/write goes through similar
DMA transfer cycle packet data goes
through

Summer Course Technion, Haifa, IL 2015 27

Section III: An alternative DMA design

Summer Course Technion, Haifa, IL 2015 28

Reference NIC project
4x port NIC architecture:

H
os

t s
ys

te
m

PC
I e

nd
po

in
t

D
ire

ct
M

em
or

y
A

cc
es

s
10GE

10GE

10GE

10GE

In
pu

t
A

rb
ite

r

O
ut

pu
t

Po
rt

 L
oo

ku
p

O
ut

pu
t

Q
ue

ue
s

A
XI

In
te

rc
on

ne
ct

Summer Course Technion, Haifa, IL 2015 29

UAM DMA
Build by University Autonoma Madrid (UAM) in collaboration with

NetFPGA’s Cambridge team

• Supports PCIe Gen 3.0 x8 speeds

• Designed to be extremely lightweight and easy to understand

• Tailored for Xilinx platform only

• Designed for virtualized environments (SR-IOV)

• Has been tested on Linux platform

Summer Course Technion, Haifa, IL 2015 30

DMA Architecture

Summer Course Technion, Haifa, IL 2015 31

DMA Architecture (cont.)

Summer Course Technion, Haifa, IL 2015 32

SW/HW perspective

Summer Course Technion, Haifa, IL 2015 33

SW/HW perspective (cont.)

Summer Course Technion, Haifa, IL 2015 34

Future plans

• The initial tests show 40Gbps+ throughput
achieved with one channel

• Network driver extensions

• Part of next release of NetFPGA platform

Summer Course Technion, Haifa, IL 2015 35

Section IX: Conclusion

Summer Course Technion, Haifa, IL 2015 36

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,
G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul

Hartke, Neda Beheshti, Sara Bolouki, James Zeng,
Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

Acknowledgments (I)

NetFPGA Team at Stanford University (Past and Present):

NetFPGA Team at University of Cambridge (Past and Present):
Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik

Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,
Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi,
Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

All Community members (including but not limited to):
Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,

Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller ,
Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque,

Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Summer Course Technion, Haifa, IL 2015 37

Acknowledgements (II)

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this
project.
This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

