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Section I: I/O Architectures 



Summer Course Technion, Haifa, IL 2015 3

Reference NIC project
4x port NIC architecture:
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Host architecture

Legacy vs. Recent (courtesy of Intel)



Summer Course Technion, Haifa, IL 2015 5

Interconnecting components
• Need interconnections between

– CPU, memory, I/O controllers
• Bus: shared communication channel

– Parallel set of wires for data and 
synchronization of data transfer

– Can become a bottleneck
• Performance limited by physical factors

– Wire length, number of connections
• More recent alternative: high-speed serial 

connections with switches
– Like networks
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Bus Types

• Processor-Memory buses
– Short, high speed
– Design is matched to memory organization

• I/O buses
– Longer, allowing multiple connections
– Specified by standards for interoperability
– Connect to processor-memory bus through a 

bridge
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I/O System Characteristics
• Performance measures

– Latency (response time)
– Throughput (bandwidth)
– Desktops & embedded systems

• Mainly interested in response time & diversity of devices
– Servers

• Mainly interested in throughput & expandability of devices

• Dependability
– Particularly for storage devices (fault avoidance, 

fault tolerance, fault forecasting)
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I/O Management and strategies
• I/O is mediated by the OS

– Multiple programs share I/O resources
• Need protection and scheduling

– I/O causes asynchronous interrupts
• Same mechanism as exceptions

– I/O programming is fiddly
• OS provides abstractions to programs

Strategies characterize the amount of work done by the 
CPU in the I/O operation:

• Polling
• Interrupt Driven
• Direct Memory Access
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Programmed I/O
• Periodically check I/O status register

– If device ready, do operation
– If error, take action

• Common in small or low-performance real-time 
embedded systems
– Predictable timing
– Low hardware cost

• Wastes CPU time
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Interrupts
• When a device is ready or error occurs

– Controller interrupts CPU
• Interrupt is like an exception

– But not synchronized to instruction execution
– Can invoke handler between instructions
– Cause information often identifies the 

interrupting device
• Priority interrupts

– Devices needing more urgent attention get 
higher priority

– Can interrupt handler for a lower priority 
interrupt
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Direct memory access
DMA is the hardware mechanism that allows peripheral 
components to transfer their I/O data directly to and from main 
memory (usually bounded) without the need to involve the 
system processor of individual transfers.

• CPU “programs” DMA with
range of block and memory
location

• CPU when interrupted, checks 
errors & programs the new 
operation
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Direct memory access (cont.)
Scatter/gather DMAs are a special type of streaming DMAs:

• Handle cases when there are several discontinuous buffers, 
all of which need to be transferred to or from the device

• Devices accept a scatterlist of array pointers and lengths, and 
transfer them all in one DMA operation

• Good for "zero-copy" networking since packets can be built in 
multiple pieces
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Section II: PCI Express
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PCIe introduction
• PCIe is a serial point-to-point interconnect between two devices

• Implements packet based protocol (TLPs) for information transfer
• Scalable performance based on # of signal Lanes implemented on the 

PCIe interconnect
• Supports credit-based point-to-point flow control (not end-to-end) 

Provides:
• processor independence & 

buffered isolation

• Bus mastering

• Plug and Play operation
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PCIe transaction types
• Memory Read or Memory Write. Used to transfer data from or 

to a  memory mapped location

• I/O Read or I/O Write. Used to transfer data from or to an I/O 
location

• Configuration Read or Configuration Write. Used to 
discover device capabilities, program features, and check status in the 
4KB PCI Express configuration space.

• Messages. Handled like posted writes. Used for event 
signaling and general purpose messaging.
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PCIe architecture
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Interrupt Model
PCI Express supports three interrupt reporting 
mechanisms:

1. Message Signaled Interrupts (MSI)

- interrupt the CPU by writing to a specific address in memory with a 
payload of 1 DW 

2. Message Signaled Interrupts - X (MSI-X)

- MSI-X is an extension to MSI, allows targeting individual interrupts to 
different processors

3. INTx Emulation

- four physical interrupt signals INTA-INTD are messages upstream

- ultimately be routed to the system interrupt controller



Summer Course Technion, Haifa, IL 2015 18

Section III: RIFFA DMA 
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Reference NIC project
4x port NIC architecture:
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RIFFA
RIFFA (Reusable Integration Framework for FPGA 
Accelerators)
• Developed by UCSD 

• RIFFA has been tested with both Altera and Xilinx devices

• Driver supports Windows and Linux OSes

• Provide bindings for C/C++, Python, MATLAB and Java

• Latest generation of the original engine

• At the moment supports only Gen 2.0 PCIe

• Github: https://github.com/drichmond/riffa
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RIFFA Overview

achieves 76% of the theoretical max
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RIFFA architecture
 Data Abstraction / DMA Layer is 

responsible for making requests to 
read data from, or write data to host 
memory

 SG DMA Layer: reading from and 
writing to scatter gather lists; 
supplying addresses to data-
request logic 

 Formatting Engine Layer is 
responsible for formatting requests 
and completions into packets.

 Translation Layer provides a set of 
vendor-independent interfaces and 
signal names

 Vendor IP interfaces provide low-
level access to the PCIe bus
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RIFFA Data transfer example

FPGA -> Host Host-> FPGA
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RIFFA Data transfer example (cont.)

1) User wants to make a  of transfer 128 32-bit words;
2) The RIFFA driver writes {32'd128} to Channel 0's RX Length register, and {31'd0,1'b1} to Channel 
0's RX OffLast register
3) The RIFFA driver allocates an SGL with 1 element (4 32-bit words) at address
{64'h0000_ 0000_ BEEF_ 0000}
4) The driver fills the list with the length and address of the user data: {32'd0,32'd128,64'h0000_ 
0000_ FEED_ 0000}
5) driver communicates the address and length of the SGL by writing
{32'hBEEF0000} to Channel 0's RX SGL Address Low register, {32'd0} to Channel
0's RX SGL Address High register, and {32'd4} to Channel 0's RX SGL Length register
6) SG List Requester on the FPGA issues a read request for 4 32-bit starting at address 0xBEEF0000
7) The FPGA receieves a completion with 4 32-bit words
8) RX Port Reader removes the SG element from the FIFO, and issues several read requests to receive 
all 128 32-bit words. Compl are reordered in reorder buffer.
9) RIFFA raises an interrupt with the last word of data put into main FIFO. driver reads the Interrupt 
Status Register of the FPGA and determines that Channel 0 has nished the RX Transaction

Note: each channel has its own 
SG DMA list logic

Host SEND case
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Networking with RIFFA
SUME RIFFA driver:

 RIFFA DMA engine design dominated

 Single BAR for info and transfer programming

 2 channels: 1 for packets, 1 for registers

 Single interrupt

 Single global lock

 Supports 1..4 ports, Ethernet interfaces named nf<n>
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Networking with RIFFA (cont.)
Packets – CHANNEL 0

• First PCIe channel (De)Multiplexes 
ports to interfaces and vice versa 
based on 128bit meta data

• Currently uses a 4k temporary buffer 
per direction currently (with 16bit 
offset for 32bit L3 alignment, will DMA 
directly to “skb” data area in the 
future)

• 1 packet per DMA transaction

IOCTL (Register r/w) – CHANNEL 1
• Based on an interface of the card (can 

have multiple cards)
• Uses standard struct ifreq with struct

sume_ifreq data pointer
• Supports read write operations on 

registers (see: nf_sume.h, rwaxi tool)
• Second PCIe channel
• Only one outstanding register r/w 

possible at a time
• Writing initiates full DMA transaction 

with address, value, and 0x1f STRB
• Read is like a write with 0x00 STRB, 

followed by a 2nd DMA transaction to 
read value back

• Each read/write goes through similar 
DMA transfer cycle packet data goes 
through
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Section III: An alternative DMA design 
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Reference NIC project
4x port NIC architecture:
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UAM DMA
Build by University Autonoma Madrid (UAM) in collaboration with 

NetFPGA’s Cambridge team

• Supports PCIe Gen 3.0 x8 speeds 

• Designed to be extremely lightweight and easy to understand

• Tailored for Xilinx platform only

• Designed for virtualized environments (SR-IOV)

• Has been tested on Linux platform
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DMA Architecture
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DMA Architecture (cont.)
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SW/HW perspective
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SW/HW perspective (cont.)
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Future plans

• The initial tests show 40Gbps+ throughput 
achieved with one channel  

• Network driver extensions

• Part of next release of NetFPGA platform
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Section IX: Conclusion 
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