
Summer Course Technion, Haifa, IL 2015 1

NetFPGA Summer Course

Presented by:

Noa Zilberman

Yury Audzevich

Technion

August 2 – August 6, 2015

http://NetFPGA.org

Summer Course Technion, Haifa, IL 2015 2

Day 1 Outline

• The NetFPGA platform

– Introduction

– Overview of the NetFPGA

Platform

• NetFPGA SUME

– Hardware overview

• Network Review

– Basic IP review

• The Base Reference Switch

– Example I: Reference switch

running on the NetFPGA

• The Life of a Packet Through

the NetFPGA

– Hardware Datapath

– Interface to software: Exceptions

and Host I/O

• Infrastructure

– Tree

– Verification Infrastructure

• Examples of Using NetFPGA

• Example Project: Crypto

Switch

– Introduction to a Crypto Switch

– What is an IP core?

– Getting started with a new

project.

– Crypto FSM

• Simulation and Debug

– Write and Run Simulations for

Crypto Switch

• Concluding Remarks

Summer Course Technion, Haifa, IL 2015 3

Section I: The NetFPGA platform

Summer Course Technion, Haifa, IL 2015 4

NetFPGA = Networked FPGA

A line-rate, flexible, open networking

platform for teaching and research

Summer Course Technion, Haifa, IL 2015 5

NetFPGA Family of Boards

NetFPGA-1G (2006)

NetFPGA-1G-CML (2014)

NetFPGA-10G (2010)

NetFPGA SUME (2014)

Summer Course Technion, Haifa, IL 2015 6

NetFPGA consists of…

Four elements:

• NetFPGA board

• Tools + reference designs

• Contributed projects

• Community

Summer Course Technion, Haifa, IL 2015 7

FPGA

Memory

10GbE

10GbE

10GbE

10GbE

NetFPGA board

PCI-Express

CPU Memory

PC with NetFPGA

Networking

Software

running on a

standard PC

A hardware

accelerator

built with Field

Programmable

Gate Array

driving 1/10/

100Gb/s

network links

Summer Course Technion, Haifa, IL 2015 8

Tools + Reference Designs

Tools:

• Compile designs

• Verify designs

• Interact with hardware

Reference designs:

• Router (HW)

• Switch (HW)

• Network Interface Card (HW)

• Router Kit (SW)

• SCONE (SW)

Summer Course Technion, Haifa, IL 2015 9

Community

Wiki

• Documentation

– User’s Guide “so you just got your first NetFPGA”

– Developer’s Guide “so you want to build a …”

• Encourage users to contribute

Forums

• Support by users for users

• Active community - 10s-100s of posts/week

Summer Course Technion, Haifa, IL 2015 10

International Community

Over 1,200 users, using over 3500 cards at

150 universities in 40 countries

Summer Course Technion, Haifa, IL 2015 11

NetFPGA’s Defining Characteristics

• Line-Rate
– Processes back-to-back packets

• Without dropping packets

• At full rate

– Operating on packet headers
• For switching, routing, and firewall rules

– And packet payloads
• For content processing and intrusion prevention

• Open-source Hardware
– Similar to open-source software

• Full source code available

• BSD-Style License for SUME, LGPL 2.1 for 10G

– But harder, because
• Hardware modules must meet timing

• Verilog & VHDL Components have more complex interfaces

• Hardware designers need high confidence in specification of modules

Summer Course Technion, Haifa, IL 2015 12

Test-Driven Design

• Regression tests
– Have repeatable results

– Define the supported features

– Provide clear expectation on functionality

• Example: Internet Router
– Drops packets with bad IP checksum

– Performs Longest Prefix Matching on destination address

– Forwards IPv4 packets of length 64-1500 bytes

– Generates ICMP message for packets with TTL <= 1

– Defines how to handle packets with IP options or non IPv4
… and dozens more …

Every feature is defined by a regression test

Summer Course Technion, Haifa, IL 2015 13

Who, How, Why

Who uses the NetFPGA?
– Researchers
– Teachers
– Students

How do they use the NetFPGA?
– To run the Router Kit
– To build modular reference designs

• IPv4 router
• 4-port NIC
• Ethernet switch, …

Why do they use the NetFPGA?
– To measure performance of Internet systems
– To prototype new networking systems

Summer Course Technion, Haifa, IL 2015 14

Summer Course Objectives

• Overall picture of NetFPGA

• How reference designs work

• How you can work on a project
– NetFPGA Design Flow

– Directory Structure, library modules and projects

– How to utilize contributed projects

• Interface/Registers

– How to verify a design (Simulation and Hardware

Tests)

– Things to do when you get stuck

AND… You build your own projects!

Summer Course Technion, Haifa, IL 2015 15

Section II: Hardware Overview

Summer Course Technion, Haifa, IL 2015 16

NetFPGA-1G-CML

• FPGA Xilinx Kintex7

• 4x 10/100/1000 Ports

• PCIe Gen.2 x4

• QDRII+-SRAM, 4.5MB

• DDR3, 512MB

• SD Card

• Expansion Slot

Summer Course Technion, Haifa, IL 2015 17

NetFPGA-10G

• FPGA Xilinx Virtex5

• 4 SFP+ Cages
– 10G Support

– 1G Support

• PCIe Gen.1 x8

• QDRII-SRAM, 27MB

• RLDRAM-II, 288MB

• Expansion Slot

Summer Course Technion, Haifa, IL 2015 18

Time for a catch-up…

Summer Course Technion, Haifa, IL 2015 19

NetFPGA-SUME

• A major upgrade over the NetFPGA-10G

predecessor

• State-of-the-art technology

Summer Course Technion, Haifa, IL 2015 20

NetFPGA-SUME

• High Level Block Diagram

Summer Course Technion, Haifa, IL 2015 21

Xilinx Virtex 7 690T

• Optimized for high-

performance

applications

• 690K Logic Cells

• 52Mb RAM

• 3 PCIe Gen. 3

Hard cores

Summer Course Technion, Haifa, IL 2015 22

Memory Interfaces

• DRAM:

2 x DDR3 SoDIMM

1866MT/s, 4GB

• SRAM:

3 x 9MB QDRII+,

500MHz

Summer Course Technion, Haifa, IL 2015 23

Host Interface

• PCIe Gen. 3

• x8 (only)

• Hardcore IP

Summer Course Technion, Haifa, IL 2015 24

Front Panel Ports

• 4 SFP+ Cages

• Directly connected to

the FPGA

• Supports 10GBase-R

transceivers (default)

• Also Supports

1000Base-X

transceivers and

direct attach cables

Summer Course Technion, Haifa, IL 2015 25

Expansion Interfaces

• FMC HPC connector
– VITA-57 Standard

– Supports Fabric

Mezzanine Cards (FMC)

– 10 x 12.5Gbps serial

links

• QTH-DP
– 8 x 12.5Gbps serial links

Summer Course Technion, Haifa, IL 2015 26

Storage

• 128MB FLASH

• 2 x SATA connectors

• Micro-SD slot

• Enable standalone

operation

Summer Course Technion, Haifa, IL 2015 27

NetFPGA SUME NetFPGA 10G

Virtex 7 690T -3 Virtex 5 TX240T

8 GB DDR3 SoDIMM 1800MT/s 288 MB RLDRAM-II 800MT/s

27 MB QDRII+ SRAM, 500MHz 27 MB QDRII-SRAM, 300MHz

x8 PCI Express Gen. 3 x8 PCI Express Gen. 1

4 x 10Gbps Ethernet Ports 4 x 10Gbps Ethernet Ports

18 x 13.1Gb/s additional serial links 20 x 6.25Gb/s additional serial links

NetFPGA Board Comparison

Summer Course Technion, Haifa, IL 2015 28

Beyond Hardware

• NetFPGA Board

• Xilinx Vivado based IDE

• Reference designs using

AXI4

• Software (embedded

and PC)

• Public Repository

• Public Wiki

Reference Designs AXI4 IPs

Xilinx Vivado

MicroBlaze SW PC SW

GitHub, User Community

Summer Course Technion, Haifa, IL 2015 29

Section II: Network review

Summer Course Technion, Haifa, IL 2015 30

Internet Protocol (IP)

Data

Data
IP

Hdr

Eth

Hdr
Data

IP

Hdr

Data to be

transmitted:

IP packets:

Ethernet

Frames:

Data
IP

Hdr
Data

IP

Hdr

Eth

Hdr
Data

IP

Hdr

Eth

Hdr
Data

IP

Hdr

…

…

Summer Course Technion, Haifa, IL 2015 31

Internet Protocol (IP)

Data

Data
IP

Hdr
…

16 3241

Options (if any)

Destination Address

Source Address

Header ChecksumProtocolTTL

Fragment OffsetFlagsFragment ID

Total Packet LengthT.ServiceHLenVer

2
0

 b
y
te

s

Summer Course Technion, Haifa, IL 2015 32

Basic operation of an IP router

R3

A

B

C

R1

R2

R4 D

E

FR5

R5F

R3E

R3D

Next HopDestination

Summer Course Technion, Haifa, IL 2015 33

Basic operation of an IP router

A

B

C

R1

R2

R3

R4 D

E

FR5

Summer Course Technion, Haifa, IL 2015 34

Forwarding tables

Entry Destination Port

1

2

⋮
232

0.0.0.0

0.0.0.1

⋮
255.255.255.255

1

2

⋮
12

~ 4 billion entries

Naïve approach:

One entry per address

Improved approach:

Group entries to reduce table size

Entry Destination Port

1

2

⋮
50

0.0.0.0 – 127.255.255.255

128.0.0.1 – 128.255.255.255

⋮
248.0.0.0 – 255.255.255.255

1

2

⋮
12

IP address 32 bits wide → ~ 4 billion unique address

Summer Course Technion, Haifa, IL 2015 35

IP addresses as a line

0 232-1

Entry Destination Port

1

2

3

4

5

Cambridge

Oxford

Europe

Asia

Everywhere (default)

1

2

3

4

5

All IP addresses

EuropeAsia

OxfordCambridge

Your computer My computer

Summer Course Technion, Haifa, IL 2015 36

Longest Prefix Match (LPM)

Entry Destination Port

1

2

3

4

5

Cambridge

Oxford

Europe

Asia

Everywhere (default)

1

2

3

4

5

Universities

Continents

Planet

Data
To:

Cambridge

Matching entries:

• Cambridge

• Europe

• Everywhere

Most specific

Summer Course Technion, Haifa, IL 2015 37

Longest Prefix Match (LPM)

Entry Destination Port

1

2

3

4

5

Cambridge

Oxford

Europe

Asia

Everywhere (default)

1

2

3

4

5

Universities

Continents

Planet

Data
To:

Germany

Matching entries:

• Europe

• Everywhere

Most specific

Summer Course Technion, Haifa, IL 2015 38

Implementing Longest Prefix Match

Entry Destination Port

1

2

3

4

5

Cambridge

Oxford

Europe

Asia

Everywhere (default)

1

2

3

4

5

Most specific

Least specific

Searching

FOUND

Summer Course Technion, Haifa, IL 2015 39

Basic components of an IP router

Control Plane

Data Plane
per-packet

processing

Switching
Forwarding

Table

Routing

Table

Routing

Protocols

Management

& CLI

S
o
ftw

a
re

H
a
rd

w
a
re

Queuing

Summer Course Technion, Haifa, IL 2015 40

IP router components in NetFPGA

SCONE

Routing

Table

Routing

Protocols

Management

& CLI

Output Port

Lookup

Forwarding

Table

Input

Arbiter

Output

Queues

Switching Queuing

Linux

Routing

Table

Routing

Protocols

Management

& CLI

Router Kit

OR

S
o
ftw

a
re

H
a
rd

w
a
re

Summer Course Technion, Haifa, IL 2015 41

Section III: Example I

Summer Course Technion, Haifa, IL 2015 42

Operational IPv4 router

Control Plane

Data Plane
per-packet

processing

S
o
ftw

a
re

H
a
rd

w
a
re

Routing

Table

Routing

Protocols

Management

& CLI

SCONE

Switching
Forwarding

Table
Queuing

Reference router

Java GUI

Summer Course Technion, Haifa, IL 2015 43

Streaming video

Summer Course Technion, Haifa, IL 2015 44

Streaming video

PC & NetFPGA
(NetFPGA in PC)

NetFPGA running

reference router

Summer Course Technion, Haifa, IL 2015 45

Streaming video

Video streaming

over shortest path

Video

client
Video

server

Summer Course Technion, Haifa, IL 2015 46

Streaming video

Video

client
Video

server

Summer Course Technion, Haifa, IL 2015 47

Observing the routing tables

Columns:

• Subnet address

• Subnet mask

• Next hop IP

• Output ports

Summer Course Technion, Haifa, IL 2015 48

Example 1

Summer Course Technion, Haifa, IL 2015 49

Review

NetFPGA as IPv4 router:

•Reference hardware + SCONE software

•Routing protocol discovers topology

Demo:

•Ring topology

•Traffic flows over shortest path

•Broken link: automatically route around

failure

Summer Course Technion, Haifa, IL 2015 50

Section III: Life of a Packet

Summer Course Technion, Haifa, IL 2015 51

Reference Switch Pipeline

• Five stages

– Input port

– Input arbitration

– Forwarding decision

and packet

modification

– Output queuing

– Output port

• Packet-based

module interface

• Pluggable design

10GE

RxQ

10GE

RxQ

10GE

RxQ

10GE

RxQ
DMA

Input Arbiter

Output Port Lookup

Output Queues

10GE

Tx

10GE

Tx

10GE

Tx

10GE

Tx
DMA

Summer Course Technion, Haifa, IL 2015 52

Full System Components

Software

PCIe Bus

NetFPGA

AXI Lite

user data path

nf0 nf1 nf2 nf3 ioctl

MAC

TxQ

MAC

RxQ

Ports

CPU

RxQ

CPU

TxQ

MAC

TxQ

MAC

RxQ
MAC

TxQ

MAC

RxQ
10GE

Tx

10GE

Rx

Summer Course Technion, Haifa, IL 2015 53

00:0a:..:0X00:0a:..:0Y

Life of a Packet through the Hardware

Port 1 Port 2

Summer Course Technion, Haifa, IL 2015 54

10GE Rx Queue

10GE

Rx

Queue

Summer Course Technion, Haifa, IL 2015 55

10GE Rx Queue

10GE

Rx

Queue

Eth Hdr:

Dst MAC, Src MAC

Payload

Length, Src

port, Dst port,

User defined

0

TUSER TDATA

Summer Course Technion, Haifa, IL 2015 56

Input Arbiter

Input

Arbiter

Rx

0

Rx

1

…

Rx

4

Pkt

Pkt

Pkt

Summer Course Technion, Haifa, IL 2015 57

Output Port Lookup

Output

Port

Lookup

Summer Course Technion, Haifa, IL 2015 58

Output

Port

Lookup

Eth Hdr: Dst MAC=

nextHop , Src MAC =

port 4

Payload

Length, Src

port, Dst port,

User defined

0

Output Port Lookup

1- Parse

header: Src

MAC, Dst

MAC, Src port

2 - Lookup

next hop

MAC& output

port

3- Learn Src

MAC & Src

port

4- Update output

port in TUSER

TUSER TDATA

Summer Course Technion, Haifa, IL 2015 59

Output Queues

Output

Queues

OQ0

OQ2

OQ4

Summer Course Technion, Haifa, IL 2015 60

10GE Port Tx

10GE

Port Tx

Summer Course Technion, Haifa, IL 2015 61

MAC Tx Queue

MAC Tx

Queue

Eth Hdr: Dst MAC , Src

MAC

Payload

Length, Src

port, Dst port,

User defined

0

Summer Course Technion, Haifa, IL 2015 62

NetFPGA-Host Interaction

• Linux driver interfaces with hardware

– Packet interface via standard Linux network

stack

– Register reads/writes via ioctl system call

with wrapper functions:
• rwaxi(int address, unsigned *data);

eg:

rwaxi(0x7d4000000, &val);

Summer Course Technion, Haifa, IL 2015 63

NetFPGA-Host Interaction

NetFPGA to host packet transfer

P
C

Ie
B

u
s

2. Interrupt

notifies

driver of

packet

arrival

3. Driver sets up

and initiates

DMA transfer

1. Packet arrives –

forwarding table

sends to DMA queue

Summer Course Technion, Haifa, IL 2015 64

NetFPGA-Host Interaction

NetFPGA to host packet transfer (cont.)

P
C

Ie
B

u
s

4. NetFPGA

transfers

packet via

DMA

5. Interrupt

signals

completion

of DMA

6. Driver passes packet to

network stack

Summer Course Technion, Haifa, IL 2015 65

NetFPGA-Host Interaction

Host to NetFPGA packet transfers

P
C

Ie
B

u
s

3. Interrupt

signals

completion

of DMA

1. Software sends packet

via network sockets

Packet delivered to driver

2. Driver sets up

and initiates

DMA transfer

Summer Course Technion, Haifa, IL 2015 66

NetFPGA-Host Interaction

Register access

P
C

Ie
B

u
s

1. Software makes ioctl

call on network socket

ioctl passed to driver

2. Driver

performs

PCIe

memory

read/write

Summer Course Technion, Haifa, IL 2015 67

Section V: Infrastructure

Summer Course Technion, Haifa, IL 2015 68

Infrastructure

• Tree structure

• NetFPGA package contents

– Reusable Verilog modules

– Verification infrastructure

– Build infrastructure

– Utilities

– Software libraries

Summer Course Technion, Haifa, IL 2015 69

NetFPGA package contents

• Projects:
– HW: router, switch, NIC

– SW: router kit, SCONE

• Reusable Verilog modules

• Verification infrastructure:
– simulate designs (from AXI interface)

– run tests against hardware

– test data generation libraries (eg. packets)

• Build infrastructure

• Utilities:
– register I/O

• Software libraries

Summer Course Technion, Haifa, IL 2015 70

Tree Structure (1)

NetFPGA-SUME

projects (including reference designs)

contrib-projects (contributed user projects)

lib (custom and reference IP Cores

and software libraries)

tools (scripts for running simulations etc.)

docs (design documentations and user-guides)

https://github.com/NetFPGA/NetFPGA-SUME-alpha

Summer Course Technion, Haifa, IL 2015 71

Tree Structure (2)

lib

hw (hardware logic as IP cores)

sw (core specific software drivers/libraries)

std (reference cores)

contrib (contributed cores)

std (reference libraries)

contrib (contributed libraries)

Summer Course Technion, Haifa, IL 2015 72

Tree Structure (3)

projects/reference_switch

hw (Vivado based project)

constraints (contains user constraint files)

bitfiles (FPGA executables)

tcl (contains scripts used to run various tools)

hdl (contains project-specific hdl code)

sw

embedded (contains code for microblaze)

host (contains code for host communication etc.)

test (contains code for project verification)

create_ip (contains files used to configure IP cores)

Summer Course Technion, Haifa, IL 2015 73

Reusable logic (IP cores)

Category IP Core(s)

I/O interfaces Ethernet 10G Port

PCI Express

UART

GPIO

Output queues BRAM based

Output port lookup NIC

CAM based Learning switch

Memory interfaces SRAM

DRAM

FLASH

Miscellaneous FIFOs

AXIS width converter

Summer Course Technion, Haifa, IL 2015 74

Verification Infrastructure (1)

• Simulation and Debugging

– built on industry standard Xilinx “xSim” simulator

and “Scapy”

– Python scripts for stimuli construction and

verification

Summer Course Technion, Haifa, IL 2015 75

Verification Infrastructure (2)

• xSim

– a High Level Description (HDL) simulator

– performs functional and timing simulations for

embedded, VHDL, Verilog and mixed designs

• Scapy

– a powerful interactive packet manipulation library

for creating “test data”

– provides primitives for many standard packet

formats

– allows addition of custom formats

Summer Course Technion, Haifa, IL 2015 76

Build Infrastructure (2)

• Build/Synthesis (using Xilinx Vivado)

– collection of shared hardware peripherals cores

stitched together with AXI4: Lite and Stream

buses

– bitfile generation and verification using Xilinx

synthesis and implementation tools

Summer Course Technion, Haifa, IL 2015 77

Build Infrastructure (3)

• Register system

– collates and generates addresses for all the

registers and memories in a project

– uses integrated python and tcl scripts to generate

HDL code (for hw) and header files (for sw)

Summer Course Technion, Haifa, IL 2015 78

Section VI: Examples of using NetFPGA

Summer Course Technion, Haifa, IL 2015 79

FPGA

Memory

Running the Reference Router

User-space development, 4x10GE line-rate forwarding

PCI-Express

CPU Memory

OSPF BGP

My

Protocol user
kernel

Routing

Table

IPv4

Router

Fwding

Table

Packet

Buffer

“Mirror”

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

Summer Course Technion, Haifa, IL 2015 80

FPGA

Memory

Enhancing Modular Reference Designs

PCI-Express

CPU Memory

NetFPGA Driver

Java GUI

Front Panel

(Extensible)

PW-OSPF

In Q

Mgmt

IP

Lookup

L2

Parse

L3

Parse

Out Q

Mgmt

Verilog modules interconnected by FIFO interfaces

My

Block

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

Verilog,

System

Verilog,

VHDL,

Bluespec….

EDA Tools

(Xilinx,

Mentor, etc.)

1.Design

2.Simulate

3.Synthesize

4.Download

Summer Course Technion, Haifa, IL 2015 81

FPGA

Memory

Creating new systems

PCI-Express

CPU Memory

NetFPGA Driver

My Design

(10GE MAC is soft/replaceable)

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

10GbE

EDA Tools

(Xilinx,

Mentor, etc.)

Verilog,

System

Verilog,

VHDL,

Bluespec….

1.Design

2.Simulate

3.Synthesize

4.Download

Summer Course Technion, Haifa, IL 2015 82

Contributed Projects

Platform Project Contributor

1G OpenFlow switch Stanford University

Packet generator Stanford University

NetFlow Probe Brno University

NetThreads University of Toronto

zFilter (Sp)router Ericsson

Traffic Monitor University of Catania

DFA UMass Lowell

10G Bluespec switch UCAM/SRI International

Traffic Monitor University of Pisa

NF1G legacy on NF10G Uni Pisa & Uni Cambridge

High perf. DMA core University of Cambridge

BERI/CHERI UCAM/SRI International

OSNT UCAM/Stanford/GTech/CNRS

Summer Course Technion, Haifa, IL 2015 83

OpenFlow

• The most prominent NetFPGA success

• Has reignited the Software Defined

Networking movement

• NetFPGA enabled OpenFlow

– A widely available open-source development

platform

– Capable of line-rate and

• was, until its commercial uptake, the

reference platform for OpenFlow.

Summer Course Technion, Haifa, IL 2015 84

FPGA

 Soft processors: processors in the FPGA fabric

 User uploads program to soft processor

 Easier to program software than hardware in the FPGA

 Could be customized at the instruction level

 CHERI – 64bit MIPS soft processor, BSD OS

Processor(s)DDR controller

Ethernet MAC

Soft Processors in FPGAs

Summer Course Technion, Haifa, IL 2015 85

100Gb/s Aggregation

• A development platform that can

aggregate 100Gb/s for:

– Operating systems

– Protocols Testing

– Measurements

• NetFPGA SUME can:

– Aggregate 100Gb/s

as Host Bus Adapter

– Be used to create large scale switches

100G

100G100G

Cost:

~$5000

Non-Blocking

300Gb/s Switch

Summer Course Technion, Haifa, IL 2015 86

Physical Interface Design

• A deployment and interoperability test

platform
– Permits replacement of physical-layer

– Provides high-speed expansion interfaces with

standardised interfaces

• Allows researchers to design

custom daughterboards

• Permits closer integration

Summer Course Technion, Haifa, IL 2015 87

Power Efficient MAC

• A Platform for 100Gb/s power-saving MAC

design (e.g. lights-out MAC)

• Porting MAC design to SUME permits:

– Power measurements

– Testing protocol’s response

– Reconsideration of power-saving mechanisms

– Evaluating suitability for complex architectures

and systems

Summer Course Technion, Haifa, IL 2015 88

Interconnect

• Novel Architectures with line-rate

performance

– A lot of networking equipment

– Extremely complex

• NetFPGA SUME allows

prototyping a complete

solution

N x N xN Hyper-cube

Summer Course Technion, Haifa, IL 2015 89

• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card

• Evaluate new packet classifiers
– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type

• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)

• Demonstrate the wonders of Metarouting in a different implementation (dedicated
hardware)

• Provable hardware (using a C# implementation and kiwi with NetFPGA as target
h/w)

• Hardware supporting Virtual Routers

• Check that some brave new idea actually works
e.g. Rate Control Protocol (RCP), Multipath TCP,

How might we use NetFPGA?
Well I’m not sure about you but here is a list I created:• Build an accurate, fast, line-rate NetDummy/nistnet element

• A flexible home-grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,

• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powermeters
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for routers
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints for control)
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)

Summer Course Technion, Haifa, IL 2015 90

How might YOU use NetFPGA?
• Build an accurate, fast, line-rate NetDummy/nistnet element
• A flexible home-grown monitoring card
• Evaluate new packet classifiers

– (and application classifiers, and other neat network apps….)

• Prototype a full line-rate next-generation Ethernet-type
• Trying any of Jon Crowcrofts’ ideas (Sourceless IP routing for example)
• Demonstrate the wonders of Metarouting in a different implementation (dedicated hardware)
• Provable hardware (using a C# implementation and kiwi with NetFPGA as target h/w)
• Hardware supporting Virtual Routers
• Check that some brave new idea actually works

e.g. Rate Control Protocol (RCP), Multipath TCP,

• toolkit for hardware hashing
• MOOSE implementation
• IP address anonymization
• SSL decoding “bump in the wire”
• Xen specialist nic
• computational co-processor
• Distributed computational co-processor
• IPv6 anything
• IPv6 – IPv4 gateway (6in4, 4in6, 6over4, 4over6, ….)
• Netflow v9 reference
• PSAMP reference
• IPFIX reference
• Different driver/buffer interfaces (e.g. PFRING)
• or “escalators” (from gridprobe) for faster network monitors
• Firewall reference
• GPS packet-timestamp things
• High-Speed Host Bus Adapter reference implementations

– Infiniband
– iSCSI
– Myranet
– Fiber Channel

• Smart Disk adapter (presuming a direct-disk interface)
• Software Defined Radio (SDR) directly on the FPGA (probably UWB only)
• Routing accelerator

– Hardware route-reflector
– Internet exchange route accelerator

• Hardware channel bonding reference implementation
• TCP sanitizer
• Other protocol sanitizer (applications… UDP DCCP, etc.)
• Full and complete Crypto NIC
• IPSec endpoint/ VPN appliance
• VLAN reference implementation
• metarouting implementation
• virtual <pick-something>
• intelligent proxy
• application embargo-er
• Layer-4 gateway
• h/w gateway for VoIP/SIP/skype
• h/w gateway for video conference spaces
• security pattern/rules matching
• Anti-spoof traceback implementations (e.g. BBN stuff)
• IPtv multicast controller
• Intelligent IP-enabled device controller (e.g. IP cameras or IP powermeters
• DES breaker
• platform for flexible NIC API evaluations
• snmp statistics reference implementation
• sflow (hp) reference implementation
• trajectory sampling (reference implementation)
• implementation of zeroconf/netconf configuration language for routers
• h/w openflow and (simple) NOX controller in one…
• Network RAID (multicast TCP with redundancy)
• inline compression
• hardware accelorator for TOR
• load-balancer
• openflow with (netflow, ACL, ….)
• reference NAT device
• active measurement kit
• network discovery tool
• passive performance measurement
• active sender control (e.g. performance feedback fed to endpoints for control)
• Prototype platform for NON-Ethernet or near-Ethernet MACs

– Optical LAN (no buffers)

Summer Course Technion, Haifa, IL 2015 91

Section VII: Example Project:

Crypto Switch

Summer Course Technion, Haifa, IL 2015 92

Project: Cryptographic Switch

Implement a learning switch that encrypts

upon transmission and decrypts upon

reception

Summer Course Technion, Haifa, IL 2015 93

Cryptography

XOR function

XOR written as: ^ ⊻ ⨁

XOR is commutative: (A ^ B) ^ C = A ^ (B ^ C)

A B A ^ B

0 0 0

0 1 1

1 0 1

1 1 0

XORing a

value with

itself always

yields 0

Summer Course Technion, Haifa, IL 2015 94

Cryptography (cont.)

Simple cryptography:

– Generate a secret key

– Encrypt the message by XORing the message and key

– Decrypt the ciphertext by XORing with the key

Explanation:

(M ^ K) ^ K = M ^ (K ^ K)

= M

= M ^ 0

Commutativity

A ^ A = 0

Summer Course Technion, Haifa, IL 2015 95

Cryptography (cont.)

Example:

Message: 00111011

Key: 10110001

Message ^ Key: 10001010

Key: 10110001

Message ^ Key ^ Key: 00111011

Summer Course Technion, Haifa, IL 2015 96

Cryptography (cont.)

Idea: Implement simple cryptography using XOR

– 32-bit key

– Encrypt every word in payload with key

Note: XORing with a one-time pad of the same length of the message is

secure/uncrackable. See: http://en.wikipedia.org/wiki/One-time_pad

PayloadHeader

Key Key Key Key Key

⨁

Summer Course Technion, Haifa, IL 2015 97

implementation goes

wild…

Summer Course Technion, Haifa, IL 2015 98

What’s a core?

•“IP Core” in Vivado

– Standalone Module

– Configurable and reuseable

•HDL (Verilog/VHDL) + TCL files

•Examples:

–10G Port

–SRAM Controller

–NIC Output port lookup

Summer Course Technion, Haifa, IL 2015 99

HDL (Verilog)

• NetFPGA cores

– AXI-compliant

• AXI = Advanced eXtensible Interface

– Used in ARM-based embedded systems

– Standard interface

– AXI4/AXI4-Lite: Control and status interface

– AXI4-Stream: Data path interface

• Xilinx IPs and tool chains

– Mostly AXI-compliant

Summer Course Technion, Haifa, IL 2015 100

Scripts (TCL)

• Integrated into Vivado toolchain

– Supports Vivado-specific commands

– Allows to interactively query Vivado

• Has a large number of uses:

– Create projects

– Set properties

– Generate cores

– Define connectivity

– Etc.

Summer Course Technion, Haifa, IL 2015 101

Module

i

Module

i+1

TDATA

Inter-Module Communication

TUSER

TVALID

TREADY

– Using AXI-4 Stream (Packets are moved as Stream)

TKEEP

TLAST

Summer Course Technion, Haifa, IL 2015 102

AXI4-Stream

AXI4-Stream Description

TDATA Data Stream

TKEEP Marks NULL bytes (i.e. byte enable)

TVALID Valid Indication

TREADY Flow control indication

TLAST End of packet/burst indication

TUSER Out of band metadata

Summer Course Technion, Haifa, IL 2015 103

Packet Format

TLAST TUSER TKEEP TDATA

0 X 0xFF…F Eth Hdr

0 X 0xFF…F IP Hdr

0 X 0xFF…F …

1 X 0x0…1F Last word

Summer Course Technion, Haifa, IL 2015 104

TUSER

Position Content

[15:0] length of the packet in bytes

[23:16] source port: one-hot encoded

[31:24] destination port: one-hot encoded

[127:32] 6 user defined slots, 16bit each

Summer Course Technion, Haifa, IL 2015 105

TVALID/TREADY Signal timing

– No waiting!

– Assert TREADY/TVALID whenever
appropriate

– TVALID should not depend on TREADY

TVALID

TREADY

Summer Course Technion, Haifa, IL 2015 106

Byte ordering

• In compliance to AXI, NetFPGA has a

specific byte ordering

– 1st byte of the packet @ TDATA[7:0]

– 2nd byte of the packet @ TDATA[15:8]

Summer Course Technion, Haifa, IL 2015 107

Getting started with a new project:

Summer Course Technion, Haifa, IL 2015 108

Embedded Development Kit

• Xilinx integrated design environment

contains:

– Vivado, a top level integrated design tool for

“hardware” synthesis , implementation and

bitstream generation

– Software Development Kit (SDK), a

development environment for “software

application” running on embedded processors

like Microblaze

– Additional tools (e.g. Vivado HLS)

Summer Course Technion, Haifa, IL 2015 109

Xilinx Vivado

• A Vivado project consists of following:

– <project_name>.xpr
• top level Vivado project file

– Tcl and HDL files that define the project

– system.xdc
• user constraint file

• defines constraints such as timing, area, IO placement

etc.

Summer Course Technion, Haifa, IL 2015 110

Xilinx Vivado (2)

• To invoke Vivado design tool, run:
vivado <project_root>/hw/project/<project_name>.xpr

• This will open the project in the Vivado

graphical user interface

• open a new terminal

• cd <project_root>/projects/ <project_name>/

• source /opt/Xilinx/Vivado/2014.4/settings64.sh

• vivado hw/project/<project name>.xpr

Summer Course Technion, Haifa, IL 2015 111

Vivado Design Tool (1)

Design

Project Summary

Flow

Navigation

Summer Course Technion, Haifa, IL 2015 112

Vivado Design Tool (2)

• IP Catalog: contains categorized list of all

available peripheral cores

• IP Integrator: shows connectivity of various

modules over AXI bus

• Project manager: provides a complete view

of instantiated cores

Summer Course Technion, Haifa, IL 2015 113

Vivado Design Tool (3)

Address view

• Address Editor:

- Under IP Integrator

- Defines base and high address value for
peripherals connected to AXI4 or AXI-LITE
bus

• Not AXI-Stream!

• These values can be controlled manually, using
tcl

Summer Course Technion, Haifa, IL 2015 114

Getting started with a new project (1)

• Projects:
– Each design is represented by a project

– Location: NetFPGA-SUME-alpha/projects/<proj_name>

– Create a new project:

• Normally:

– copy an existing project as the starting point

• Today:

– pre-created project (crypto_switch)

– Consists of:
• Verilog source

• Simulation tests

• Hardware tests

• Optional software

Summer Course Technion, Haifa, IL 2015 115

10G

RxQ

10G

RxQ

10G

RxQ

10G

RxQ

Input Arbiter

Output Port Lookup

Output Queues

10G

TxQ

10G

TxQ

10G

TxQ

10G

TxQ

Getting started with a new project (3)

Typically implement

functionality in one or

more modules under

the top wrapper

Crypto module

to encrypt and

decrypt packets

Crypto

Summer Course Technion, Haifa, IL 2015 116

Getting started with a new project (4)

– Shared modules included from netfpga/lib/hw
• Generic modules that are re-used in multiple projects

• Specify shared modules in project’s tcl file

– crypto_switch:

Local Shared

crypto Everything else

Summer Course Technion, Haifa, IL 2015 117

Getting started with a new project (5)

Create crypto core using core template:

1. cd $NF_DESIGN_DIR/hw/local_ip

2. cp -r example_ip crypto

3. Write and edit files under crypto Folder

4. cd $NF_DESIGN_DIR/hw/

5. vi Makefile
- Refer to Line 61

6. make core

Notes:

1. review ~/NetFPGA-SUME-alpha/tools/settings.sh

2. make sure NF_PROJECT_NAME=crypto_switch

3. If you make chages: source ~/NetFPGA-SUME-

alpha/tools/settings.sh

Summer Course Technion, Haifa, IL 2015 118

crypto.v

Module crypto

#(

parameter C_M_AXIS_DATA_WIDTH = 256,

parameter C_S_AXIS_DATA_WIDTH = 256,

...)

(

...

)

//----------------------- regs/wires ---------------------------

...

//----------------------- modules ------------------------------

...

//----------------------- logic ------------------------------

...

endmodule

Module port declaration

Summer Course Technion, Haifa, IL 2015 119

crypto.v (2)

//------------------------- Modules-------------------------------

fallthrough_small_fifo #(

.WIDTH(...),

.MAX_DEPTH_BITS(2)

) input_fifo (

.din ({fifo_out_tlast, fifo_out_tuser,..}), // Data in

.wr_en (s_axis_tvalid & s_axis_tready), // Write enable

.rd_en (in_fifo_rd_en), // Read the next word

.dout ({s_axis_tlast, s_axis_tuser, ..}),

.full (),

.nearly_full(in_fifo_nearly_full),

.prog_full (),

.empty (in_fifo_empty),

.reset (!axi_aresetn),

.clk (axi_aclk)

);

Packet data dumped in

a FIFO. Allows some

“decoupling” between

input and output.

Summer Course Technion, Haifa, IL 2015 120

crypto.v (3)

//------------------------- Logic-------------------------------

assign s_axis_tready = !in_fifo_nearly_full;

assign m_axis_tuser = fifo_out_tuser;

...

always @(*) begin

// Default value

in_fifo_rd_en = 0;

if (m_axis_tready && !in_fifo_empty) begin

in_fifo_rd_en = 1;

end

end

Combinational logic to

read data from the FIFO.

(Data is output to

output ports.)

You’ll want to add your

state in this section.

Summer Course Technion, Haifa, IL 2015 121

Project Design Flow

• There are several ways to design and

integrate a project, e.g.

– Using Verilog files for connectivity and TCL

scripts for project definition

– Using Vivado’s Block Design (IPI) flow

• We will use the first, but introduce the

second

Summer Course Technion, Haifa, IL 2015 122

Project Integration

• vi $NF_DESIGN_DIR/hw/nf_datapath.v

• Add the new module between the output

port lookup and output queues

• Connect S3_AXI to the AXI_Lite interface of

the block

– Not mandatory now, but will help for tomorrow

Summer Course Technion, Haifa, IL 2015 123

Project Integration

• Edit the TCL file which generates the project:

• vi $NF_DESIGN_DIR/hw/tcl/

<project_name>_sim.tcl

• Add the following lines:
create_ip -name <core_name> -vendor NetFPGA -library NetFPGA -module_name <core>_ip

set_property generate_synth_checkpoint false [get_files <core>_ip.xci]

reset_target all [get_ips <core>_ip]

generate_target all [get_ips <core>_ip]

• Save time for later, add the same text also in:

$NF_DESIGN_DIR/tcl/<project_name>.tcl

Summer Course Technion, Haifa, IL 2015 124

Project Integration – Block Design

Create a new project

OR

Open an existing project

OR

run a TCL script

(also through tools)

Summer Course Technion, Haifa, IL 2015 125

Project Integration – Block Design (2)

Open

block

design

Diagram

Summer Course Technion, Haifa, IL 2015 126

Project Integration – Block Design (3)

Sub-BD

Opening Sub-BD

Summer Course Technion, Haifa, IL 2015 127

Project Integration – Block Design (4)

Connectivity

Summer Course Technion, Haifa, IL 2015 128

Project Integration – Block Design (5)

Setting module parameters

Summer Course Technion, Haifa, IL 2015 129

Project Integration – Block Design (6)

Offset RangeAddress Editor

Summer Course Technion, Haifa, IL 2015 130

Project Integration – Block Design (7)

Validate

design

Summer Course Technion, Haifa, IL 2015 131

Summary to this Point

• Created a new project

• Created a new core named crypto

• Wired the new core into the pipline

– After output_port_lookup

– Before output_queues

• Next we will write the Verilog code!

Summer Course Technion, Haifa, IL 2015 132

Implementing the Crypto Module (1)

• What do we want to encrypt?

– IP payload only
• Plaintext IP header allows routing

• Content is hidden

– Encrypt bytes 35 onward
• Bytes 1-14 – Ethernet header

• Bytes 15-34 – IPv4 header (assume no options)

• Remember AXI byte ordering

– For simplicity, assume all packets are IPv4

without options

Summer Course Technion, Haifa, IL 2015 133

Implementing the Crypto Module (2)

• State machine (shown next):

– Module headers on each packet

– Datapath 256-bits wide
• 34 / 32 is not an integer!

• Inside the crypto module

Registers

in_fifo_empty

in_fifo_rd_en

data/ctrl

valid

ready

data/ctrl

S_AXIS M_AXIS

Summer Course Technion, Haifa, IL 2015 134

Crypto Module State Diagram

Hint: We suggest 3 states

Detect

Packet’s

Header

Summer Course Technion, Haifa, IL 2015 135

Implement your state machine inside crypto.v

Suggested sequence of steps:

1. Set the key value
• set the key = 32’hffffffff;

2. Write your state machine to modify the packet by

XORing the key and the payload
• Use eight copies of the key to create a 256-bit value to XOR

with data words

3. Do not pay attention to the register infrastructure that

will be explained later.

Implementing the Crypto Module (3)

Summer Course Technion, Haifa, IL 2015 136

More Verilog: Assignments 1

• Continuous assignments
– appear outside processes (always @ blocks):

assign foo = baz & bar;

– targets must be declared as wires

– always “happening” (ie, are concurrent)

Summer Course Technion, Haifa, IL 2015 137

More Verilog: Assignments 2

• Non-blocking assignments
– appear inside processes (always @ blocks)

– use only in sequential (clocked) processes:

always @(posedge clk) begin

a <= b;

b <= a;

end

– occur in next delta (‘moment’ in simulation time)

– targets must be declared as regs

– never clock any process other than with a clock!

Summer Course Technion, Haifa, IL 2015 138

More Verilog: Assignments 3

• Blocking assignments
– appear inside processes (always @ blocks)

– use only in combinatorial processes:
• (combinatorial processes are much like continuous assignments)

always @(*) begin

a = b;

b = a;

end

– occur one after the other (as in sequential langs like C)

– targets must be declared as regs – even though not a register

– never use in sequential (clocked) processes!

Summer Course Technion, Haifa, IL 2015 139

More Verilog: Assignments 3

• Blocking assignments
– appear inside processes (always @ blocks)

– use only in combinatorial processes:
• (combinatorial processes are much like continuous assignments)

always @(*) begin

tmp = a;

a = b;

b = tmp;

end

– occur one after the other (as in sequential langs like C)

– targets must be declared as regs – even though not a register

– never use in sequential (clocked) processes!

unlike non-blocking,

have to use a

temporary signal

Summer Course Technion, Haifa, IL 2015 140

(hints)

• Never assign one signal from two processes:

always @(posedge clk) begin

foo <= bar;

end

always @(posedge clk) begin

foo <= quux;

end

Summer Course Technion, Haifa, IL 2015 141

(hints)

• In combinatorial processes:

– take great care to assign in all possible cases

always @(*) begin

if (cond) begin

foo = bar;

end

end

– (latches ‹as opposed to flip-flops› are bad for timing closure)

Summer Course Technion, Haifa, IL 2015 142

(hints)

• In combinatorial processes:

– take great care to assign in all possible cases

always @(*) begin

if (cond) begin

foo = bar;

else

foo = quux;

end

end

Summer Course Technion, Haifa, IL 2015 143

(hints)

• In combinatorial processes:

– (or assign a default)

always @(*) begin

foo = quux;

if (cond) begin

foo = bar;

end

end

Summer Course Technion, Haifa, IL 2015 144

Section VIII: Simulation and Debug

Summer Course Technion, Haifa, IL 2015 145

Testing: Simulation

• Simulation allows testing without requiring
lengthy synthesis process

• NetFPGA simulation environment allows:
– Send/receive packets

• Physical ports and CPU

– Read/write registers

– Verify results

• Simulations run in xSim

• We provides an unified infrastructure for
both HW and simulation tests

Summer Course Technion, Haifa, IL 2015 146

Testing: Simulation

• We will simulate the “crypto_switch” design under
the “simulation framework”

• We will show you how to
– create simple packets using scapy

– transmit and reconcile packets sent over 10G
Ethernet and PCIe interfaces

– the code can be found in the “test” directory inside
the crypto_switch project

Summer Course Technion, Haifa, IL 2015 147

Testing: Simulation(2)

Run a simulation to verify changes:

1. make sure “NF_DESIGN_DIR” variable in the tools/settings.sh

file located in ~/NetFPGA-SUME-alpha points to the

crypto_switch project.

2. source ~/NetFPGA-SUME-alpha/tools/settings.sh

(export NF_DESIGN_DIR=~/NetFPGA-SUME-

alpha/projects/crypto_switch)

3. make –C $NF_DESIGN_DIR/hw reg

4. cd ~/NetFPGA-SUME-alpha/tools/scripts

5. ./nf_test.py sim --major crypto –minor test
• Or ./nf_test.py sim --major crypto –major test --gui (if you want to run the

gui

Now we can simulate the crypto functionality

Summer Course Technion, Haifa, IL 2015 148

cd $NF_DESIGN_DIR/test/both_crypto_test

vim run.py

• The “isHW” statement enables the HW test (we will look into it
tomorrow)

• Let’s focus on the “else” part of the statement

• make_IP_pkt fuction creates the IP packet that will be used as stimuli

• pkt.tuser_sport is used to set up the correct source port of the packet

• encrypt_pkt encrypts the packet

• pkt.time selects the time the packet is supposed to be sent

• nftest_send_phy/dma are used to send a packet to a given interface

• nftest_expected_phy/dma are used to expect a packet in a given
interface

• nftest_barrier is used to block the simulation till the previous statement
has been completed (e.g., send_pkts -> barrier -> send_more_pkts)

Crypto Switch simulation

Summer Course Technion, Haifa, IL 2015 149

4

• As expected, total of 20 packets are received on each interface

The results are in…

Summer Course Technion, Haifa, IL 2015 150

Running simulation in xSim

Objects panel

Scopes

Waveform window

Tcl console

Summer Course Technion, Haifa, IL 2015 151

Running simulation in xSim (2)

• Scopes panel: displays process and instance
hierarchy

• Objects panel: displays simulation objects
associated with the instance selected in the
instance panel

• Waveform window: displays wave configuration
consisting of signals and busses

• Tcl console: displays simulator generated messages
and can executes Tcl commands

Summer Course Technion, Haifa, IL 2015 152

Simulation gone wild
When “./nf_test.py sim …..”
1

source /opt/Xilinx/Vivado/2014.4/settings64.sh

2

Edit and source NetFPGA-SUME-alpha/tools/settings.sh

3

Run “make core” under projects/crypto_switch/hw/

4

Check that crypto_switch.tcl, crypto_switch_sim.tcl, export_registers.tcl are all up to date
with your changes

5

if sim finishes but complains that each test passes 10 packets but all tests FAIL – this
means your static key is different between your code and your run.py file

check the log

Summer Course Technion, Haifa, IL 2015 154

Crypto Module State Diagram: Solution

change_state = m_axis_tvalid && m_axis_tready

Detect

Packet’s

Header

Payload

Second

word

change_state

change_state && m_axis_tlast

change_statechange_state && m_axis_tlast

Summer Course Technion, Haifa, IL 2015 155

it is time for the first synthesis!!!

Summer Course Technion, Haifa, IL 2015 156

Synthesis

• To synthesize your project:

cd ~/$NF_DESIGN_DIR/

make clean; make

Summer Course Technion, Haifa, IL 2015 157

Section IX: Conclusion

Summer Course Technion, Haifa, IL 2015 158

Nick McKeown, Glen Gibb, Jad Naous, David Erickson,

G. Adam Covington, John W. Lockwood, Jianying Luo, Brandon Heller, Paul

Hartke, Neda Beheshti, Sara Bolouki, James Zeng,

Jonathan Ellithorpe, Sachidanandan Sambandan, Eric Lo

Acknowledgments (I)

NetFPGA Team at Stanford University (Past and Present):

NetFPGA Team at University of Cambridge (Past and Present):

Andrew Moore, David Miller, Muhammad Shahbaz, Martin Zadnik

Matthew Grosvenor, Yury Audzevich, Neelakandan Manihatty-Bojan,

Georgina Kalogeridou, Jong Hun Han, Noa Zilberman, Gianni Antichi,

Charalampos Rotsos, Marco Forconesi, Jinyun Zhang, Bjoern Zeeb

All Community members (including but not limited to):

Paul Rodman, Kumar Sanghvi, Wojciech A. Koszek,

Yahsar Ganjali, Martin Labrecque, Jeff Shafer, Eric Keller ,

Tatsuya Yabe, Bilal Anwer, Yashar Ganjali, Martin Labrecque,

Lisa Donatini, Sergio Lopez-Buedo

Kees Vissers, Michaela Blott, Shep Siegel, Cathal McCabe

Summer Course Technion, Haifa, IL 2015 159

Acknowledgements (II)

Disclaimer: Any opinions, findings, conclusions, or recommendations expressed in these materials do not
necessarily reflect the views of the National Science Foundation or of any other sponsors supporting this
project.
This effort is also sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force
Research Laboratory (AFRL), under contract FA8750-11-C-0249. This material is approved for public release,
distribution unlimited. The views expressed are those of the authors and do not reflect the official policy or
position of the Department of Defense or the U.S. Government.

