
 Addition of Virtual Interfaces in NetFlow Probe for the

NetFPGA
Muhammad Shahbaz

Center for Advanced Studies in
Engineering

Islamabad, Pakistan

mshahbaz@case.edu.pk

Zaheer Ahmed
Center for Advanced Studies in

Engineering
Islamabad, Pakistan

zaheer@case.edu.pk

Habibullah Jamal
University of Engineering and

Technology Taxila
Pakistan

drhjamal@uettaxila.edu.pk

Asrar Ashraf

Center for Advanced Studies in
Engineering

Islamabad, Pakistan

asrar@case.edu.pk

Nadeem Yousuf
Center for Advanced Studies in

Engineering
Islamabad, Pakistan

nydhami@case.edu.pk

Raania Naeem Khan
Center for Advanced Studies in

Engineering
Islamabad, Pakistan

raanianaeem@case.edu.pk

ABSTRACT
In this paper, we present an extended architecture of protocol

extraction layer for standalone NetFlow probes. Standalone

NetFlow probe over multi-gig data rates is a new paradigm for

researchers. The routing of private enterprise traffic over public

network requires encapsulating the private IP packet in GRE,

L2TP or MPLS. The bandwidth monitoring, network forensics

and network traffic analysis is of paramount importance in order

to maintain the quality of service (QoS) and security of enterprise

networks. The presented architecture targets all the present and

future IPv4 and IPv6 network protocols. In this paper, we focus

on the protocol extraction mechanisms for technologies providing

support for virtual interfaces. We implemented the protocol

extraction layer in the NetFlow probe architecture for NetFPGA.

The architecture can also be utilized for deep packet inspection

(DPI), especially to monitor RTP payloads in the Voice over IP

(VoIP) applications. The architecture finds applications reaching

high data rates; like Internet Protocol monitoring, VoIP

monitoring and QoS monitoring.

General Terms

Design, Management and Performance

Keywords

Computer Networks, Protocol Analysis, NetFPGA, NetFlow

1. INTRODUCTION
In today’s competitive market, advanced data services are

migrating from fixed to mobile infrastructure and WAN

connectivity is becoming mandatory to extend the enterprise

network to mobile infrastructure. The latest trend of businesses is

the establishment of many branch offices miles away from the

main head office that is vital for providing valuable 24/7 customer

support and services across the globe. The integration of WAN

and LAN technologies involve multitude of protocols. In order to

provide ubiquitous connectivity for bandwidth hungry, hybrid and

critical applications, the requirement of network protocol analysis

has become all the more important.

NetFlow is a network analysis protocol designed by Cisco

Systems [1]. The architectures adopted for the network flow

analysis are either router-based or probe-based as shown in Figure

1 and Figure 2. NetFlow on routers provides a Network-wide

view of the traffic, for network management and planning as well

as traffic analysis and observation. However, NetFlow on probes

is well suited for the observation of critical links [2].

In packet switching networks; traffic flow, packet flow or network

flow consists of a sequence of packets sent from a source

computer to a destination which could be another host, multicast

group or broadcast domain. Network flows have been defined in

numerous ways.

NetFlow
exporter

NetFlow
collector

storage

analyzer

terminal

terminalLAN
LAN

LAN

Internet

dedicated
line

Figure 1. Standard NetFlow Architecture

Cisco defines network flows using a 7-tuple key, as a

unidirectional sequence of packets sharing the following 7 values:

(1) Source IP address, (2) Destination IP address, (3) Source port

for UDP or TCP, 0 for other protocols, (4) Destination port for

UDP or TCP, type code for ICMP, or 0 for other protocols, (5) IP

protocol, (6) Ingress interface (SNMP if Index), and (7) IP Type

of Service (ToS) [1][2].

We present generic protocol analysis architecture to target

existing and future internet protocols. In this paper, our point of

focus is to provide NetFlow support on NetFPGA for virtual

interfaces. Virtual interfaces are usually found in technologies like

Layer 2 Tunneling Protocol (L2TP), Generic Routing

Encapsulation (GRE) tunnels and Multiprotocol Label Switching

over Virtual Private Network (MPLS-VPN) [3]. The rest of the

paper is organized as follows: section 2 describes NetFPGA,

section 3 explains the system architecture, section 4 presents

resource utilization, and section 5 concludes the paper.

NetFlow export

NetFlow exportNetFlow
Probe

SPAN

NetFlow
Probe

NetFlow
Collector

Figure 2. Stand-alone NetFlow Architecture

2. NetFPGA
The NetFPGA is a research platform comprising of three parts,

hardware, gateware and software. The hardware is based on a PCI

plug-in card equipped with Xilinx Virtex-II Pro 50, four ports of

Gigabit Ethernet, two parallel banks of 18Mbit Zero-bus

turnaround (ZBT) SRAM and 64 Mbytes DDR DRAM for local

processing. The FPGA directly handles all data-path switching,

routing, and processing of Ethernet and Internet packets, leaving

the software to handle only control-path functions [4]. Gateware

is a set of Verilog source files having an integrated pipeline with

several components. Gateware is designed to be modular and

reconfigurable. Most designs invoke the use of reference pipeline

[5]. The reference pipeline shown in Figure 3, is comprised of

eight receive queues; eight transmit queues, user data path, and a

register system i.e. Register I/O module. Receive and transmit

queues are divided into two types: MAC and CPU. Users add and

connect their modules to the User Data Path. The Input Arbiter

and the Output Queue modules, present in the User Data Path, are

the main modules present in almost all NetFPGA designs. Source

code for these modules is provided in the NetFPGA Verilog

library. The Input Arbiter services the eight input queues in a

round robin fashion to feed a wide (64-bit) packet pipeline [6].

Gateware communicates with the software using register system.

The register system allows modules to be inserted within the

pipeline using minimal effort. The register interface allows

software programs running in the host system to send and receive

data from hardware modules using PCI device driver utilities

provided with the NetFPGA reference designs [7] [8].

3. SYSTEM ARCHITECTURE
As mentioned in [9], NetFlow probe consists of a host computer

and a NetFPGA network accelerator card. By exploiting the

hardware-software co-design principle, timing critical functions

like measurements etc are implemented on the NetFPGA whereas

soft constraint functions like control, configuration and collecting

processes are implemented within the host computer (Linux OS)

as a user software.

CPU
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

CPU
RxQ

MAC
RxQ

MAC
RxQ

MAC
RxQ

User Data Path

In
p

u
t A

rb
ite

r

O
u

tp
u

t P
o

rt L
o

o
k

u
p

Register
I/O

SRAM
Inteface

DRAM
Interface

PCI
 HOST

O
u

tp
u

t Q
u

e
u

e
s

GigE

Rx

GigE

Rx

GigE

Rx

GigE

Rx

GigE

Tx

GigE

Tx

GigE

Tx

GigE

Tx

PCI
 HOST

MAC
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

Figure 3. NetFPGA Reference Pipeline

Two new features have been added along with the existing four

parameters of the probe mentioned in [9]. These are:

 Packet processing of virtual interfaces consisting of

Layer 2 Tunneling Protocol (L2TP), Generic Routing

Encapsulation (GRE), and Multiprotocol Label

Switching (MPLS).

 Complete software support for virtual interface analysis

and processing.

3.1 Hardware Implementation
Architecture of NetFlow v5 Probe [9] utilizes the NetFPGA

reference pipeline as a foundation. Main features of the NetFlow

v5 Probe are incorporated within the User Data Path; design

outside the User Data Path has been used without any

modifications.

The highlighted regions in Figure 4 show the newly added and

updated blocks. User Data Path has been divided into 4 major

blocks: (1) Input Arbiter, (2) Time Stamp, (3) Output Port

LookUp, and (4) Output Queues. The communication between

these blocks is provided using the NetFPGA interconnection

protocol i.e. data bus, control bus, write and ready signals. The

Output Port LookUp is further subdivided into Multi-Layer

Protocol Extraction, Hash Generation, Flow Lookup, Flow

Processing and Output Port LookUp Processor. Each of these

blocks has been assigned a specified task. After processing, each

block pushes required information in the corresponding Result

FIFO (RFIFO), which is then read by the next block in a pipelined

fashion. The interconnection of blocks within the Output Port

LookUp is provided by the use of simple dual port distributed

FIFOs.

3.1.1 Interface Receive/Transmit Queues
The NetFlow design has x4 Ethernet Queues and x4 DMA

Queues each for data reception and transmission, shown in Figure

4 [9]. Packet received at an interface is stored in the receive queue

(RxQ). During an available time-slot for a particular interface,

Input Arbiter reads the packet from the RxQ and transmits the

User Data Path

CPU
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

MAC
TxQ

CPU
TxQ

CPU
TxQ

CPU
TxQ

CPU
RxQ

MAC
RxQ

MAC
RxQ

MAC
RxQ

In
p

u
t A

rb
ite

r

Output Port LookUp

Register
I/O

SRAM
Inteface

DRAM
Interface

PCI
 HOST

O
u

tp
u

t Q
u

e
u

e
s

GigE

Rx

GigE

Rx

GigE

Rx

GigE

Rx

GigE

Tx

GigE

Tx

GigE

Tx

GigE

Tx

PCI
 HOST

MAC
RxQ

CPU
RxQ

CPU
RxQ

CPU
RxQ

Multi-Layer Protocol

Extraction H
a

s
h

 G
e

n

O
P

L
 P

ro
c
e

s
s
o

r

MPLS

M
u

ltip
le

x
e

r

GRE

L2TP

L3L4 -Simple

F
lo

w
 L

o
o

k
u

p

F
lo

w
 P

ro
c

R
FIFO

T
im

e
 S

ta
m

p

P
K

T
 M

o
n

ito
r

Figure 4. NetFlow Architecture for NetFPGA

complete packet to the Time Stamp block before starting a new

transaction for another interface. During the reading process, RxQ

encapsulates the packet by attaching a 64-bit word at the start of

the packet as shown in the Figure 5. The header contains

information regarding the size of the packet (bytes and words) as

well as the interface at which the packet arrived. An empty

location present in each header for the destination ports address is

filled by Output Port Lookup Processor (OPL) block.

Packet Structure

byte count

Packet Body i.e. MPLS, L2TP, GRE, IP, TCP,

UDP etc.

src portword countdst ports

15 031 1647 3263 48

Figure 5. Internal Packet Format

Output Queue (OQ) stores the packet within the transmit queue

(TxQ) for a given interface. The TxQ removes the header,

attached at the time of the arrival of the packet at the receive

interface, and sends it out to the respective transmit interface(s).

3.1.2 Input Arbiter Block
The Input Arbiter block is used from the original NetFPGA

library: reference NIC design. Within the User Data Path as

shown in Figure 4, the first module a packet encounters is the

Input Arbiter, who, decides which RxQ to service. It subsequently

pulls a packet from that RxQ and hands it over to the Time Stamp

block that transmits it to the main processing pipeline.

3.1.3 Time Stamp Block
Functionality of the Time Stamp block remains the same as

provided in the NetFlow reference design [9] [11]. The only

alteration made to the design is the placement of the Time Stamp

module directly after the Input Arbiter (see Figure 4) instead of

after the Protocol Extraction block. This has been done to make

the timestamp unit independent of the Output Port LookUp block.

Timestamp unit inserts the current timestamp value from the

timestamp counter with millisecond resolution into the packet

header as shown in Figure 6. The remaining functionality of the

Timestamp’s block remains unchanged from the reference design

[11]. After inserting a header for 32-bit timestamp value within

the packet structure, it transmits the newly encapsulated packet to

the Multi-Layer Protocol Extraction block.

Packet Structure

byte count

Packet Body i.e. MPLS, L2TP, GRE,

IP, TCP, UDP etc.

src portword countdst ports

time stampreserved

15 031 1647 3263 48

Figure 6. Packet Structure with Timestamp field

3.1.4 Multi-Layer Protocol Extraction Block
Multi-Layer Protocol Extraction block is the core of the overall

NetFlow probe architecture. The extraction of exact and accurate

flow records from different combination of layers is a crucial task.

For simplicity we only focus on the virtual interfaces from within

logical interfaces for flow analysis [3]. In our case a network flow

or packet record or flow record is composed of following 6-tuple

keys:

 Source IP address (SrcIP)

 Destination IP address (DstIP)

 Source Port (SPrt) for UDP/TCP and 0 for other

protocols

 Destination Port (DPrt) for UDP/TCP, Type/Code for

ICMP and 0 for other protocols

 Input – Input Interface (IIF)

 Protocol (Prtcl)

ETH_IPv4_TCP/UDP/ICMP

ETH_VLAN_IPv4_TCP/UDP/ICMP

ETH_MPLS_ETH_IP_TCP/UDP/ICMP

ETH_IP_GRE_ETH_IP_TCP/UDP/ICMP

ETH_IP_UDP_L2TP_PPP_IP_TCP/UDP/ICMP

Multistage
Priority Mux

Multi-Layer Protocol Extraction

P
acket M

o
n

ito
r

Future Protocol

Figure 7. Multi-Layer Protocol Extraction block diagram

The Protocol Extraction block is composed of following

protocols: (1) original L3L4 block provided with the reference

NetFlow design [11], (2) MPLS block for the extraction of multi

protocol label switched packets with support for only two labels,

(3) GRE block for the parsing of GRE encapsulated protocol

packets, (4) L2TP block for mining layer 2 tunneled PPP packets,

and (5) Future protocols.

The block level architecture of Multi-Layer Protocol Extraction

block is shown in the Figure 7. It consists of a Packet Monitor, a

configurable stack of protocol combinations and a Multi-stage

Priority Multiplexer. The packet monitor tracks the state of the

packet during the extraction process i.e. header or data.

Depending on the type of network in use, one can easily add or

remove the protocol combinations to handle customized traffic. A

very flexible architecture has been provided to ease insertion and

deletion of the custom protocol combinations. In cases, where

protocol stack increases, the Multi-Stage Priority Multiplexer can

be configured to add additional pipeline stages (see Figure 8), to

soften the timing constraints.

Cycle
Utilization

1 1 1 n 1 1 1 1

Packet
Monitor

ETH_IPv4
TCPnUDP Multi Stage

Mux

ETH_VLAN_IPv4
TCPnUDP

Figure 8. Multi-Stage Protocol Extraction Pipeline

The complete pipeline of the Multi-Stage Protocol Extraction

block is shown in Figure 8. When first word of the packet enters

the Packet Monitor, it’s broadcasted to all the protocol

combination blocks in the Multi-Stage Protocol Extraction block

with a latency of 2 cycles. After the latency of n+2 cycles the

header information i.e. source IP (SIP), destination IP (DIP),

source port (SPORT), destination (DPORT), and Protocol,

extracted from one or multiple protocol combination blocks is

forwarded to Multi-Stage Priority Multiplexer. Here n is equal to

the total number of words taken by the largest protocol

combination i.e. supported packet with largest header however, if

the incoming packet is smaller than the size of the largest protocol

combination, n is equal to the size of the incoming packet. Each

of the protocol combination blocks generates a valid signal in case

a match is found for a given packet. The priority of the protocol

combinations is maintained by assigning higher priorities to

protocols with larger number of combinations and so on. Multi-

Stage Multiplexer selects the output of the protocol combination

for which there is a match and has the highest priority. The header

information is written into the corresponding RFIFO after a pre-

defined latency set for the Multi-Stage Multiplexer block, 3 in the

case of the design shown in Figure 8. The valid signal acts as a

write enable for the RFIFO. The total latency faced by a packet in

the design in Figure 8 is n+7.

Dest Mac Src Mac

Src Mac Ver-HLenEth Type

TLen ID Frag Off TTL Prtcl

HCRC Src IP Dest IP

Dest IP Dest Prt

15 031 1647 3263 48

SPrt or

ToM/C

Dest Mac Src Mac

Src Mac Ver-HLen

TLen ID Frag Off TTL Prtcl

HCRC Src IP Dest IP

Dest Prt

15 031 1647 3263 48

Eth Type

Dest IP GRE FlgsGRE Prtcl Ver-HLen

TLen ID Frag Off TTL Prtcl

HCRC Src IP Dest IP

Dest IP SPrt or

ToM/C

Example 1: ETH, IP, TCP/UDP/ICMP

Example 2: ETH, MPLS, IP,
TCP/UDP/ICMP

Dest Mac Src Mac

Src Mac Ver-HLen

TLen ID Frag Off TTL Prtcl

HCRC Src IP Dest IP

Src Prt Dest Prt

15 031 1647 3263 48

Eth Type

Dest IP

L2TP Flgs TNL ID SSN ID

PPP Hdr PPP Prtcl Ver-HLen TLen

ID Frag Off TTL Prtcl HCRC

Src IP Dest IP

Dest PrtSPrt or

ToM/C

Example 3: ETH, IP, GRE, ETH, IP,
TCP/UDP/ICMP

Example 4: ETH, IP, UDP, L2TP, PPP, IP,
TCP/UDP/ICMP

Dest Mac Src Mac

Src Mac

Ver-HLen TLen ID

Frag Off TTL Prtcl HCRC Src IP

Dest IP

Dest Prt

15 031 1647 3263 48

Eth Type MPLS

MPLS

SPrt or

ToM/C
Src IP

Figure 9. Examples of Multi-Layer Packets

An example of each of the four supported protocols is shown in

the Figure 9. In example 1 and 2, for L3/L4 and MPLS blocks,

considering the data word to be 64-bit long; the packet with

protocol combination ETH, IP, TCP/UDP/ICMP contains flow

information SrcIP, DstIP, SPrt, DPrt and Prtcl etc in word 2, word

3, word 4, and word 5. Similarly in example 3, for GRE block, the

flow information is located in words 5, 6, 7, and 8; for example 4,

the L2TP block, the flow information is present in words 7, 8, 9,

and 10. The Multi-Layer Protocol Extraction block after

processing a packet, pushes flow information along with the

timestamp in the respective RFIFO. Though the Protocol

Extraction block can support IPv6 protocols but for simplicity

only IPv4 protocols are considered.

3.1.4.1 MPLS Decoding and Extraction
Multiple Protocol Label Switching (MPLS) tunnels are detected

based on lower layer protocol type field as 0x8847. Detection of

upper layer protocols in not defined in MPLS standard

documents. In order to identify the type of the protocol we

propose a detection method based on byte pattern analysis and

verification of the upper layer protocol. Currently system supports

only IP as MPLS upper layer protocol but any other protocol can

easily be integrated. During the analysis of IP detection, the

‘Bottom of Label Stack’ field is checked for value 1 to identify

the final MPLS header. The first nibble just after the last MPLS

header is checked for IP version (0x4 and 0x6 for IPv4 and IPv6

respectively). If result comes out to be true, we will assume the

upper layer to be IP. Next to verify it, we take the sum of the all

the header lengths (in bytes) and the total length from the assumed

IP header and compare it with the byte count calculated by the

RxQ at the time of reception of the packet. If verified then the

upper layer protocol is marked as IP.

3.1.5 Hash Generator Block
The Hash Generator block provided with the reference NetFlow

design has been used as a baseline [9] [11]. The Packet Bus

interface i.e. data bus, control bus, write and ready signals have

been replaced with a standard FIFO interface.

The Hash Generator retrieves flow information from the previous

RFIFO in the pipeline and computes a 64-bit hash value using

CRC-64; and, pushes the hash value in the next RFIFO. The hash

value is computed using the following fields only: SrcIP, DstIP,

SPrt, DPrt, IIF, and Prtcl.

3.1.6 Flow LookUp & Processing Blocks
Flow LookUp block receives a 64-bit hash value from the Hash

Generator block and splits it into two parts. The addressing

scheme employed is taken from the reference NetFlow design as

shown in Figure 10.

Each memory location, indexed using the first part of the hash

value, contains 8 hash values from 8 different network flows

(equal in width of the second half of the hash value) referred as

fingerprints. These fingerprints are compared to the second half of

the split hash. The following assumptions are made depending

upon the comparison of the hash value and the finger prints:

 A flow record already exists in the memory, if a match

with one of the fingerprints is generated. Its address is

acquired as the join of first part of the hash and the

rank of the matched fingerprint.

 If there is no match and the number of flow records in

the set is lower than 8, free space is used to enter a

new fingerprint.

 If there is no match and no space then an arbitrary flow

record in the set is expired and replaced with a new

one. When a flow record is about to be expired, the

Flow LookUp receives a command from the Flow

Processing block to delete the corresponding

fingerprint from the hash table. It is sent back to the

Flow Processing block immediately after the command

is executed.

Memory
Module D

EC
O

D
ER

Memory
Module

Memory
Module

HASH(11:0)

HASH

CMD &
ADDR

Single Line of Memory

Figure 10. Flow LookUp Block

Flow Processing block controls performs the following tasks:

 Initialization of new flow records

 Updating of existing flow records

 Expiration of inactive flow records

3.1.7 Output Port Lookup Processor
The Record Wrapper block, as mentioned in [11], has been

replaced with the OPL Processor block. The OPL processor

carries out the same functionalities as that of the Record Wrapper

block i.e. it temporarily stores released flow records.

As soon as the following conditions are met, stored flow records

are packetized into NetFlow v5 format and written into the OQ

block of the NetFPGA platform.

 15 records are present in the buffer

 The first record in the buffer is 20 ms old

The NetFlow v5 datagram is sent to the output interface(s)

specified by the software register [9]. The collector can be

installed directly to NetFPGA host machine or output ports of

NetFPGA card can emit NetFlow packets to distant collector.

3.1.8 Intermediate Result FIFOs
Result FIFOs have been used to hold intermediate results between

the corresponding modules in the NetFlow v5 pipeline as shown

in the Figure 4.

3.2 Software Implementation
The host software has been upgraded to provide complete support

for virtual interfaces (GRE, L2TP, and MPLS).

Host Software with Virtual Interfaces (GRE, L2TP, MPLS)

NetFPGA Card

NetFPGA Driver

Java libraries Perl libraries

Java gui Collector

Network
Traffic

NetFlow v5

C
o

n
tr

o
l P

at
h

Figure 11. Software Hierarchy

The other basic functionalities like configuration, statistical

interfaces and information collection remain the same as

mentioned in [9] [11]. Hierarchical view of the software

architecture is shown in Figure 11.

4. RESOURCE UTILIZATTION
The resource utilization of the original NetFlow probe

architecture and the current architecture is shown in Table 1 and

Table 2 respectively. Even though three different technologies of

virtual interfaces (GRE, L2TP and MPLS) have been incorporated

in the current design, yet there is only an average increase of 3%

in the overall utilization of the resources.

Table 1: Resource utilization of the Current Architecture with

Virtual Interfaces

Resources
XC2VP50

Utilization

Utilization

Percentage

Slices
18276 out of

23616
77%

4 - Input

LUTS

25165 out of

47232
53%

Flip Flops
21244 out of

47232
44%

Block RAMs 200 out of 232 86%

Table 2: Resource utilization of the Original NetFlow probe

Architecture

Resources
XC2VP50

Utilization

Utilization

Percentage

Slices
17617 out of

23616
74%

4 - Input

LUTS

23319 out of

47232
49%

Flip Flops
19504 out of

47232
41%

Block RAMs 200 out of 232 86%

5. CONCLUSION
We propose a protocol analysis layer for NetFlow probe pipelined

architecture. The architecture is implemented on the NetFPGA

platform. The implemented architecture targets all the present and

future IPv4 and IPv6 protocols. The GRE and L2TP protocol are

especially selected in order to demonstrate the flexibility and the

scalability of the architecture. The architecture can be used for

applications involving deep packet inspection such as VoIP

monitoring and NextGen firewalls besides NetFlow probe. The

proposed architecture is scalable and can be implemented on any

FPGA board. The newer protocols can be independently added in

the protocol analyzer layer without modifying the already

implemented protocols in the layer.

6. REFERENCES
[1] Cisco: NetFlow Protocol

http://www.cisco.com/en/US/products/ps6601/products_ios_

protocol_group_home.html

[2] Wiki: NetFlow Protocol

http://en.wikipedia.org/wiki/Netflow

[3] Cisco White Paper. NetFlow on Logical Interfaces: Frame

Relay, Asynchronous Transfer Mode, Inter-Switch Link,

802.1 q, Multilink Point to Point Protocol, General Routing

Encapsulation, Layer 2 Tunneling Protocol, Multiprotocol

Label Switching VPNs, and Tunnel, March 2006.

[4] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N.

McKeown. Methodology to contribute netfpga modules. In

International Conference on Microelectronic Systems

Education (submitted to), 2009.

[5] G. Gibb, J. W. Lockwood, J. Naous, P. Hartke, and N.

McKeown. Netfpga: An open platform for teaching how to

build gigabit-rate network switches and routers. In IEEE

Transactions on Education, August 2008.

[6] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P.

Hartke, J. Naous, R. Raghuraman, and J. Luo. Netfpga - an

open platform for gigabitrate network switching and routing.

In International Conference on Microelectronic Systems

Education, 2007.

[7] G. Watson, N. McKeown, and M. Casado. Netfpga - a tool

for network research and education. In 2nd Workshop on

Architecture Research using FPGA Platforms (WARFP),

Febuary 2006.

[8] G. A. Covington, G. Gibb, J. Naous, J. Lockwood, and N.

McKeown. A Packet Generator on the NetFPGA Platform. In

IEEE Symposium on. Field-Programmable Custom

Computing Machines (FCCM), April 2009.

[9] NetFPGA: NetFlowProbe

http://www.netfpga.org/foswiki/bin/view/NetFPGA/OneGig/

NetFlowProbe

[10] NetFPGA: Guide

http://netfpga.org/netfpgawiki/index.php/Guide

[11] CESNET: NetFlow probe on NetFPGA

http://www.liberouter.org/~xzadni00/netflowprobedoc.pdf

http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://www.cisco.com/en/US/products/ps6601/products_ios_protocol_group_home.html
http://en.wikipedia.org/wiki/Netflow

