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ABSTRACT 
In this paper, we present an extended architecture of protocol 

extraction layer for standalone NetFlow probes. Standalone 

NetFlow probe over multi-gig data rates is a new paradigm for 

researchers. The routing of private enterprise traffic over public 

network requires encapsulating the private IP packet in GRE, 

L2TP or MPLS. The bandwidth monitoring, network forensics 

and network traffic analysis is of paramount importance in order 

to maintain the quality of service (QoS) and security of enterprise 

networks. The presented architecture targets all the present and 

future IPv4 and IPv6 network protocols. In this paper, we focus 

on the protocol extraction mechanisms for technologies providing 

support for virtual interfaces. We implemented the protocol 

extraction layer in the NetFlow probe architecture for NetFPGA. 

The architecture can also be utilized for deep packet inspection 

(DPI), especially to monitor RTP payloads in the Voice over IP 

(VoIP) applications. The architecture finds applications reaching 

high data rates; like Internet Protocol monitoring, VoIP 

monitoring and QoS monitoring. 
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1. INTRODUCTION 
In today’s competitive market, advanced data services are 

migrating from fixed to mobile infrastructure and WAN 

connectivity is becoming mandatory to extend the enterprise 

network to mobile infrastructure. The latest trend of businesses is 

the establishment of many branch offices miles away from the 

main head office that is vital for providing valuable 24/7 customer 

support and services across the globe. The integration of WAN 

and LAN technologies involve multitude of protocols. In order to 

provide ubiquitous connectivity for bandwidth hungry, hybrid and 

critical applications, the requirement of network protocol analysis 

has become all the more important.  

NetFlow is a network analysis protocol designed by Cisco 

Systems [1]. The architectures adopted for the network flow 

analysis are either router-based or probe-based as shown in Figure 

1 and Figure 2. NetFlow on routers provides a Network-wide 

view of the traffic, for network management and planning as well 

as traffic analysis and observation. However, NetFlow on probes 

is well suited for the observation of critical links [2].  

In packet switching networks; traffic flow, packet flow or network 

flow consists of a sequence of packets sent from a source 

computer to a destination which could be another host, multicast 

group or broadcast domain. Network flows have been defined in 

numerous ways. 
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Figure 1. Standard NetFlow Architecture 

Cisco defines network flows using a 7-tuple key, as a 

unidirectional sequence of packets sharing the following 7 values: 

(1) Source IP address, (2) Destination IP address, (3) Source port 

for UDP or TCP, 0 for other protocols, (4) Destination port for 

UDP or TCP, type code for ICMP, or 0 for other protocols, (5) IP 

protocol, (6) Ingress interface (SNMP if Index), and (7) IP Type 

of Service (ToS) [1][2]. 

We present generic protocol analysis architecture to target 

existing and future internet protocols. In this paper, our point of 

focus is to provide NetFlow support on NetFPGA for virtual 

interfaces. Virtual interfaces are usually found in technologies like 



Layer 2 Tunneling Protocol (L2TP), Generic Routing 

Encapsulation (GRE) tunnels and Multiprotocol Label Switching 

over Virtual Private Network (MPLS-VPN) [3]. The rest of the 

paper is organized as follows: section 2 describes NetFPGA, 

section 3 explains the system architecture, section 4 presents 

resource utilization, and section 5 concludes the paper. 
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Figure 2. Stand-alone NetFlow Architecture 

2. NetFPGA 
The NetFPGA is a research platform comprising of three parts, 

hardware, gateware and software. The hardware is based on a PCI 

plug-in card equipped with  Xilinx Virtex-II Pro 50, four ports of 

Gigabit Ethernet, two parallel banks of 18Mbit Zero-bus 

turnaround (ZBT) SRAM and 64 Mbytes DDR DRAM for local 

processing. The FPGA directly handles all data-path switching, 

routing, and processing of Ethernet and Internet packets, leaving 

the software to handle only control-path functions [4]. Gateware 

is a set of Verilog source files having an integrated pipeline with 

several components. Gateware is designed to be modular and 

reconfigurable. Most designs invoke the use of reference pipeline 

[5]. The reference pipeline shown in Figure 3, is comprised of 

eight receive queues; eight transmit queues, user data path, and a 

register system i.e. Register I/O module. Receive and transmit 

queues are divided into two types: MAC and CPU. Users add and 

connect their modules to the User Data Path. The Input Arbiter 

and the Output Queue modules, present in the User Data Path, are 

the main modules present in almost all NetFPGA designs. Source 

code for these modules is provided in the NetFPGA Verilog 

library. The Input Arbiter services the eight input queues in a 

round robin fashion to feed a wide (64-bit) packet pipeline [6].  

Gateware communicates with the software using register system. 

The register system allows modules to be inserted within the 

pipeline using minimal effort. The register interface allows 

software programs running in the host system to send and receive 

data from hardware modules using PCI device driver utilities 

provided with the NetFPGA reference designs [7] [8]. 

3. SYSTEM ARCHITECTURE 
As mentioned in [9], NetFlow probe consists of a host computer 

and a NetFPGA network accelerator card. By exploiting the 

hardware-software co-design principle, timing critical functions 

like  measurements etc are implemented on the NetFPGA whereas 

soft constraint functions like control, configuration and collecting 

processes are implemented within the host computer (Linux OS) 

as a user software. 
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Figure 3. NetFPGA Reference Pipeline 

Two new features have been added along with the existing four 

parameters of the probe mentioned in [9]. These are:  

 Packet processing of virtual interfaces consisting of 

Layer 2 Tunneling Protocol (L2TP), Generic Routing 

Encapsulation (GRE), and Multiprotocol Label 

Switching (MPLS). 

 Complete software support for virtual interface analysis 

and processing. 

3.1 Hardware Implementation 
Architecture of NetFlow v5 Probe [9] utilizes the NetFPGA 

reference pipeline as a foundation. Main features of the NetFlow 

v5 Probe are incorporated within the User Data Path; design 

outside the User Data Path has been used without any 

modifications. 

The highlighted regions in Figure 4 show the newly added and 

updated blocks. User Data Path has been divided into 4 major 

blocks: (1) Input Arbiter, (2) Time Stamp, (3) Output Port 

LookUp, and (4) Output Queues. The communication between 

these blocks is provided using the NetFPGA interconnection 

protocol i.e. data bus, control bus, write and ready signals. The 

Output Port LookUp is further subdivided into Multi-Layer 

Protocol Extraction, Hash Generation, Flow Lookup, Flow 

Processing and Output Port LookUp Processor. Each of these 

blocks has been assigned a specified task. After processing, each 

block pushes required information in the corresponding Result 

FIFO (RFIFO), which is then read by the next block in a pipelined 

fashion. The interconnection of blocks within the Output Port 

LookUp is provided by the use of simple dual port distributed 

FIFOs. 

3.1.1 Interface Receive/Transmit Queues 
The NetFlow design has x4 Ethernet Queues and x4 DMA 

Queues each for data reception and transmission, shown in Figure 

4 [9]. Packet received at an interface is stored in the receive queue 

(RxQ). During an available time-slot for a particular interface, 

Input Arbiter reads the packet from the RxQ and transmits the 
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Figure 4. NetFlow Architecture for NetFPGA

complete packet to the Time Stamp block before starting a new 

transaction for another interface. During the reading process, RxQ 

encapsulates the packet by attaching a 64-bit word at the start of 

the packet as shown in the Figure 5. The header contains 

information regarding the size of the packet (bytes and words) as 

well as the interface at which the packet arrived. An empty 

location present in each header for the destination ports address is 

filled by Output Port Lookup Processor (OPL) block.  

Packet Structure

byte count

Packet Body i.e. MPLS, L2TP, GRE, IP, TCP, 

UDP etc.

src portword countdst ports

15               031            1647             3263             48

 

Figure 5. Internal Packet Format 

Output Queue (OQ) stores the packet within the transmit queue 

(TxQ) for a given interface. The TxQ removes the header, 

attached at the time of the arrival of the packet at the receive 

interface, and sends it out to the respective transmit interface(s).  

3.1.2 Input Arbiter Block 
The Input Arbiter block is used from the original NetFPGA 

library: reference NIC design. Within the User Data Path as 

shown in Figure 4, the first module a packet encounters is the 

Input Arbiter, who, decides which RxQ to service. It subsequently 

pulls a packet from that RxQ and hands it over to the Time Stamp 

block that transmits it to the main processing pipeline. 

3.1.3 Time Stamp Block 
Functionality of the Time Stamp block remains the same as 

provided in the NetFlow reference design [9] [11]. The only 

alteration made to the design is the placement of the Time Stamp 

module directly after the Input Arbiter (see Figure 4) instead of 

after the Protocol Extraction block. This has been done to make 

the timestamp unit independent of the Output Port LookUp block. 

Timestamp unit inserts the current timestamp value from the 

timestamp counter with millisecond resolution into the packet 

header as shown in Figure 6. The remaining functionality of the 

Timestamp’s block remains unchanged from the reference design 

[11]. After inserting a header for 32-bit timestamp value within 

the packet structure, it transmits the newly encapsulated packet to 

the Multi-Layer Protocol Extraction block. 

Packet Structure

byte count

Packet Body i.e. MPLS, L2TP, GRE, 

IP, TCP, UDP etc.

src portword countdst ports

time stampreserved
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Figure 6. Packet Structure with Timestamp field 

3.1.4 Multi-Layer Protocol Extraction Block 
Multi-Layer Protocol Extraction block is the core of the overall 

NetFlow probe architecture. The extraction of exact and accurate 

flow records from different combination of layers is a crucial task. 

For simplicity we only focus on the virtual interfaces from within 

logical interfaces for flow analysis [3]. In our case a network flow 

or packet record or flow record is composed of following 6-tuple 

keys: 

 Source IP address (SrcIP) 

 Destination IP address (DstIP) 

 Source Port (SPrt) for UDP/TCP and 0 for other 

protocols 

 Destination Port (DPrt) for UDP/TCP, Type/Code for 

ICMP and 0 for other protocols 

 Input – Input Interface (IIF) 

 Protocol (Prtcl) 
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Figure 7. Multi-Layer Protocol Extraction block diagram 

The Protocol Extraction block is composed of following 

protocols: (1) original L3L4 block provided with the reference 

NetFlow design [11], (2) MPLS block for the extraction of multi 

protocol label switched packets with support for only two labels, 



(3) GRE block for the parsing of GRE encapsulated protocol 

packets, (4) L2TP block for mining layer 2 tunneled PPP packets, 

and (5) Future protocols.  

The block level architecture of Multi-Layer Protocol Extraction 

block is shown in the Figure 7.  It consists of a Packet Monitor, a 

configurable stack of protocol combinations and a Multi-stage 

Priority Multiplexer. The packet monitor tracks the state of the 

packet during the extraction process i.e. header or data.  

Depending on the type of network in use, one can easily add or 

remove the protocol combinations to handle customized traffic. A 

very flexible architecture has been provided to ease insertion and 

deletion of the custom protocol combinations. In cases, where 

protocol stack increases, the Multi-Stage Priority Multiplexer can 

be configured to add additional pipeline stages (see Figure 8), to 

soften the timing constraints.  
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Figure 8. Multi-Stage Protocol Extraction Pipeline 

The complete pipeline of the Multi-Stage Protocol Extraction 

block is shown in Figure 8. When first word of the packet enters 

the Packet Monitor, it’s broadcasted to all the protocol 

combination blocks in the Multi-Stage Protocol Extraction block 

with a latency of 2 cycles. After the latency of n+2 cycles the 

header information i.e. source IP (SIP), destination IP (DIP), 

source port (SPORT), destination (DPORT), and Protocol, 

extracted from one or multiple protocol combination blocks is 

forwarded to Multi-Stage Priority Multiplexer. Here n is equal to 

the total number of words taken by the largest protocol 

combination i.e. supported packet with largest header however, if 

the incoming packet is smaller than the size of the largest protocol 

combination, n is equal to the size of the incoming packet. Each 

of the protocol combination blocks generates a valid signal in case 

a match is found for a given packet. The priority of the protocol 

combinations is maintained by assigning higher priorities to 

protocols with larger number of combinations and so on. Multi-

Stage Multiplexer selects the output of the protocol combination 

for which there is a match and has the highest priority. The header 

information is written into the corresponding RFIFO after a pre-

defined latency set for the Multi-Stage Multiplexer block, 3 in the 

case of the design shown in Figure 8. The valid signal acts as a 

write enable for the RFIFO. The total latency faced by a packet in 

the design in Figure 8 is n+7. 
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Figure 9. Examples of Multi-Layer Packets 

An example of each of the four supported protocols is shown in 

the Figure 9. In example 1 and 2, for L3/L4 and MPLS blocks, 

considering the data word to be 64-bit long; the packet with 

protocol combination ETH, IP, TCP/UDP/ICMP contains flow 

information SrcIP, DstIP, SPrt, DPrt and Prtcl etc in word 2, word 

3, word 4, and word 5. Similarly in example 3, for GRE block, the 

flow information is located in words 5, 6, 7, and 8; for example 4, 



the L2TP block, the flow information is present in words 7, 8, 9, 

and 10. The Multi-Layer Protocol Extraction block after 

processing a packet, pushes flow information along with the 

timestamp in the respective RFIFO. Though the Protocol 

Extraction block can support IPv6 protocols but for simplicity 

only IPv4 protocols are considered. 

3.1.4.1 MPLS Decoding and Extraction 
Multiple Protocol Label Switching (MPLS) tunnels are detected 

based on lower layer protocol type field as 0x8847. Detection of 

upper layer protocols in not defined in MPLS standard 

documents. In order to identify the type of the protocol we 

propose a detection method based on byte pattern analysis and 

verification of the upper layer protocol. Currently system supports 

only IP as MPLS upper layer protocol but any other protocol can 

easily be integrated. During the analysis of IP detection, the 

‘Bottom of Label Stack’ field is checked for value 1 to identify 

the final MPLS header. The first nibble just after the last MPLS 

header is checked for IP version (0x4 and 0x6 for IPv4 and IPv6 

respectively). If result comes out to be true, we will assume the 

upper layer to be IP. Next to verify it, we take the sum of the all 

the header lengths (in bytes) and the total length from the assumed 

IP header and compare it with the byte count calculated by the 

RxQ at the time of reception of the packet. If verified then the 

upper layer protocol is marked as IP.  

3.1.5 Hash Generator Block 
The Hash Generator block provided with the reference NetFlow 

design has been used as a baseline [9] [11]. The Packet Bus 

interface i.e. data bus, control bus, write and ready signals have 

been replaced with a standard FIFO interface.   

The Hash Generator retrieves flow information from the previous 

RFIFO in the pipeline and computes a 64-bit hash value using 

CRC-64; and, pushes the hash value in the next RFIFO. The hash 

value is computed using the following fields only: SrcIP, DstIP, 

SPrt, DPrt, IIF, and Prtcl. 

3.1.6 Flow LookUp & Processing Blocks 
Flow LookUp block receives a 64-bit hash value from the Hash 

Generator block and splits it into two parts. The addressing 

scheme employed is taken from the reference NetFlow design as 

shown in Figure 10. 

Each memory location, indexed using the first part of the hash 

value, contains 8 hash values from 8 different network flows 

(equal in width of the second half of the hash value) referred as 

fingerprints. These fingerprints are compared to the second half of 

the split hash. The following assumptions are made depending 

upon the comparison of the hash value and the finger prints: 

 A flow record already exists in the memory, if a match 

with one of the fingerprints is generated. Its address is 

acquired as the join of first part of the hash and the 

rank of the matched fingerprint. 

 If there is no match and the number of flow records in 

the set is lower than 8, free space is used to enter a 

new fingerprint. 

 If there is no match and no space then an arbitrary flow 

record in the set is expired and replaced with a new 

one. When a flow record is about to be expired, the 

Flow LookUp receives a command from the Flow 

Processing block to delete the corresponding 

fingerprint from the hash table. It is sent back to the 

Flow Processing block immediately after the command 

is executed.  
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Figure 10. Flow LookUp Block 

Flow Processing block controls performs the following tasks: 

 Initialization of new flow records 

 Updating of existing flow records 

 Expiration of inactive flow records  

3.1.7 Output Port Lookup Processor 
The Record Wrapper block, as mentioned in [11], has been 

replaced with the OPL Processor block. The OPL processor 

carries out the same functionalities as that of the Record Wrapper 

block i.e. it temporarily stores released flow records.  

As soon as the following conditions are met, stored flow records 

are packetized into NetFlow v5 format and written into the OQ 

block of the NetFPGA platform. 

 15 records are present in the buffer 

 The first record in the buffer is 20 ms old 

The NetFlow v5 datagram is sent to the output interface(s) 

specified by the software register [9]. The collector can be 

installed directly to NetFPGA host machine or output ports of 

NetFPGA card can emit NetFlow packets to distant collector. 

3.1.8 Intermediate Result FIFOs 
Result FIFOs have been used to hold intermediate results between 

the corresponding modules in the NetFlow v5 pipeline as shown 

in the Figure 4. 

3.2 Software Implementation 
The host software has been upgraded to provide complete support 

for virtual interfaces (GRE, L2TP, and MPLS). 
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Figure 11. Software Hierarchy 



The other basic functionalities like configuration, statistical 

interfaces and information collection remain the same as 

mentioned in [9] [11]. Hierarchical view of the software 

architecture is shown in Figure 11. 

4. RESOURCE UTILIZATTION 
The resource utilization of the original NetFlow probe 

architecture and the current architecture is shown in Table 1 and 

Table 2 respectively. Even though three different technologies of 

virtual interfaces (GRE, L2TP and MPLS) have been incorporated 

in the current design, yet there is only an average increase of 3% 

in the overall utilization of the resources.  

 

Table 1: Resource utilization of the Current Architecture with 

Virtual Interfaces 

Resources 
XC2VP50 

Utilization 

Utilization 

Percentage 

Slices 
18276  out of 

23616 
77% 

4 - Input 

LUTS 

25165 out of 

47232 
53% 

Flip Flops 
21244 out of 

47232 
44% 

Block RAMs 200 out of 232 86% 

 

Table 2: Resource utilization of the Original NetFlow probe 

Architecture 

Resources 
XC2VP50 

Utilization 

Utilization 

Percentage 

Slices 
17617  out of 

23616 
74% 

4 - Input 

LUTS 

23319 out of 

47232 
49% 

Flip Flops 
19504 out of 

47232 
41% 

Block RAMs 200 out of 232 86% 

5. CONCLUSION 
We propose a protocol analysis layer for NetFlow probe pipelined 

architecture. The architecture is implemented on the NetFPGA 

platform. The implemented architecture targets all the present and 

future IPv4 and IPv6 protocols. The GRE and L2TP protocol are 

especially selected in order to demonstrate the flexibility and the 

scalability of the architecture. The architecture can be used for 

applications involving deep packet inspection such as VoIP 

monitoring and NextGen firewalls besides NetFlow probe.  The 

proposed architecture is scalable and can be implemented on any 

FPGA board. The newer protocols can be independently added in 

the protocol analyzer layer without modifying the already 

implemented protocols in the layer. 
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