

Welcome			
Please organize into teams			
2 People/computer			
Wireless network for Cambridge Guests			
SSID : as written on whiteboard			
The NetFPGA machines			
Username: root Password: on whiteboard			
NetFPGA homepage			
http://NetFPGA.org			
SNEFFGA Cambridge Workshop 15-16 Sep 2008 2			

Day 1: Tutorial Outline				
•	Background			
	– Introduction			
	 Basics of an IP Router 			
	 The NetFPGA Platform 			
•	The Stanford Base Reference Router			
	 Demo1: Reference Router running on the NetFPGA 			
	 Inside the NetFPGA hardware (Andrew) 			
	 Breakneck introduction to FPGAs and Verilog 			
	Exercise 1: Build your own Reference Router			
•	The Enhanced Reference Router			
	 Motivation: Understanding buffer size requirements in a router 			
	 Demo 2: Observing and controlling the queue size 			
	Exercise 2: Enhancing the Reference Router			
•	The Life of a Packet Through the NetFPGA			
	- Hardware Datapath			
	 Interface to software: Exceptions and Host I/O 			
	Exercise 3: Drop 1 in N Packets			
•	Concluding Remarks			
	- Additional Hardware Platforms			
	- Using NetFPGA for research and teaching			
	☐ - Group Discussion ■ FPGA Cambridge Workshon 15-16 Sen 2008 4			

Integrated Circuit Technology

Full-custom Design

- Complementary Metal Oxide Semiconductor (CMOS)

Semi-custom ASIC Design

- Gate array
- Standard cell

Programmable Logic Device

- Programmable Array Logic
- Field Programmable Gate Arrays

Processors

- Network Processors
- General Purpose Processors
- ²³NetFPGR NetFPGA Cambridge Workshop 15-16 Sep 2008 42

Step 1 - Build the Hardware				
Close all windo	WS			
Start terminal, cd to				
"NF2/projects/tutorial_router/synth"				
Start synthesis with "make"	<pre>He Edit Vew leminal labs Hep [rootenf test9 -]# cd NF2/projects/tutorial_router/synth/ [root@nf-test9 synth]# make]</pre>			
Set FPGR Net FPGA Cambridg	te Workshop 15-16 Sep 2008 59	UNIVERSITY OF 800 YEARS CAMBRIDGE 1209-2009		

Buffer Requirements in a Router

Buffer size matters:

- Small queues reduce delay
- Large buffers are expensive

Theoretical tools predict requirements

- Queuing theory
- Large deviation theory
- Mean field theory

Solution NetFPGA Cambridge

Yet, there is no direct answer

- Flows have a closed-loop nature
- Question arises on whether focus should be on equilibrium state or transient state

66

× ·		
	KEmacs: user_data_path.v (3)	Tors Verling Statements Helin
Scroll down until you reach	D W D Shi Phint Cut Coou Path	Unde Stall Process Mail Info Con
the next "excluded" block	user_data_path.v // \vicc .clk (clk), .reset (reset));	A
Uncomment the block	// uncomment the modules here rate_limiter #(.IMIR_WIIIH(MIR_W .CPDI_NF2_DATA_WID rate_limiter (.out_cata	IIIH), TH(CPCI_VF2_DATA_WIDTH)) (delay_in_data),
containing the rate limiter /	.out_tri .out_wr .out_rdy	(delay_in_wr), (delay_in_wr), (delay_in_rdy),
instantiations.	.lri data .in_ctrl .ir_wr	(rate l⊫lter in data)→ (rate_limiter_in_ctrl)→ (rate_limiter_in_wr),
Scroll into the block, / / / / / / / / / / / / / / / / / / /	.in_rny // Registen interface .nste_limiten_rag_rny .nste_limiten_rag_rnym_l .nste_limiten_rag_rdata .nste_limiten_rag_rd_data	<pre>(rata_limiter_in_my), (rata_limiter_reg_reg)→ (rata_limiter_reg_rd_u→ (rata_limiter_reg_rd_u→ (rata_limiter_reg_rd_u→ (rata_limiter_reg_rd_u→ (rata_limiter_reg_rd_u→</pre>
Save (ctrl+x+s)	// Micc rik .reset	(rtk), (rtsst));

Step 9 - Bu	ild the Hardware				
Start terminal, cd to "NF2/projects/tutorial_router/synth"					
Run "make clean"	root@nf-test9:~/NF2/projects/tutorial_router/synth Ele Edit View Terminal Tabs Help [root@nf-test9 ~]# cd NF2/projects/tutorial_router/synth/ root@nf-test9 synth]# make				
Start synthesis with "make"					
BILE NetFPGA Cambridge Works	100 15-16 Sep 2008 101 😽 UNIVERSITY OF 800 Т КАК				

Typical NetFPGA Course Plan							
	Week	Software	Hardware	Deliver			
	1	Verify Software Tools	Verify CAD Tools	Write Design Document			
	2	Build Software Router	Build Non-Learning Switch	Run Software Router			
	3	Cmd. Line Interface	Build Learning Switch	Run Basic Switch			
	4	Router Protocols	Output Queues	Run Learning Switch			
	5	Implement Protocol	Forwarding Path	Interface SW & HW			
	6	Control Hardware	Hardware Registers	HW/SW Test			
Î	7	Interoperate Software & Hardware		Router Submission			
	8	Plan New Advanced Feature		Project Design Plan			
	9	Show new Advanced Feature		Demonstration			
NetFPGA Cambridge Workshop 15-16 Sep 2008 142							

Deployed NetFPGA hardware (July 2008)		
	Princeton University Rice University Georgia Tech Washington University University of Utah University of Toronto University of Connecticut University of California, San Diego (UCSD) University of California, Los Angeles (UCLA) University of Massachusetts (UMass) University of Pennsylvania (UPenn) North Carolina State University Lehigh University State University of New York (SUNY), Buffalo State University of New York (SUNY), Binghamton University of Florida Rutgers Western New England College Emerson Network Power ICSI Agilent Cisco Quanta Computer, Inc. Zones Inc.	Cambridge University India Institute of Science (IISC), Bangalore Ecole Polytechnique de Montreal Beijing Jaiotong University China Zhejiang University National Taiwan University University of New South Wales University of Hong Kong University of Bologna University of Sydney University of Pisa, Italy University of Pisa, Italy University of Jinan University of Amsterdam University of Waterloo University of Victoria Chung Yuan Christan University, Taiwan (CYCU) University Leiden (The Netherlands) National University (South Korea) Kasetsart University (South Korea) Kasetsart University (Thailand) Helsinki Institute for Information Technology (HIIT)

Project Ideas for the NetFPGA

- IPv6 Router (in high demand)
- TCP Traffic Generator
- Valiant Load Balancing
- Graphical User Interface (like CLACK)
- MAC-in-MAC Encapsulation
- Encryption / Decryption modules
- RCP Transport Protocol
- Packet Filtering (Firewall, IDS, IDP)
- TCP Offload Engine
- DRAM Packet Queues
- 8-Port Switch using SATA Bridge
- Build our own MAC (from source, rather than core)
- Use XML for Register Definitions
 http://netfpga.org/netfpgawiki/index.php/Module_Wishlist

²⁰NetFPGR NetFPGA Cambridge Workshop 15-16 Sep 2008 159

Group Discussion Your plans for using the NetFPGA Teaching Research Other Resources needed for your class Source code Source code Courseware Examples Four plans to contribute Expertise Capabilities Collaboration Opportunities

