
NetFPGA : Cambridge Spring School

Presented by:

Andrew W. Moore and David Miller
(University of Cambridge)

Martin Žádník
(Brno University of Technology)

NetFPGA Cambridge Spring School 15-19 Mar 2010 1

(U y gy)

Nadi Sarrar
(TU-Berlin/T-Labs)

Cambridge, UK – March 15-19, 2010

http://NetFPGA.org

Welcome

Please organize into teams
2 or 3 People/computer

Wireless network for Cambridge Guests
SSID : as written on whiteboard

(wired connections also available)

The NetFPGA machines

NetFPGA Cambridge Spring School 15-19 Mar 2010 2

Username: root Password: on whiteboard

NetFPGA homepage
http://NetFPGA.org

Day 1 – Monday 15th March, 2010

9:00 – 10:30 Session I
Introduction, background, Stanford
Reference Router

11:00 – 12:30 Session II
Research with the NetFPGA, Enhanced
Reference Router

Day 3 – Wednesday 17th March, 2010

8:30 – 9:30 Group discussion
Projects ideas
Scope of work that can be accomplished in 2-3 days

Team up for Projects
Project leaders will describe projects
Group will provide feedback on the scope

Spring School Schedule

Reference Router
13:45 – 15:15 Session III

Life of a Packet, Datapath, Extending the
Router – an example

15:45 – 17:00 Session IV
Further hardware platforms, NetFPGA in
research and teaching, group discussion

18:00 Punt trip – weather dependent
19:30 Dinner – India House

Day 2 – Tuesday 16th March, 2010

9 00 10 30 S i V

Group will provide feedback on the scope
Be sure to have one hardware designer per team

16:00 – 17:30 Example Hardware Designs
Background and review of block diagrams
Show design running on nf-test machines including
a demonstration of running code
Discuss relevant Verilog Code

Day 4 – Thursday 18th March, 2010

9:00 – 17:30 Work on Projects
NetFPGA users available for Questions and Answers

th

NetFPGA Cambridge Spring School 15-19 Mar 2010 3

9:00 – 10:30 Session V
Openflow on NetFPGA

11:00 – 12:30 Session VI
Introducing Module development in the
NetFPGA, Implement an example module

13:45 – 15:15 Session VII
Implement verification test
(for use against the ModelSim simulator)

15:45 – 17:00 Session VIII
Implement hardware regression test allowing
mechanised testing of your new module

Day 5 – Friday 19th March, 2010

9:00 – 15:15 Complete Projects

15:45 – 17:30 Final Session
10-minute project presentations.
Live demonstrations
Award prizes to winning projects

Group Dinner at 7A Jesus Lane

Day 1: Tutorial Outline
• Background

– Introduction
– Basics of an IP Router
– The NetFPGA Platform

• The Stanford Base Reference Router
– Demo1: Reference Router running on the NetFPGA
– Inside the NetFPGA hardware (Andrew)
– Breakneck introduction to FPGAs and Verilog
– Exercise 1: Build your own Reference Router

• The Enhanced Reference Router
– Motivation: Understanding buffer size requirements in a router
– Demo 2: Observing and controlling the queue size
– Exercise 2: Enhancing the Reference Router

• The Life of a Packet Through the NetFPGA

NetFPGA Cambridge Spring School 15-19 Mar 2010 4

• The Life of a Packet Through the NetFPGA
– Hardware Datapath
– Interface to software: Exceptions and Host I/O
– Exercise 3: Drop 1 in N Packets

• Concluding Remarks
– Additional Hardware Platforms
– Using NetFPGA for research and teaching
– Group Discussion

What is the NetFPGA?

CPU Memory

Networking
Software
running on a

FPGA

1GE

1GE

PCI
PC with NetFPGA

running on a
standard PC

A hardware
accelerator
built with Field
P bl

NetFPGA Cambridge Spring School 15-19 Mar 2010 5

Memory

1GE

1GE
NetFPGA Board

Programmable
Gate Array
driving Gigabit
network links

Who, How, Why

Who uses the NetFPGA?
– Teachers
– Students
– Researchers

How do they use the NetFPGA?
– To run the Router Kit
– To build modular reference designs

• IPv4 router
• 4 port NIC

NetFPGA Cambridge Spring School 15-19 Mar 2010 6

• 4-port NIC
• Ethernet switch, …

Why do they use the NetFPGA?
– To measure performance of Internet systems
– To prototype new networking systems

Running the Router Kit

User-space development, 4x1GE line-rate forwarding

M

OSPF BGP

1GE

PCI

CPU Memory

My Protocol
user

kernel
Routing

Table

1GEFwding
Table

Packet
Buffer

“Mirror”

NetFPGA Cambridge Spring School 15-19 Mar 2010 7

FPGA

Memory

1GE

1GE

1GE

IPv4
Router

1GE

1GE

1GE

Enhancing Modular Reference Designs

M

PW-OSPF
Verilog

1GE

PCI

CPU Memory

NetFPGA Driver

Java GUI
Front Panel
(Extensible)

In QL2L3
1GE

EDA Tools
(Xilinx,

Mentor, etc.)

1. Design
2. Simulate
3. Synthesize

NetFPGA Cambridge Spring School 15-19 Mar 2010 8

FPGA

Memory

1GE

1GE

1GE

In Q
Mgmt

IP
Lookup

L2
Parse

L3
Parse

Out Q
Mgmt

1GE

1GE

1GE

Verilog modules interconnected by FIFO interfaces

My
Block

y
4. Download

Creating new systems

M
Verilog

1GE

PCI

CPU Memory

NetFPGA Driver

1GE

EDA Tools
(Xilinx,

Mentor, etc.)

1. Design
2. Simulate
3. Synthesize
4. Download

NetFPGA Cambridge Spring School 15-19 Mar 2010 9

FPGA

Memory

1GE

1GE

1GE

1GE

1GE

1GE

My Design

(1GE MAC is soft/replaceable)

Basic Operation of an IP Router
R3

A
R1

R4 D

B

C R2

E

FR5Next HopDestination

NetFPGA Cambridge Spring School 15-19 Mar 2010 10

F

R5F

R3E

R3D

p

What does a router do?
R3

A
R1

R4 D
1641

B

C R2

E

FR5Next HopDestination

16 3241

Destination Address

Source Address

Header ChecksumProtocolTTL

Fragment OffsetFlagsFragment ID

Total Packet LengthT.ServiceHLenVer

20
 b

yt
es

NetFPGA Cambridge Spring School 15-19 Mar 2010 11

F

R5F

R3E

R3D

p

Data

Options (if any)

Destination Address

What does a router do?

R1
R3

A

B

R1
R4 D

E

NetFPGA Cambridge Spring School 15-19 Mar 2010 12

C R2
FR5

Basic Components of an IP Router

Management
& CLI

S
of

Control Plane

Datapath
S i hi

Forwarding

Routing
Table

Routing
Protocols

ftw
are

H
ard

NetFPGA Cambridge Spring School 15-19 Mar 2010 13

per-packet
processing

Switching
Forwarding

Table

dw
are

Per-packet processing in an IP Router

1. Accept packet arriving on an incoming link.

2. Lookup packet destination address in the2. Lookup packet destination address in the
forwarding table to identify outgoing port(s).

3. Manipulate IP header: e.g., decrement TTL,
update header checksum.

5. Buffer packet in the output queue.

6. Transmit packet onto outgoing link.

NetFPGA Cambridge Spring School 15-19 Mar 2010 14

6. Transmit packet onto outgoing link.

Generic Datapath Architecture

Header Processing

Lookup
IP Address

Update
Header

Header Processing
Data Hdr Data Hdr

IP Address Next Hop

Queue
Packet

NetFPGA Cambridge Spring School 15-19 Mar 2010 15

Forwarding
Table

Buffer
Memory

CIDR and Longest Prefix Matches

 The IP address space is broken into line segments.
 Each line segment is described by a prefix.
 A prefix is of the form x/y where x indicates the prefix of all

addresses in the line segment, and y indicates the length of
the segment.

 e.g. The prefix 128.9/16 represents the line segment
containing addresses in the range: 128.9.0.0 … 128.9.255.255.

128 9/16

128.9.0.0 142.12/19
65/8

NetFPGA Cambridge Spring School 15-19 Mar 2010 16

0 232-1

128.9/16

216

128.9.16.14

Classless Interdomain Routing (CIDR)

128.9.19/24

0 232-1

128.9/16

128.9.16/20 128.9.176/20

128.9.25/24

NetFPGA Cambridge Spring School 15-19 Mar 2010 17

128.9.16.14

Most specific route = “longest matching prefix”

Techniques for LPM in hardware
• Linear search

– Slow
• Direct lookup

C tl i t h– Currently requires too much memory
– Updating a prefix leads to many changes

• Tries
– Deterministic lookup time
– Easily pipelined but require multiple

memories/references

NetFPGA Cambridge Spring School 15-19 Mar 2010 18

memories/references
• TCAM (Ternary CAM)

– Simple and widely used but have
lower density than RAM and need more power

– Gradually being replaced by algorithmic methods

An IP Router on NetFPGA

Management
& CLI

S
of Linux user-level

S i hi
Forwarding

Routing
Table

Routing
Protocols

ftw
are

H
ard

processes

Verilog on
NetFPGA PCI board

Exception
Processing

NetFPGA Cambridge Spring School 15-19 Mar 2010 19

Switching
Forwarding

Table

dw
are

NetFPGA Router

Function
– 4 Gigabit Ethernet ports

Fully programmableFully programmable
– FPGA hardware

Low cost

Open-source FPGA hardware

NetFPGA Cambridge Spring School 15-19 Mar 2010 20

– Verilog base design

Open-souce Software
– Drivers in C and C++

NetFPGA v2 Platform

Major Components
– Interfaces

• 4 Gigabit Ethernet Ports
• PCI Host Interface

– Memories
• 36Mbits Static RAM
• 512Mbits DDR2 Dynamic RAM

NetFPGA Cambridge Spring School 15-19 Mar 2010 21

– FPGA Resources
• Block RAMs
• Configurable Logic Block (CLBs)
• Memory Mapped Registers

NetFPGA System

Browser
& Video
Client

Monitor
Software

CAD
Tools

Web &
Video
Server

User Space

Linux Kernel

PCI-ePCI

V
I

V
I

V
I

V
I

Packet Forwarding Table

NetFPGA Cambridge Spring School 15-19 Mar 2010 22

N
IC

G
E

G
E

G
E

G
E

G
E

G
E

NetFPGA Router
Hardware

(eth1 .. 2)(nf2c0 .. 3)

NetFPGA v2 Hardware Components

NetFPGA Cambridge Spring School 15-19 Mar 2010 23

• Xilinx Virtex-2 Pro FPGA for User Logic
• Xilinx Spartan for PCI Host Interface
• Cypress: 2 * 2.25 MB ZBT SRAM
• Micron: 64MB DDR2 DRAM
• Broadcom: PHY for 4 Gigabit Ethernet ports

NetFPGA System Components
• Network Ports

– Host PCI-express NIC
• Dual Gigabit Ethernet

ports on PCI-express card
– NetFPGA

• Quad Gigabit Ethernet g
ports on NetFPGA PCI card

• Motherboard
– Standard AMD or Intel-based

x86 computer with PCI
and PCI-express slots

• Processor
– Dual or Quad-Core CPU

NetFPGA Cambridge Spring School 15-19 Mar 2010 24

• Operating System
– Linux CentOS 5.2

NetFPGA Cube Systems

• PCs assembled from parts
– Stanford University
– Cambridge UniversityCambridge University

• Pre-built systems available
– Accent Technology Inc.

• Details are in the Guide
http://netfpga.org/static/guide.html

NetFPGA Cambridge Spring School 15-19 Mar 2010 25

Rackmount NetFPGA Servers

NetFPGA inserts in
PCI or PCI-X slot

2U Server

NetFPGA Cambridge Spring School 15-19 Mar 2010 26

2U Server
(Dell 2950)

Thanks: Brian Cashman for providing machine

1U Server
(Accent Technology Inc.)

Stanford NetFPGA Cluster

Statistics
• Rack of 40

• 1U PCs with
NetFPGAsNetFPGAs

• Manged
• Power
• Console
• LANs

• Provides
4*40 160 Gb

NetFPGA Cambridge Spring School 15-19 Mar 2010 27

4*40=160 Gbps
of full line-rate
processing
bandwidth

NetFPGA Lab Setup

(eth1 .. 2)Dual NIC
GEP

C
I-e

Client

GE eth2 : Server for NeighborServer

eth1 : Local Client & Server

NetFPGA Cambridge Spring School 15-19 Mar 2010 28

nf2c3 : Ring - LeftCPU x2 Net-FPGA

P
C

INetFPGA
Control SW

GE

GE

GE

GE
CAD Tools

Internet
Router

Hardware
nf2c1 : Neighbor

nf2c2 : Local Host

nf2c0 : Ring - Right

NetFPGA Hardware Set for Demo #1

Net-FPGA GE

GE

GE

Internet
Router

Hardware

CPU x2

P
C

I-e
P

C
I

Video
Server

NIC
GE

P
C

I-e

GE

GEHardware

Net-FPGA GE

GE

GE

GE

Internet
Router

Hardware

Server
delivers
streaming
HD video
through a
chain of
N tFPGA

NetFPGA Cambridge Spring School 15-19 Mar 2010 29

Net-FPGACPU x2

NIC
GE

P
C

I-e
P

C
IVideo

Display

GE

CAD Tools

GE

GE

GE

GE

Internet
Router

Hardware

…NetFPGA
Routers

Cable Configuration in the Lab
• NetFPGA Gigabit Ethernet Interfaces

– nf2c3 : Left neighbor in network (green)
– nf2c2 : Local host interface (red)
– nf2c1 : Routes for adjacent server (blue)

3333333333

– nf2c0 : Right neighbor in network (green)

• Host Ethernet Interfaces
– eth1 : Local host interface (red)
– eth2 : Server for neighbor (blue)

n
f2

c

NetFPGA Cambridge Spring School 15-19 Mar 2010 30

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

3
2
1
0

1
2

et
h

Demo 1

Reference Router running on the
NetFPGA

NetFPGA Cambridge Spring School 15-19 Mar 2010 31

NetFPGA

Setup for the Reference Router

Each NetFPGA card
has four ports NetFPGA

Video Server

Port 2 connected to
Client / Server

Ports 0 and 3 connected to
adjacent NetFPGA cards

NetFPGA

NetFPGA Cambridge Spring School 15-19 Mar 2010 32

Video
Client

NetFPGA

Topology of NetFPGA Routers

HD

Video
Server

NetFPGA Cambridge Spring School 15-19 Mar 2010 33

HD
Display

Subnet Configuration

.1.1

1 2

.4.1

4 2

.7.1

7 2

.10.1

10 2

.13.1

13 2

.16.1

16 2.1.2
.3.1

.30.2

.4.2

.6.1.3.2

.7.2

.9.1

.6.2
.10.2

.12.1

.9.2
.13.2

.15.1

.12.2
.16.2

.15.2

.30.1

27 2 24 2

.17.1

21 2
.18.2

.5.1 .8.1 .11.1 .14.1 .18.1

20 1

.23.1.26.1

.2.1

NetFPGA Cambridge Spring School 15-19 Mar 2010 34

.28.1

.28.2
.27.1

.25.1

.25.2
.24.1

.27.2

.22.1

.22.2
.21.1

.24.2

.19.1

.19.2

.21.2 .20.1
.29.1

Video
ClientShortest Path

Video
Server

Cable Configuration for Demo 1
• NetFPGA Gigabit Ethernet Interfaces

– nf2c3 : Left neighbor in network (green)
– nf2c2 : Local host interface (red)
– nf2c0 : Right neighbor in network (green)

c

• Host Ethernet Interfaces
– eth1 : Local host interface (red)

NetFPGA Cambridge Spring School 15-19 Mar 2010 35

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

eth

3
2
1
0

1
2

n
f2

et
h

Working IP Router

• Objectives
Become familiar with– Become familiar with
Stanford Reference Router

– Observe PW-OSPF
re-routing traffic around a failure

NetFPGA Cambridge Spring School 15-19 Mar 2010 36

Streaming Video through the NetFPGA

• Video server
– Source files

/var/www/html/video

– Network URL :
http://192.168.Net.Host/video

• Video client
– Windows Media Player
– Linux mplayer

• Video traffic

NetFPGA Cambridge Spring School 15-19 Mar 2010 37

– MPEG2 HDTV (35 Mbps)
– MPEG2 TV (9 Mbps)
– DVI (3 Mbps)
– WMF (1.7 Mbps)

Demo 1 Physical Configuration

eth1 of Host PC

192.168.X.Y

Key:
Any PC can stream traffic
through multiple NetFPGA

routers in the ring topology
to any other PC

To stream mplayer video
from server 4.1, type:
/ 192 168 4 1

6

18
.*

192.168.21.* 8 07 9

NetFPGA
Router #

19.1 22.1 1.125.1 28.1

192.168.24.* 192.168.27.* 192.168.30.*

1
9

2
.

./mp 192.168.4.1

NetFPGA Cambridge Spring School 15-19 Mar 2010 38

5 4

10.11
9

2
.1

68
.1

3 2 1

16.1 13.1 7.1 4.1

1
68.3.*

192.168.6.*192.168.9.*192.168.12.*1192.168.15.*

Step 1 – Observe the Routing Tables

The router is already
configured and
running on your g y
machines

The routing table has
converged to the
routing decisions with

NetFPGA Cambridge Spring School 15-19 Mar 2010 39

minimum number of
hops

Next, break a link …

Step 2 - Dynamic Re-routing

Break the link
between video
server and video

.1.1

.1.2

.4.1

.4.2

.7.1

.7.2

.10.1

.10.2

.13.1

13 2

.16.1

16 2server and video
client

Routers re-route
traffic around the
broken link and

.3.1

.30.2
.6.1.3.2 .9.1

.6.2

0

.12.1

.9.2

.13.2

.15.1

.12.2

.16.2

.15.2

.28.1

.28.2
.27.1

.30.1

.25.1

.25.2
.24.1

.27.2

.22.1

.22.2
.21.1

.24.2

.19.1

.19.2

.17.1

.21.2

.18.2

.5.1 .8.1 .11.1 .14.
1

.18.1

.20.1

.23.1.26.1

.29.1

.2.1

NetFPGA Cambridge Spring School 15-19 Mar 2010 40

video continues
playing

Integrated Circuit Technology
And Field Programmable Gate

Arrays (FPGAs)

NetFPGA Cambridge Spring School 15-19 Mar 2010 41

Integrated Circuit Technology

Full-custom Design
– Complementary Metal Oxide Semiconductor (CMOS)

Semi-custom ASIC Design
– Gate array
– Standard cell

Programmable Logic Device
– Programmable Array Logic

NetFPGA Cambridge Spring School 15-19 Mar 2010 42

– Field Programmable Gate Arrays

Processors
– Network Processors
– General Purpose Processors

Look-Up Tables

Combinatorial logic is stored
in Look-Up Tables (LUTs)
– Also called

Function Generators (FGs)

A B C D Z

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

Combinatorial Logic

Function Generators (FGs)
– Capacity is limited only by

number of inputs, not complexity
– Delay through the LUT is constant

0 0 1 0 0

0 0 1 1 1

0 1 0 0 1

0 1 0 1 1

. . .

1 1 0 0 0

NetFPGA Cambridge Spring School 15-19 Mar 2010 43

A
B

C
D

Z

1 1 0 1 0

1 1 1 0 0

1 1 1 1 1

Diagram From: Xilinx, Inc

Slice 0

Xilinx CLB (Configurable Logic Blocks) Structure

Each slice has four outputs
– Two registered outputs,

two non-registered outputs
– Two BUFTs (tristate buffers)

LUT Carry

LUT Carry D Q
CE

PRE

CLR

D
QCE

PRE

Two BUFTs (tristate buffers)
associated with each CLB,
accessible by all 16 CLB
outputs

Carry logic run vertically
– Signals run upward

NetFPGA Cambridge Spring School 15-19 Mar 2010 44

CLR

Signals run upward
– Two independent

carry chains per CLB

Diagram From: Xilinx, Inc.

Field Programmable Gate Arrays

CLB
– Primitive element of FPGA

Routing Module

4 LUT

G4

G3

G2

G1

G

4 LUT

F4

F3

F2

F1

F

3 LUT

H

S

R

D Q

S

R

D Q

H1

Din Clk

YQ

Y

XQ

X

M

M

M

M

CLB

Routing Module
– Global routing
– Local interconnect

Macro Blocks
– Block Memories
– Microprocessor

GRM
Local Routing

CLB PIP

...

... ...

3rd Generation LUT-based FPGA

NetFPGA Cambridge Spring School 15-19 Mar 2010 45

I/O Block

......

Pad Routing CLB Matrix I/O

Macro
Block
(uP,
Mem)

NetFPGA Block Diagram

NetFPGA platform

1G
E

M
A

C

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file again. If the red x still appears, you may have to delete the image and then insert it again.

18M
b

S
R

A
M

1G
E

P
H

Y

V2-Pro50 FPGA w/ infrastructureF
our G E

 C
1G

E

M
A

C
1G

E

M
A

C
1G

E

M
A

C

Your hardware specified
in Verilog source code
connected to components
of the Reference Router
circuits and cores.

-

E
 Y

1G
E

P

H
Y

1G
E

P

H
Y

1G
E

P

H
Y

64M
B

D
D

R
2

S
D

R
A

M

G
igabit E

thernet Interfaces

18M
b

S
R

A
M

FIFO

3 G
S

A

B
oard-B

oard In

NetFPGA Cambridge Spring School 15-19 Mar 2010 46

Linux OS - NetFPGA Kernel driverHost
computer

User-defined software networking applications

s

FIFO
packet
buffers

The image cannot be displayed. Your computer may not have enough memory to open the image, or the image may have been corrupted. Restart your computer, and then open the file
again. If the red x still appears, you may have to delete the image and then insert it again.

Control, PCI
Interface

G
b

A
TA

nterconnect

Details of the NetFPGA

• Fits into standard PCI slot

NetFPGA Cambridge Spring School 15-19 Mar 2010 47

• Fits into standard PCI slot
– Standard Bus: 32 bits, 33 MHz

• Provides interfaces for processing network packets
– 4 Gigabit Ethernet Ports

• Allows hardware-accelerated processing
– Implemented with Field Programmable Gate Array (FPGA) Logic

Introduction to the Verilog
Hardware Description Language

NetFPGA Cambridge Spring School 15-19 Mar 2010 48

Hardware Description Languages

• Concurrent
– By default, Verilog statements

evaluated concurrently

• Express fine grain parallelism
– Allows gate-level parallelism

• Provides Precise Description
Eli i t bi it b t ti

NetFPGA Cambridge Spring School 15-19 Mar 2010 49

– Eliminates ambiguity about operation

• Synthesizable
– Generates hardware from description

Verilog Data Types

reg [7:0] A; // 8-bit register, MSB to LSB
// (Preferred bit order for NetFPGA)

reg [0:15] B; // 16-bit register, LSB to MSB

B = {A[7:0],A[0:7]}; // Assignment of bits

reg [31:0] Mem [0:1023]; // 1K Word Memory

integer Count; // simple signed 32-bit integer
integer K[1:64]; // an array of 64 integers

NetFPGA Cambridge Spring School 15-19 Mar 2010 50

integer K[1:64]; // an array of 64 integers
time Start, Stop; // Two 64-bit time variables

From: CSCI 320 Computer Architecture
Handbook on Verilog HDL, by Dr. Daniel C. Hyde :

http://eesun.free.fr/DOC/VERILOG/verilog-manual.html

Signal Multiplexers

Two input multiplexer (using if / else)
reg y;
always @*

if (select)
y = a;

else
y = b;

Two input multiplexer (using ternary operator ?:)

wire t = (select ? a : b);

NetFPGA Cambridge Spring School 15-19 Mar 2010 51

From: http://eesun.free.fr/DOC/VERILOG/synvlg.html

Larger Multiplexers

Three input multiplexer

reg s;
always @*

begin
case (select2)

2'b00: s = a;
2'b01: s = b;
default: s = c;

endcase
end

NetFPGA Cambridge Spring School 15-19 Mar 2010 52

From: http://eesun.free.fr/DOC/VERILOG/synvlg.html

Synchronous Storage Elements
• Values change at

times governed by
clock Clock

Din DoutQD

Clock Transition

t=0 t=1 t=2
0

1Clock

time

A B CDin

– Clock
• Input to circuit

– Clock Event
• Example: Rising edge

NetFPGA Cambridge Spring School 15-19 Mar 2010 53

Clock Transition

S0Dout

t=0

A B

A B CDin

t=0
– Flip/Flop

• Transfers value from
Din to Dout on clock event

Finite State Machines

Copyright 2001, John W. Lockwood, All Rights Reserved

Inputs (X)

Outputs (Z)


[Mealy]
(X,S(t))

-or-

Combinational Logic

S(t) 
S(t+1)=
(X,S(t)) State

Next

...

[Moore]
(S(t))

Q D

Q D

NetFPGA Cambridge Spring School 15-19 Mar 2010 54

State Storage

Q D

Synthesizable Verilog: Delay Flip/Flops

D-type flip flop
reg q;
always @ (posedge clk)

q <= d;

D type flip flop with data enable
reg q;
always @ (posedge clk)

if (bl)

q

NetFPGA Cambridge Spring School 15-19 Mar 2010 55

From: http://eesun.free.fr/DOC/VERILOG/synvlg.html

if (enable)
q <= d;

Exercise 1

Build the Reference Router

NetFPGA Cambridge Spring School 15-19 Mar 2010 56

Reference Router Pipeline

• Five stages
– Input
– Input arbitration

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

Input arbitration
– Routing decision and

packet modification
– Output queuing
– Output

• Packet-based

Input Arbiter

Output Port Lookup

NetFPGA Cambridge Spring School 15-19 Mar 2010 57

Packet based
module interface

• Pluggable design
MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

Output Queues

Make your own router

Objectives:
– Learn how to build hardwareLearn how to build hardware
– Run the software
– Explore router architecture

Execution
– Start synthesis

Rerun the GUI with the new hardware

NetFPGA Cambridge Spring School 15-19 Mar 2010 58

– Rerun the GUI with the new hardware
– Test connectivity and statistics with pings
– Explore pipeline in the details page
– Explore detailed statistics in the details page

Step 1 - Build the Hardware

Close all windows

Start terminal, cd to
“NF2/projects/tutorial_router/synth”

Run “make clean”

NetFPGA Cambridge Spring School 15-19 Mar 2010 59

Start synthesis
with “make”

First Break

(while hardware compiles)

NetFPGA Cambridge Spring School 15-19 Mar 2010 60

Step 2 - Run Homemade Router

cd to “NF2/projects/tutorial_router/sw”

To use the just-built router hardware, type:
./tut_router_gui.pl --use_bin ../../../bitfiles/tutorial_router.bit

To stream video, run:
./mp 192.168.X.Y where X.Y = 25.1 or 19.1 or 7.1

(or other server as listed on Demo 1 handout)

NetFPGA Cambridge Spring School 15-19 Mar 2010 61

(or other server as listed on Demo 1 handout)

Step 4 - Connectivity and Statistics

Ping any addresses
192.168.x.y where x is
from 1-20 and y is 1 or 2y

Open the statistics tab in
the Quickstart window to
see some statistics

NetFPGA Cambridge Spring School 15-19 Mar 2010 62

Explore more statistics in
modules under the
details tab

Step 5 - Explore Router Architecture

Click the Details tab of
the Quickstart window

This is the reference
router pipeline –
a canonical,
simple-to-understand,

NetFPGA Cambridge Spring School 15-19 Mar 2010 63

modular router pipeline

Step 6 - Explore Output Queues

Click on the Output
Queues module in
the Details tabthe Details tab

The page gives
configuration details

NetFPGA Cambridge Spring School 15-19 Mar 2010 64

…and statistics

Understanding Buffer Size
Requirements in a Router

NetFPGA Cambridge Spring School 15-19 Mar 2010 65

Buffer Requirements in a Router

Buffer size matters:
– Small queues reduce delay
– Large buffers are expensive

Theoretical tools predict requirements
– Queuing theory
– Large deviation theory
– Mean field theory

Yet there is no direct answer

NetFPGA Cambridge Spring School 15-19 Mar 2010 66

Yet, there is no direct answer
– Flows have a closed-loop nature
– Question arises on whether focus should be on

equilibrium state or transient state

Rule-of-thumb

C
RouterSource Destination

2T

• Universally applied rule-of-thumb:
– A router needs a buffer size:
– 2T is the two-way propagation delay (or just 250ms)
– C is capacity of bottleneck link

• Context
Mandated in backbone and edge routers

CTB  2

NetFPGA Cambridge Spring School 15-19 Mar 2010 67

– Mandated in backbone and edge routers
– Appears in RFPs and IETF architectural guidelines
– Already known by inventors of TCP

• [Van Jacobson, 1988]

– Has major consequences for router design

The Story So Far

10,000 20# packets
at 10Gb/s

1,000,000

NetFPGA Cambridge Spring School 15-19 Mar 2010 68

(1) Assume: Large number of desynchronized flows; 100% utilization
(2) Assume: Large number of desynchronized flows; <100% utilization

Using NetFPGA to explore buffer size

• Need to reduce buffer size and measure
occupancy

• Alas not possible in commercial routersAlas, not possible in commercial routers
• So, we will use the NetFPGA instead

Objective:
– Use the NetFPGA to understand how large a

b ff d f i l TCP fl

NetFPGA Cambridge Spring School 15-19 Mar 2010 69

buffer we need for a single TCP flow.

Rule for adjusting W
– If an ACK is received: W ← W+1/W

f /

Why 2TxC for a single TCP Flow?

Only W packets
may be outstanding

– If a packet is lost: W ← W/2

NetFPGA Cambridge Spring School 15-19 Mar 2010 70

Time evolution of a single TCP flow through a router. Buffer is < 2T*C

Time Evolution of a Single TCP Flow

Time evolution of a single TCP flow through a router. Buffer is 2T*C

NetFPGA Cambridge Spring School 15-19 Mar 2010 71

NetFPGA Hardware Set for Demo #2

NIC
GE

P
C

I-e

GE

…

P
C

IVideo NIC
GE

P
C

I

Net-FPGACPU x2

P
C

IVideo
Client

GE

GE

GE

GE

Internet
Router

Hardware

Server
delivers
streaming
HD video
to adjacent
client

NetFPGA Cambridge Spring School 15-19 Mar 2010 72

CPU x2

I-e

Server
NICI-e

GE client

Demo 2

Observing and Controlling the
Queue Size

NetFPGA Cambridge Spring School 15-19 Mar 2010 73

Queue Size

Setup for the Demo 2

Adjacent
Web & Video

Server

NetFPGA Cambridge Spring School 15-19 Mar 2010 74

Local
Host NetFPGA

eth1

eth2
nf2c2

nf2c1

Router

Interfaces and Subnets

• eth1 connects your host to your NetFPGA Router
• nf2c2 routes to nf2c1 (your adjacent server)
• eth2 serves web and video traffic to your neighbor
• nf2c0 & nf2c3 (the network ring) are unused

.1.1 .1.2

.4.1

.4.2

.7.1

.7.2

.10.1

.10.2

.13.1

.13.2
.2.2

.2.1

.5.2

.5.1

.8.2

.8.1

.11.2

.11.1

.14.2.29.1

NetFPGA Cambridge Spring School 15-19 Mar 2010 75

.16.1

.16.2

.28.1

.28.2

.25.1

.25.2

.22.1

.22.2

.19.1

.19.2

.14.1
.17.2

.17.1

.20.2

.20.1

.23.2

.23.1

.26.2

.26.1

.29.2

This configuration allows you to modify and test your router without affecting others

Cable Configuration for Demo 2
• NetFPGA Gigabit Ethernet Interfaces

– nf2c2 : Local host interface (red)
– nf2c1 : Router for adjacent server (blue)

• Host Ethernet Interfaces
– eth1 : Local host interface (red)
– eth2 : Server for neighbor (blue)

NetFPGA Cambridge Spring School 15-19 Mar 2010 76

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

3
2
1
0

1
2

nf2c

eth

Demo 2 Configuration

Eth1: 192.168.X.1
Eth2: 192.168.Y.1

Key:

Stream traffic through your

NetFPGA
Router #

Stream traffic through your
NetFPGA router’s Eth1

interface using your
neighbor’s eth2 interface

6 8 07 9
19.1
17 1

22.1
20 1

1.1
29 1

25.1
23 1

28.1
26 1

Eth1

Eth2

NetFPGA Cambridge Spring School 15-19 Mar 2010 77

5 4

8.1
10.1

3 2 1

14.1
16.1

11.1
13.1

17.1 20.1 29.123.1 26.1

5.1
7.1

2.1
4.1

Eth2

Eth1

Enhanced Router

Objectives
Observe router with new modules– Observe router with new modules

– New modules: rate limiting, event capture

Execution
– Run event capture router
– Look at routing tables

E l d t il

NetFPGA Cambridge Spring School 15-19 Mar 2010 78

– Explore details pane
– Start tcp transfer, look at queue occupancy
– Change rate, look at queue occupancy

Step 1 - Run Pre-made Enhanced Router

Start terminal and cd to
“NF2/projects/tutorial_router/sw/”

Type
“./tut_adv_router_gui.pl”

A familiar GUI should start

NetFPGA Cambridge Spring School 15-19 Mar 2010 79

Step 2 - Explore Enhanced Router

Click on the Details tab

A similar pipeline to
the one seen
previously shown

NetFPGA Cambridge Spring School 15-19 Mar 2010 80

with some additions

Enhanced Router Pipeline

Two modules added
1. Event Capture

to capture output

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

Input Arbiterp p
queue events
(writes, reads,
drops)

Input Arbiter

Output Port Lookup

O Q

Event Capture

NetFPGA Cambridge Spring School 15-19 Mar 2010 81

2. Rate Limiter to
create a
bottleneck

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

pOutput Queues

Rate
Limiter

Step 3 - Decrease the Link Rate
To create bottleneck and

show the TCP “sawtooth,”
link-rate is decreased.

In the Details tab, click the
“Rate Limit” module

Check Enabled

NetFPGA Cambridge Spring School 15-19 Mar 2010 82

Set link rate to 1.953Mbps

Step 4 – Decrease Queue Size

Go back to the Details
panel and click onpanel and click on
“Output Queues”

Select the “Output Queue
2” tab

NetFPGA Cambridge Spring School 15-19 Mar 2010 83

Change the output queue
size in packets slider to
16

Step 5 - Start Event Capture

Click on the Event Capture
module under the Detailsmodule under the Details
tab

This should start the
configuration page

NetFPGA Cambridge Spring School 15-19 Mar 2010 84

Step 6 - Configure Event Capture

Check Send to local
host to receive events
on the local host

Check Monitor Queue 2
to monitor output queue
of MAC port1

NetFPGA Cambridge Spring School 15-19 Mar 2010 85

Check Enable Capture
to start event capture

Step 7 - Start TCP Transfer

We will use iperf to run a
large TCP transfer andlarge TCP transfer and
look at queue evolution

Start a terminal and cd to
“NF2/ j t /t t i l t / ”

NetFPGA Cambridge Spring School 15-19 Mar 2010 86

“NF2/projects/tutorial_router/sw”

Type
“./iperf.sh”

Step 8 - Look at Event Capture Results

Click on the Event
Capture module under
th D t il t bthe Details tab.

The sawtooth pattern
should now be visible.

NetFPGA Cambridge Spring School 15-19 Mar 2010 87

Queue Occupancy Charts
Observe the TCP/IP sawtooth

NetFPGA Cambridge Spring School 15-19 Mar 2010 88

Leave the control windows open

Exercise 2: Enhancing the
Reference Router

NetFPGA Cambridge Spring School 15-19 Mar 2010 89

Enhance Your Router

Objectives
Add new modules to datapath– Add new modules to datapath

– Synthesize and test router

Execution
– Open user_datapath.v, uncomment

delay/rate/event capture modules

NetFPGA Cambridge Spring School 15-19 Mar 2010 90

delay/rate/event capture modules
– Synthesize
– After synthesis, test the new system

An aside: emacs Tips
We will modify Verilog source code with emacs

– To undo a command, type
• ctrl+shift+'-'

– To cancel a multi-keystroke command, typeTo cancel a multi keystroke command, type
• ctrl+g

– To select lines,
• hold shift and press the arrow keys

– To comment (remove from compilation) selected lines, type
• ctrl+c+c

– To uncomment a commented block,
th i id th t d bl k

NetFPGA Cambridge Spring School 15-19 Mar 2010 91

• move the cursor inside the commented block
• type ctrl+c+u

– To save, type
• ctrl+x+s

– To search for a term, type
• ctrl+s search_pattern

Step 1 - Open the Source

We will modify the Verilog
source code to add event
capture and rate limiter modulescapture and rate limiter modules

We will simply comment
and uncomment existing code

Open terminal

NetFPGA Cambridge Spring School 15-19 Mar 2010 92

Type
emacs
NF2/projects/tutorial_router/src/user_data_path.v

Step 2 - Add Wires

Now we need to add wires
to connect the new
modules

Search for “new wires”
(ctrl+s new wires), then
press Enter

NetFPGA Cambridge Spring School 15-19 Mar 2010 93

Uncomment the wires
(ctrl+c+u)

Step 3a - Connect Event Capture

Search for opl_output (ctrl+s
opl output), then press Enterp _ p), p

Comment the four lines above
(up, shift + up + up + up +
up, ctrl+c+c)

NetFPGA Cambridge Spring School 15-19 Mar 2010 94

Uncomment the block below to
connect the outputs (ctrl+s
opl_out, ctrl+c+u)

Step 3b - Connect the Output Queue Registers

Search for opl_output
(ctrl+s opl_output, Enter)

Comment the 6 lines
(select the six lines by
using shift+arrow keys,
then type ctrl+c+c)

NetFPGA Cambridge Spring School 15-19 Mar 2010 95

Uncomment the commented
block by scrolling down into
the block and typing
ctrl+c+u

Step 4 - Add the Event Capture Module

Search for evt_capture_top
(t l t t t)(ctrl+s evt_capture_top),
then press Enter

Uncomment the block
(t l+ +)

NetFPGA Cambridge Spring School 15-19 Mar 2010 96

(ctrl+c+u)

Step 5 - Add the Drop Nth Module

Search for drop_nth_packet
(ctrl+s drop nth packet)(ctrl+s drop_nth_packet),
then press Enter

Uncomment the block
(ctrl+c+u)

NetFPGA Cambridge Spring School 15-19 Mar 2010 97

Step 6 - Connect the Output Queue to the Rate Limiter

Search for port_outputs
(ctrl+s port_outputs), then
press (Enter)

Comment the 4 lines above
(select the four lines by
using shift+arrow keys),
then type (ctrl+c+c)

NetFPGA Cambridge Spring School 15-19 Mar 2010 98

Uncomment the commented
block by scrolling down into
the block and typing
ctrl+c+u

Step 7 - Connect the Registers

Search for port_outputs
(ctrl+s port_outputs), then
press (Enter)

Comment the 6 lines
(select the six lines by
using shift+arrow keys),
then type (ctrl+c+c)

six

NetFPGA Cambridge Spring School 15-19 Mar 2010 99

Uncomment the commented
block by scrolling down into
the block and typing
(ctrl+c+u)

Step 8 - Add Rate Limiter

Scroll down until you reach
the next “excluded” blockthe next excluded block

Uncomment the block
containing the rate limiter
instantiations.

Scroll into the block,
t (t l)

NetFPGA Cambridge Spring School 15-19 Mar 2010 100

type (ctrl+c+u)

Save (ctrl+x+s)

Step 9 - Build the Hardware

Start terminal, cd to
“NF2/projects/tutorial_router/synth”

Run “make clean”

Start synthesis
with “make”

NetFPGA Cambridge Spring School 15-19 Mar 2010 101

Second Break

(while hardware compiles)

NetFPGA Cambridge Spring School 15-19 Mar 2010 102

Hardware Datapath

NetFPGA Cambridge Spring School 15-19 Mar 2010 103

Full System Components

Software

nf2c0 nf2c1 nf2c2 nf2c3 ioctl

PCI Bus

NetFPGA

CPU
RxQ

CPU
TxQ

nf2_reg_grp

user data path

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

NetFPGA Cambridge Spring School 15-19 Mar 2010 104

user data path

MAC
TxQ

MAC
RxQ

Ethernet

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

Life of a Packet through the Hardware

port0 port2
192.168.2.y192.168.1.x

NetFPGA Cambridge Spring School 15-19 Mar 2010 105

Router Stages Again

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

Input Arbiter

Output Port Lookup

NetFPGA Cambridge Spring School 15-19 Mar 2010 106

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

Output Queues

Inter-Module Communication

Using “Module Headers”:
Data Word

(64 bits)
Ctrl Word

(8 bits)

IP Hdr

Eth Hdr

0

0

0

Last Module Hdry

……

Module Hdrx Contain information
such as packet
length, input port,
output port, …

NetFPGA Cambridge Spring School 15-19 Mar 2010 107

…0

Last word of packet0x10

Inter-Module Communication

data

ctrl
wr
rdy

NetFPGA Cambridge Spring School 15-19 Mar 2010 108

MAC Rx Queue

NetFPGA Cambridge Spring School 15-19 Mar 2010 109

Rx Queue

Pkt length

IP Hdr:
IP Dst: 192.168.2.3,

TTL: 64, Csum:0x3ab4

Eth Hdr:
Dst MAC = port 0,

Ethertype = IP

Data

0

0

0

Pkt length,
input port = 0

0xff

NetFPGA Cambridge Spring School 15-19 Mar 2010 110

Data0

Input Arbiter

Pkt

NetFPGA Cambridge Spring School 15-19 Mar 2010 111

Pkt

Pkt

Output Port Lookup

NetFPGA Cambridge Spring School 15-19 Mar 2010 112

Output Port Lookup

Pkt length

1- Check input
port matches

Dst MAC

5- Add output
port header

Pkt length

IP Hdr:
IP Dst: 192.168.2.3,

TTL: 64 Csum:0x3ab4

IP Hdr:
IP Dst: 192.168.2.3,

TTL: 63 Csum:0x3ac2

EthHdr: Dst MAC = 0
Src MAC = x,
Ethertype = IP

0

0

Pkt length,
input port = 00xff2- Check TTL,

checksum

3- Lookup
next hop IP &
output port

(LPM)

6- Modify MAC
Dst and Src
addresses

7-Decrement
TTL and

d t

EthHdr: Dst MAC = nextHop
Src MAC = port 4,

Ethertype = IP

Pkt length,
input port = 0

output port = 4

NetFPGA Cambridge Spring School 15-19 Mar 2010 113

TTL: 64, Csum:0x3ab4TTL: 63, Csum:0x3ac2

Data04- Lookup
next hop MAC
address (ARP)

update
checksum

Output Queues

OQ0

OQ4

NetFPGA Cambridge Spring School 15-19 Mar 2010 114

OQ7

MAC Tx Queue

NetFPGA Cambridge Spring School 15-19 Mar 2010 115

MAC Tx Queue

IP Hdr:
IP Dst: 192.168.2.3,

IP Hdr:
IP Dst: 192.168.2.3,

EthHdr: Dst MAC = nextHop
Src MAC = port 4,

Ethertype = IP

0

0

Pkt length,
input port = 0

output port = 4
0xff

NetFPGA Cambridge Spring School 15-19 Mar 2010 116

TTL: 64, Csum:0x3ab4TTL: 63, Csum:0x3ac2

Data0

Exception Packet

• Example: TTL = 0 or TTL = 1
• Packet has to be sent to the CPU which will

generate an ICMP packet as a responsegenerate an ICMP packet as a response
• Difference starts at the Output Port lookup

stage

NetFPGA Cambridge Spring School 15-19 Mar 2010 117

Exception Packet Path

Software

nf2c0 nf2c1 nf2c2 nf2c3 ioctl

PCI Bus

NetFPGA

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

nf2_reg_grp

ser data path

NetFPGA Cambridge Spring School 15-19 Mar 2010 118

user data path

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

Ethernet

Output Port Lookup

Pkt length

1- Check input
port matches

Dst MAC

Pkt length

IP Hdr:
IP Dst: 192.168.2.3,

TTL: 1 Csum:0x3ab4

EthHdr: Dst MAC = 0,
Src MAC = x,
Ethertype = IP

0

0

Pkt length,
input port = 00xff2- Check TTL,

checksum –
EXCEPTION!

3- Add output
port module

Pkt length,
input port = 0

output port = 1

NetFPGA Cambridge Spring School 15-19 Mar 2010 119

TTL: 1, Csum:0x3ab4

Data0

Output Queues

OQ0

OQ1

OQ2

NetFPGA Cambridge Spring School 15-19 Mar 2010 120

OQ7

CPU Tx Queue

NetFPGA Cambridge Spring School 15-19 Mar 2010 121

CPU Tx Queue

IP Hdr:
IP Dst: 192.168.2.3,

EthHdr: Dst MAC = 0,
Src MAC = x,
Ethertype = IP

0

0

Pkt length,
input port = 0

output port = 1
0xff

NetFPGA Cambridge Spring School 15-19 Mar 2010 122

TTL: 1, Csum:0x3ab4

Data0

ICMP Packet

• For the ICMP packet, the packet arrives at
the CPU Rx Queue from the PCI Bus

• It follows the same path as a packet fromIt follows the same path as a packet from
the MAC until it reaches the Output Port
Lookup

• The OPL module sees the packet is from
the CPU Rx Queue 1 and sets the output
port directly to 0

NetFPGA Cambridge Spring School 15-19 Mar 2010 123

port directly to 0
• The packet then continues on the same

path as the non-exception packet to the
Output Queues and then MAC Tx queue 0

ICMP Packet Path

Software

nf2c0 nf2c1 nf2c2 nf2c3 ioctl

PCI Bus

NetFPGA

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

CPU
RxQ

CPU
TxQ

nf2_reg_grp

ser data path

NetFPGA Cambridge Spring School 15-19 Mar 2010 124

user data path

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

MAC
TxQ

MAC
RxQ

Ethernet

NetFPGA-Host Interaction

• Linux driver interfaces with hardware
– Packet interface via standard Linux network

stackstack

– Register reads/writes via ioctl system call
with wrapper functions:

• readReg(nf2device *dev, int address, unsigned *rd_data);
• writeReg(nf2device *dev, int address, unsigned *wr_data);

NetFPGA Cambridge Spring School 15-19 Mar 2010 125

eg:
readReg(&nf2, OQ_NUM_PKTS_STORED_0, &val);

NetFPGA-Host Interaction

NetFPGA to host packet transfer
1. Packet arrives –
forwarding table

P
C

I B
u

2. Interrupt
notifies
driver of
packet

3. Driver sets up
and initiates
DMA transfer

sends to CPU queue

NetFPGA Cambridge Spring School 15-19 Mar 2010 126

spacket
arrival

NetFPGA-Host Interaction

NetFPGA to host packet transfer (cont.)

P
C

I B
u

s

4. NetFPGA
transfers
packet via
DMA

5. Interrupt
signals
completion
of DMA

NetFPGA Cambridge Spring School 15-19 Mar 2010 127

sDMA

6. Driver passes packet to
network stack

NetFPGA-Host Interaction

Host to NetFPGA packet transfers

P
C

I B
u

s

3. Interrupt
signals
completion
of DMA

2. Driver sets up
and initiates
DMA transfer

NetFPGA Cambridge Spring School 15-19 Mar 2010 128

s

1. Software sends packet
via network sockets

Packet delivered to driver

NetFPGA-Host Interaction

Register access

P
C

I B
u

s

2. Driver
performs
PCI memory
read/write

NetFPGA Cambridge Spring School 15-19 Mar 2010 129

s
1. Software makes ioctl

call on network socket

ioctl passed to driver

NetFPGA-Host Interaction

• Packet transfers shown using DMA
interface

• Alternative: use programmed IO to transfer
packets via register reads/writes
– slower but eliminates the need to deal with

network sockets

NetFPGA Cambridge Spring School 15-19 Mar 2010 130

Step 10 – Perfect the Router

Go back to “Demo 2: Step 1” after synthesis completes
and redo the steps with your own router

To run your router:
1- cd NF2/projects/tutorial_router/sw
2- type “./tut_adv_router_gui.pl --use_bin

../../../bitfiles/tutorial_router.bit”

NetFPGA Cambridge Spring School 15-19 Mar 2010 131

You can change the bandwidth and queue size settings
to see how that affects the evolution of queue
occupancy

Drop 1 in N Packets

Objectives
Add counter and FSM to the code– Add counter and FSM to the code

– Synthesize and test router

Execution
– Open drop_nth_packet.v

Insert counter code

NetFPGA Cambridge Spring School 15-19 Mar 2010 132

– Insert counter code
– Synthesize
– After synthesis, test the new system.

New Reference Router Pipeline

One module added
1. Drop Nth Packet

to drop every Nth

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

MAC
RxQ

CPU
RxQ

Input Arbiterto drop every Nth
packet from the
reference router
pipeline

p

Output Port Lookup

O Q

Event Capture

Drop Nth Packet

NetFPGA Cambridge Spring School 15-19 Mar 2010 133

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

MAC
TxQ

CPU
TxQ

pOutput Queues

Rate
Limiter

Step 1 - Open the Source

We will modify the Verilog
source code to add a
counter to the
drop_nth_packet
module

NetFPGA Cambridge Spring School 15-19 Mar 2010 134

Open terminal
Type “emacs

NF2/projects/tutorial_router/src/drop_nth_packet.v

Step 2 - Add Counter to Module

Add counter using the following signals:
• counter

–16 bit output signal that
h ld i tyou should increment

on each packet pulse
• rst_counter

– reset signal (a pulse input)
• inc_counter

– increment (a pulse input)

S h f i t t

NetFPGA Cambridge Spring School 15-19 Mar 2010 135

Search for insert counter
(ctrl+s insert counter, Enter)

Insert counter and save
(ctrl+x+s)

Step 3 - Build the Hardware

Start terminal, cd to ,
“NF2/projects/
tutorial_router/synth”

Run “make clean”

NetFPGA Cambridge Spring School 15-19 Mar 2010 136

Start synthesis with “make”

GUsing the NetFPGA
in the Classroom

NetFPGA Cambridge Spring School 15-19 Mar 2010 137

NetFPGA in the Classroom

•Stanford University
•EE109 “Build an Ethernet Switch”

Undergraduate course for all EE students
http://www.stanford.edu/class/ee109/

•CS344 “Building an Internet Router” (since ‘05)
Q t l t t d t d tQuarter-long course targeted at graduates
http://cs344.stanford.edu

•Rice University
•Network Systems Architecture (since ‘08)

http://comp519.cs.rice.edu/

•Cambridge University
•Build an Internet Router (since ‘09)

Quarter-long course targeted at graduates
http://www.cl.cam.ac.uk/teaching/0910/P33/

NetFPGA Cambridge Spring School 15-19 Mar 2010 138

•University of Wisconsin
•CS838 “Rethinking the Internet Architecture”

http://pages.cs.wisc.edu/~akella/CS838/F09/

See: http://netfpga.org/teachers.html

Components of NetFPGA Course

• Documentation
– System Design
– Implementation Plan

• Deliverables
– Hardware Circuits
– System Software
– Milestones

• Testing
P f f C t

NetFPGA Cambridge Spring School 15-19 Mar 2010 139

– Proof of Correctness
– Integrated Testing
– Interoperabilty

• Post Mortem
– Lessons Learned

NetFPGA in the Classroom

• Stanford CS344: “Build an Internet Router”
– Courseware available on-line
– Students work in teams of threeStudents work in teams of three

• 1-2 software
• 1-2 hardware

– Design and implement router in 8 weeks
– Write software for CLI and PW-OSPF
– Show interoperability with other groups

NetFPGA Cambridge Spring School 15-19 Mar 2010 140

p y g p
– Add new features in remaining two weeks

• Firewall, NAT, DRR, Packet capture, Data
generator, …

CS344 Milestones

InteroperabilityBuild basic router Routing Protocol
(PWOSPF)

Integrate with H/W

Routing
Protocols

Management
& CLI

Exception
P

Management
& CLI

Management
& CLI

Command Line
Interface

1 2 3 4 5 6
Final Project

software
hardware

SwitchingForwarding
Table

Routing
Table

Routing
Protocols

Management
& CLI

Exception
Processing

Emulated
h/w in VNS

Routing
Table

Processing

Emulated
h/w in VNS

Routing
Table

Routing
Protocols

& CLI

Exception
Processing

Emulated
h/w in VNS

Routing
Table

Routing
Protocols

& CLI

Exception
Processing

• Innovate and add!
• Presentations
• Judges

NetFPGA Cambridge Spring School 15-19 Mar 2010 141

4-port non-learning
switch

4-port learning
switch

IPv4 router
forwarding path

Integrate with S/W Interoperability

SwitchingForwarding
Table

Learning Environment
Modular design

Testing

Typical NetFPGA Course Plan
Week Software Hardware Deliver

1 Verify Software Tools Verify CAD Tools Write Design
Document

2 Build Software Router Build Non Learning Run Software Router2 Build Software Router Build Non-Learning
Switch

Run Software Router

3 Cmd. Line Interface Build Learning Switch Run Basic Switch

4 Router Protocols Output Queues Run Learning Switch

5 Implement Protocol Forwarding Path Interface SW & HW

6 Control Hardware Hardware Registers HW/SW Test

NetFPGA Cambridge Spring School 15-19 Mar 2010 142

6 Control Hardware Hardware Registers HW/SW Test

7 Interoperate Software & Hardware Router Submission

8 Plan New Advanced Feature Project Design Plan

9 Show new Advanced Feature Demonstration

Presentations

Stanford CS344

http://cs344.stanford.edu

NetFPGA Cambridge Spring School 15-19 Mar 2010 143

Cambridge P33

http://www.cl.cam.ac.uk/teaching/0910/P33/

Photos from NetFPGA Tutorials

SIGCOMM - Seattle Washington USA

Beijing, China

SIGMETRICS - San Diego, California, USA

SIGCOMM Seattle, Washington, USA

NetFPGA Cambridge Spring School 15-19 Mar 2010 144

http://netfpga.org/pastevents.php and http://netfpga.org/upcomingevents.php

EuroSys - Glasgow, Scotland, U.K.
Bangalore, India

Deployed NetFPGA hardware
(July 2008)

 Cambridge University
 Rice University
 Georgia Tech
 Washington University
 University of Utah
 University of Toronto
 University of Wisconsin

 Princeton University
 India Institute of Science (IISc), Bangalore
 Ecole Polytechnique de Montreal
 Beijing Jaiotong University
 China Zhejiang University
 National Taiwan University

 University of Wisconsin
 University of Connecticut
 University of California, San Diego (UCSD)
 University of California, Los Angeles (UCLA)
 University of Idaho
 University of Massachusetts (UMass)
 University of Pennsylvania (UPenn)
 North Carolina State University
 Lehigh University
 State University of New York (SUNY), Buffalo
 State University of New York (SUNY), Binghamton

 University of New South Wales
 University of Hong Kong
 University of Sydney
 University of Bologna
 University of Naples
 University of Pisa, Italy
 University of Quebec
 University of Jinan
 University of Amsterdam
 University of Waterloo
 University of Victoria

NetFPGA Cambridge Spring School 15-19 Mar 2010 145

 University of Florida
 Rutgers
 Western New England College
 Emerson Network Power
 ICSI
 Agilent
 Cisco
 Quanta Computer, Inc.
 Zones Inc.

University of Victoria
 Chung Yuan Christan University, Taiwan (CYCU)
 Universite de Technologie de Compiegne (UTC)
 Catholic University of Rio De Janeiro
 University Leiden (The Netherlands)
 National United University
 Kookman University (South Korea)
 Kasetsart University (Thailand)
 Helsinki Institute for Information Technology (HIIT)
 CESNET

Networked FPGAs in Research

1. Managed flow-table switch
• http://OpenFlowSwitch.org/

2. Buffer Sizing
• Reduce buffer size & measure buffer occupancyReduce buffer size & measure buffer occupancy

3. RCP: Congestion Control
• New module for parsing and overwriting new packet
• New software to calculate explicit rates

4. Deep Packet Inspection (FPX)
• TCP/IP Flow Reconstruction
• Regular Expression Matching
• Bloom Filters

NetFPGA Cambridge Spring School 15-19 Mar 2010 146

• Bloom Filters
5. Packet Monitoring (ICSI)

• Network Shunt
6. Precise Time Protocol (PTP)

• Synchronization among Routers

Third Break

(while hardware compiles)

NetFPGA Cambridge Spring School 15-19 Mar 2010 147

Step 5 – Test your Router
You can watch the number of received and sent packets to watch the

module drop every Nth packet. Ping a local machine (i.e.
192.168.7.1) and watch for missing pings

To run your router:
1- Enter the directory by typing:

cd NF2/projects/tutorial_router/sw
2- Run the router by typing:

./tut_adv_router_gui.pl --use_bin ../../../bitfiles/tutorial_router.bit

To set the value of N (which packet to drop)
t it 0 2000704 N

NetFPGA Cambridge Spring School 15-19 Mar 2010 148

type regwrite 0x2000704 N
– replace N with a number (such as 100)

To enable packet dropping, type: To disable packet dropping, type:
regwrite 0x2000700 0x1 regwrite 0x2000700 0x0

Step 5 – Measurements

• Determine iperf TCP throughput to neighbor’s server
for each of several values of N
– Similar to Demo 2, Step 8
– Ping 192.168.x.2 (where x is your neighbor’s server)Ping 192.168.x.2 (where x is your neighbor s server)
– TCP throughput with:

• Drop circuit disabled
– TCP Throughput = ________ Mbps

• Drop one in N = 1,000 packets
– TCP Throughput = ________ Mbps

• Drop one in N = 100 packets
– TCP Throughput = ________ Mbps

• Drop one in N = 10 packets

NetFPGA Cambridge Spring School 15-19 Mar 2010 149

• Drop one in N = 10 packets
– TCP Throughput = ________ Mbps

• Explain why TCPs throughput is so low given that only
a tiny fraction of packets are lost

Visit http://NetFPGA.org

NetFPGA Cambridge Spring School 15-19 Mar 2010 150

Join the NetFPGA.org Community

• Log into the Wiki

• Access theAccess the
Beta code

• Join the
netfpga-beta
mailing list

NetFPGA Cambridge Spring School 15-19 Mar 2010 151

g

• Join the
discussion forum

Learn from the On-line Guide

• Obtain hardware,
software, & gateware

• Install software, CAD ,
tools, & simulation
models

• Verify installation
using regression self-
tests

NetFPGA Cambridge Spring School 15-19 Mar 2010 152

• Walk through the
reference designs

• Learn about
contributed packages

Contribute to the Project

• Search for
related work

• List your
project on
the Wiki

• Link your

NetFPGA Cambridge Spring School 15-19 Mar 2010 153

• Link your
project
homepage

(Early) Project Ideas for the NetFPGA
• IPv6 Router (in high demand)
• TCP Traffic Generator
• Valiant Load Balancing
• Graphical User Interface (like CLACK)• Graphical User Interface (like CLACK)
• MAC-in-MAC Encapsulation
• Encryption / Decryption modules
• RCP Transport Protocol
• Packet Filtering (Firewall, IDS, IDP)
• TCP Offload Engine

NetFPGA Cambridge Spring School 15-19 Mar 2010 154

• DRAM Packet Queues
• 8-Port Switch using SATA Bridge
• Build our own MAC (from source, rather than core)
• Use XML for Register Definitions
http://netfpga.org/foswiki/bin/view/NetFPGA/OneGig/ModuleWishlist

NetFPGA Project - Going Forward

NetFPGA Cambridge Spring School 15-19 Mar 2010 155

The 2010 v2.0 Code Release

• Modular Registers
– Simplifies integration of multiple modules

• Many users control NetFPGAs from software

– Register set joined together at build time
• Project specifies registers in XML list

• Packet Buffering in DRAM
– Supports Deep buffering

Si l 64MB t i DDR2

NetFPGA Cambridge Spring School 15-19 Mar 2010 156

• Single 64MByte queue in DDR2 memory

• Programmable Packet Encapsulation
– Packet-in-packet encapsulation

• Enables tunnels between OpenFlowSwitch nodes

Module Pipeline

NetFPGA Cambridge Spring School 15-19 Mar 2010 157

From: Methodology to Contribute NetFPGA Modules, by G. Adam Covington, Glen Gibb, Jad Naous,
John Lockwood, Nick McKeown; IEEE Microelectronics System Education (MSE), June 2009.
on : http://netfpga.org/php/publications.php

NetFPGA 10G: (Coming in 3rd Qtr 2010)

QDRII+ SRAM
3x 36bit interfaces, 300MHz+

(each i/f: 1x K7R643684MFC30)

Xilinx Virtex5

XCV5TX240T-2

FG1759

XAUI
4 GTXs

XAUI
4 GTXs

XAUI
4 GTXs

PCIe
8 GTXs

SFI
10Gbps

SFI
10Gbps

SFI
10Gbps

SFI

SFP+
Cage

SFP+
Cage

SFP+
Cage

SFP+

PCIe x8, Gen1
endpoint edge

connector

10 GTXs

XAUI

2 x Samtec
x10 Connector10 GTXs

PHY

PHY
AEL2005

PHY
AEL2005

PHY
AEL2005

NetFPGA Cambridge Spring School 15-19 Mar 2010 158

10GbpsCage 4 GTXs

RLDRAM II

2x 32bit interfaces, 300MHz+

NetFPGA 10G

PHY
AEL2005

Going Forward
• NSF Funding at Stanford

– Supports program at Stanford for next 4 years
• Workshops, Tutorials, Support

A d i C ll b ti• Academic Collaborations
– Cambridge, NICTA, KOREN, ONL, …

• Academic Tutorials
• Developer Workshops

• Industry Collaborations
Al L i S t

NetFPGA Cambridge Spring School 15-19 Mar 2010 159

– AlgoLogicSystems.com
• Designs algorithms in Logic
• Creates systems with open FPGA platforms
• Uses and contributes to open-source cores
• Provides customized training to industry

Conclusions

• NetFPGA Provides
– Open-source, hardware-accelerated Packet Processing
– Modular interfaces arranged in reference pipeline
– Extensible platform for packet processing

• NetFPGA Reference Code Provides
– Large library of core packet processing functions
– Scripts and GUIs for simulation and system operation
– Set of Projects for download from repository

NetFPGA Cambridge Spring School 15-19 Mar 2010 160

j p y

• The NetFPGA Base Code
– Well defined functionality defined by regression tests
– Function of the projects documented in the Wiki Guide

Thoughts for (Prospective) Contributors

• Build Modular components
– Describe shared registers (as per 2.0 release)
– Consider how modules would be used in larger systems

• Define functionality clearly
– Through regression tests
– With repeatable results

• Disseminate projects
– Post open-source code

Document projects on Web Wiki and Blog

NetFPGA Cambridge Spring School 15-19 Mar 2010 161

– Document projects on Web, Wiki, and Blog

• Expand the community of developers
– Answer questions in the Discussion Forum
– Collaborate with your peers to build new applications

Group Discussion

• Your plans for using the NetFPGA
– Teaching
– Research
– Other

• Resources needed for your class
– Source code
– Courseware
– Examples

NetFPGA Cambridge Spring School 15-19 Mar 2010 162

Examples

• Your plans to contribute
– Expertise
– Capabilities
– Collaboration Opportunities

