% UNIVERSITY OF
¥ CAMBRIDGE

'8
600 YEARS

[20090~200090

uvNIC

Rapid Prototyping Network Devices

Matthew. P. Grosvenor
Andrew Moore
Robert Watson

Computer Laboratory

Thursday, 12 July 12

But wait, there’s more...

uvNIC: Rapid Prototyping Network Interface Controller

Device Drivers

Matthew P. Grosvenor
University of Cambridge Computer Laboratory
matthew.grosvenor@cl.cam.ac.uk

Categories and Subject Descnpturs
D44 [Operating Systems]: C

Network communication

General Terms
Design, Experimentation, Verification.

Keywords

Hardware, Device Driver, Emulation, Userspace, Virtualisation

LINTRODUCTION
Traditional approaches to NIC driver design focus on
commodity network hardware, which exhibit slow moving
feature sefs and long product life cycles. The introduction
of FPGA based network adapters such as [1][2] alter the
status-quo considerably. Whereas traditional ASIC based
NICs may undergo minor driver interface revisions over a
timespan of years, FPGA based NIC interfaces can be
totally reimplemented in months or even weeks. To the
driver developer this presents a considerable challenge:
Driver development cannot seriously begin without
hardware support, but is now expected to take place
with hardware
To solve this problem, 1 present the userspace, virtual
NIC framework (uNIC). uvNIC implements a custom
virtual NIC as a standard userspace application. To the
driver developer, it presents a functional equivalent to a
physical device. Only minor modifications are required to
switch a uvNIC enabled driver over to operating on real
hardware. To the hardware designer, uvNIC presents a rapid
for initial and a
fully functional model against which HDL code can later be
verified.

2.Design and Implementation
Typical NIC device drivers implement two interfaces; a
device facing PCI interface and kernel facing network stack
interface. Ordinarily, a device driver would send/receive
packets by interacting with real hardware over the PCI
interface. Instead of (or addition to) regular PCI operations,
uvNIC forwards mleracuons with haxdware to the uvNIC
virtual NIC This a
software emulation of the hardware NIC and responds
appropriately by sending and receiving packets over a
commodity device operated in raw socket mode.
the uvNIC PCI vis ion layer is not
trivial. OS kernels are designed with strict one way

Copyrighisheld by the aulhor ownerts),
OMM 12, August 13-17, 2012, Helsink, Finland.
O OTR ISR 1419:012106.

g8z UNIVERSITY OF
v

Thursday, 12 July 12

Tost Application
Raw Socket 10
Network Stack
Commodity Driver
PCle Stack

Figure I: The uvNIC framework design.

dependencies. That is, userspace applications are dependent
on the kernel, the kernel is dependent on the hardware.
Importantly, the kernel is not designed for, nor does it casily
facilitate dependence on userspace applications. For the
uvNIC framework, this is problematic. The virtual NIC
should appear to the driver as a hardware device, but to the
kernel it appears as a userspace application.

Figure 1. illustrates the uvNIC implementation in detail.
At the core is a message transport layer (uvBus) that
connects the kernel and the virtual device. uvBus uses file
1/0 operations (openm, ioctl(), mmap()) to establish
shared memory regions between the kernel and userspace.
Messages are by and
fixed size packets into lockless circular buffers. Message
delivery order is strictly maintained. uvBus also includes an
out of band, bi-directional signalling mechanism for
alerting message consumers about incoming data.
Userspace applications signal the kernel by calling write ()
with a 64 bit signal value, likewise, the kernel signals
userspace by providing a 64 bit response to poll()/
read () system calls.

A lightweight PCle like protocol (uvPCI) is
implemented on top of uvBus. uvPCI implements posted
(non-blocking) write and non-posted (blocking) read
operations in both kernel and userspace. In kernel space,
non-posted reads are implemented by spinning and kept
safe with timeouts and appropriate calls to yield(). An
important aspect of uvPCl is that it maintains read and write
message ordering in a manner that is consistent with
hardware PCle implementations.

In addition to basic PCI read and write operations,
uvPCI implements x86 specific PCle restrictions such as 64
bit register reads/writes, message signalled interrupt
generation and 128B, 32bit aligned DMA operations. DMA
operations appear to the driver as they would in reality. That
is, data appears in DMA mapped buffers asynchronously
without the driver’s direct involvement.

ﬁ:ﬁ UNIVERSITY OF
CAMBRIDGE

uvNIC: Rapid Prototyping NIC Device Drivers

doal FPGA Dosign

uvNIC: Making software look like hardware.
‘The user space virtual NIC is a standalone, userspace software
e bl il A
NIC that s under developr

Key to uvNIC is the abil

M. P. Grosvenor

Network hardware isn't what it used to be
Traditional ASIC based network interface controllers (NICs) undergo
‘minor hardware interface revisions over a timespan of years. FPGA
based NICs can be completely reimplemented in months or even weeks.

Driver developers can't keep up

Driver development cannot seriously begin until hardware is available
10 test against, but driver development is expected 10 take place
simultaneously with hardware development

What if driver developers could write the hardware?
o the driver developer we could present a functional equivalent (0 a
physical device. To the hardware designer we could present a fully
functional model against which the HDL specifications could be tested

and verified.

ity
card with new features and then
the new virtual network interface.

The uyNIC device dri
the PCI kernel interface.

involves.

Research

Pioneering research

Motivation

Network latency

How long does a packet take to
traverse network components like
switches, routers, firewalls, NICs,
OSes etc

gz UNIVERSITYOF 8 0 0
% CAMBRIDGE 1209

Thursday, 12 July 12

NetFPGA

4x 10G Network ports (SFP+)

Programable FPGA fabric
PCle 8x Connector

RAM & other things.

gz UNIVERSITYOF 8 0 0
% CAMBRIDGE 1209

Thursday, 12 July 12

What'’s the problem?

« Can implement a switch

g8z UNIVERSITYOF 8 0 0
9 CAMBRIDGE 1209

Thursday, 12 July 12

What'’s the problem?

« Can implement a high performance network card

g8z UNIVERSITYOF 8 0 0
9 CAMBRIDGE 1209

Thursday, 12 July 12

What's the problem?

« Can implement a network monitoring device

i_U\l\Hmn()r :
CAMBRIDGE

Thursday, 12 July 12

What'’s the problem?

« Can implement a router

gz UNIVERSITYOF 8 0 0
% CAMBRIDGE 1209

Thursday, 12 July 12

What'’s the problem?

« Can implement just about any network device you can think of

gz UNIVERSITYOF 8 0 0
% CAMBRIDGE 1209

Thursday, 12 July 12

What'’s the problem?

How do we write a device driver for a device that can be any device?
How do we write that driver quickly?
How do we prototype the device functionality? Fast?

How can we explore different arrangements of hardware software
interface without having to build it all?

g8z UNIVERSITYOF 8 0 0 3
¥ CAMBRIDGE 1209

Thursday, 12 July 12

A very brief introduction to NIC drivers (Linux/Unix)

Application

Network Stack

Driver Code

PCI Stack

| Commodity NIC j

i_U\l\H{SIH()r 800 YEARS
CAMBRIDGE 1209-2009

Thursday, 12 July 12

Hijacking struct pci

Application

Network Stack

Custom Driver Code

Custom PCI Stack

A/

| Custom NIC)

UNIVERSITYOF 800 YEARS
"i" CAMBRIDGE 1209-2009

Thursday, 12 July 12

Introducing uvNIC

* uvNIC is a software implementation PCI express, implemented in a way
that a device driver is (almost) unaware of its existence.

gz UNIVERSITYOF 8 0 0
% CAMBRIDGE 1209

Thursday, 12 July 12

Introducing uvNIC

The userspace virtual NIC

Application
Socket I/0 (raw)

Network Stack Network Stack
File 110

Custom Driver Code Driver

PCI Stack

Commodity NIC (N)

gz UNIVERSITYOF 8 0 0
% CAMBRIDGE 1209

Thursday, 12 July 12

Introducing uvNIC

The userspace virtual NIC

Virtual NIC

Application Userspace Lib

Network Stack Network Stack

Custom Driver Code Driver

PCI Stack : Char Device PCI Stack

—

Custom NIC
— Commodity NIC (N)

&8z UNIVERSITYOF 8 00 YEARS
":" CAMBRIDGE 1209~-2009

Thursday, 12 July 12

Faking PCl(e): What needs to be done?

Require 5 functions to fake PCI(e) hardware
Write Register
Read Register
Read DMA
Write DMA

Interrupt request

g8z UNIVERSITYOF 8 0 0 3
¥ CAMBRIDGE 1209

Thursday, 12 July 12

Faking PCl(e): How does it work?

Raw Socket I/O

‘ Development Driver '

g8z UNIVERSITYOF 8 0 0 3
¥ CAMBRIDGE 12

Thursday, 12 July 12

Faking PCl(e): uvBus

Simple message bus.

Connects kernel and userspace.
Implemented as shared memory ring buffer.
Transmits 128B messages, much like PCle.
Guarantees order and delivery.

Rejects new messages if the ring buffer is full.

g8z UNIVERSITYOF 8 0 0 3
¥ CAMBRIDGE 1209

Thursday, 12 July 12

Faking PCl(e): uvPClI

Implemented over uvBus

Implements blocking read and non blocking write (like PCle)
Uses timeouts and yield to keep the kernel from blocking forever
Bi-directional

Implements configuration space reads and writes

g8z UNIVERSITYOF 8 0 0 3
¥ CAMBRIDGE 1209

Thursday, 12 July 12

Faking PCl(e) the nasty details: uvPCI x86 specifics

Host to device reads/writes limited to 64bits
Device to host reads/writes limited to 128B
Interrupts implemented as write messages to a special address

Message signalled interrupts (MSI) only

g8z UNIVERSITYOF 8 0 0 3
¥ CAMBRIDGE 1209

Thursday, 12 July 12

Preliminary Results

 Built a (very) simple virtual network card and driver for it
» 1 packet queue with 1 slot for TX
« 1 packet queue with 1 slot for RX
* Relatively painless process
 Built a test driver and switched over for a simple hardware design
* Register reads/writes
« IRQs
* In progress...

« Backporting an Intel IXGBE 10G NIC to run on uvNIC virtual hardware

nir'ai UNIVERSITYOF 8 0 O Y
9 CAMBRIDGE 1209

Thursday, 12 July 12

Results Summary

« Rapid prototyping network devices
* Quickly exploring the software/hardware interface

 Painless transition to real hardware

g8z UNIVERSITYOF &8 0 O

%" CAMBRIDGE 1209

Thursday, 12 July 12

UvNIC: General Points

« What uvNIC IS:

« Afast way to build device drivers that actually work

» Afast way to prototype network devices
« Afast way to prototype arrangements of hardware/software interface:
* Register layout/policy
DMA policy
IRQ policy,
Transaction formats
Queues, Descriptors, Rings, Offload etc etc etc

nir'ai UNIVERSITYOF 8 0 O Y
9 CAMBRIDGE 1209

Thursday, 12 July 12

UvNIC: General Points

What uvNIC is NOT:
Safe: Kernel data structures exposed to userspace arbitrarily

Safe: Kernel has a contract with userspace.

Complete: Only a minimal implementation of PCle functions supporting the

functionality required to make NICs work.
High performance: This is not and was never the goal

A replacement for Xen like devices: This is all about rapid prototyping

nir'ai UNIVERSITYOF 8 0 O Y
9 CAMBRIDGE 1209

Thursday, 12 July 12

uvNIC: With thanks to our sponsors

&NetFPGA

EPSRC

Pioneering research

and skills

28z UNIVERSITY OF
":" CAMBRIDGE

Thursday, 12 July 12

3

P
)
\

O

I 20

v
|

Matthew. P. Grosvenor

Supervisors:
Andrew Moore
Robert Watson

R earc h This work was supported in part by the EPSRC INTERNET
es Project EP/H040536/1.

This research is sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-11-C-0249. The views, opinions,
and/or findings contained in this article/presentation are those of
the author/presenter and should not be interpreted as
representing the official views or policies, either expressed or
srg@cambridge:~$ implied, of the Defense Advanced Research Projects Agency or

the Department of Defense.

O~ 20

uvNIC: Demo (sort of)

* Full duplex TX/RX over uvNIC

$ ping -1 uvNICnet0 172.16.84.2

PING 172.16.84.2 (172.16.84.2) from 172.16.84.161 uvNICnet0: 56(84) bytes of data.
64 bytes from 172.16.84.2: icmp_req=1 ttI=128 time=0.217 ms

64 bytes from 172.16.84.2: icmp_req=2 ttI=128 time=0.241 ms

64 bytes from 172.16.84.2: icmp_req=3 ttl=128 time=0.247 ms

64 bytes from 172.16.84.2: icmp_req=4 ttl=128 time=0.274 ms

--- 172.16.84.2 ping statistics ---

4 packets transmitted, 4 received, 0% packet loss, time 3000ms

rtt min/avg/max/mdev = 0.217/0.244/0.274/0.027 ms

gBE UNIVERSITYOF 8 00 YEARS
9" CAMBRIDGE 1209-2009

Thursday, 12 July 12

Faking PCl(e): The software perspective

#include <linux/pci.h>

struct pci_driver
struct pci_dev

pci register driver()
pci unregister driver()
pci enable device()

pci disable device()
pci_set drvdata()

pci _get drvdata()

pci enable msi()

pci disable msi()

pci set master()

pci clear master()

request irq()
disable irq()

g8z UNIVERSITYOF 8 O ¢
9 CAMBRIDGE 1209

Thursday, 12 July 12

Faking PCl(e): The software perspective

#include <linux/pci.h>

struct pci_driver
struct pci_dev

pci register driver()
pci unregister driver()
pci enable device()
pci disable device()
pci_set drvdata()
pci _get drvdata()
pci enable msi()

pci disable msi()
pci set master()

pci clear master()

request irq()
disable irq()

g8z UNIVERSITYOF 8 O ¢
9 CAMBRIDGE 1209

Thursday, 12 July 12

Faking PCl(e): The software perspective

#include <linux/pci.h>

struct pci_driver
struct pci_dev

pci register driver()
pci unregister driver()
pci enable device()

pci disable device()
pci_set drvdata()

pci _get drvdata()
pci enable msi()
pci disable msi()
pci set master()
pci clear master()

request irq()
disable irq()

'in UNIVERSITY OF

CAMBRIDGE

Thursday, 12 July 12

#include <linux/uvn.h>

struct uvn driver
struct uvn dev

uvn_register driver()
uvn_unregister driver()
uvn_enable device()

uvn _disable device()
uvn_set drvdata()
uvn_get drvdata()
uvn_enable msi()

uvn _disable msi()

uvn_ set master()

uvn clear master()

uvn_request _irq()
uvn_disable irq()

uvNIC: How does it really work?

Test Application Thread Virtual Hardware Thread

aoedg J9sn)

glE UNIVERSITYOF 800 YEARS
9" CAMBRIDGE 1209-20009

Thursday, 12 July 12

