
uvNIC
Rapid Prototyping Network Devices

Computer Laboratory

Matthew. P. Grosvenor
Andrew Moore
Robert Watson

Thursday, 12 July 12

But wait, there’s more...

2

TX
RING

RX
RING

Write Dev Config
Write Dev Mem

Write Host Mem

Read Dev Config
RD Dev Mem Write Host Mem

Read Host Mem Generate MSI

User Space Virtual PCI Interface

K
ernel Space

U
ser Space

WR Dev Config RD Dev Config Read Host Mem

Test Application Thread Virtual Hardware Thread

WR Dev Mem RD Dec Mem

Kernel Space Virtual PCI Interface

Current ASIC Design
Years Months

S
pecification

D
esign

Im
plem

entation

Verification

Testing

Rev 2,3,4….

D
esign

Im
plem

entation

Testing

Rev 2,3,4….

Hardware Development Driver Development

Current FPGA Design Months

Rev 2,3,4….

Device Development

S
pecification

D
esign

Im
plem

entation

Verification

Testing

Months

D
esign

Im
plem

entation

Testing

Rev 2,3,4….

Driver Development

Ideal FPGA Design

Rev 2,3,4….

Device Development

D
esign

Im
plem

entation

Verification

Testing

D
esign

Im
plem

entation

Testing

Rev 2,3,4….

Driver Development

S
pecification

Months

Test Application

Network Stack

Development Driver uvPCI

PCIe Stack

uvPCI
User Space Virtual NIC

Network Stack

Commodity Driver

PCIe Stack

Raw Socket I/O

Commodity NICDevelopment NIC

Socket I/O
uvBus
File I/O

uvBus

uvMAC
uvPHY

K
ernel Space

U
ser Space

H
ardw

are

Commodity NIC

Test Application

Network Stack

Commodity Driver

PCIe Stack

Commodity NIC

Socket I/O

uvNIC

By using a message passing transport layer, similar in design to
hardware implementations of PCIe, important properties such as
blocking reads and read/write/interrupt message ordering is maintained
and consistent with reality.

The user space virtual bus makes the kernel dependent on user space in
the same way that the kernel is dependent on hardware. This is kept safe
by appropriate use of yield() and spinning timeouts.

The user space virtual NIC is implemented on top of the user space
virtual PCI (uvPCI) implementation, which itself is implemented on top
of the user space virtual bus (uvBus) implementation.

How do you make software look like hardware?

Approved for Public Release

This work was supported in part by the EPSRC INTERNET Project EP/H040536/1.

This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air Force Research Laboratory (AFRL), under contract
FA8750-11-C-0249. The views, opinions, and/or findings contained in this article/presentation are those of the author/presenter and should not be interpreted
as representing the official views or policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

With thanks to Andrew W. Moore and Robert M. Watson

uvNIC: Rapid Prototyping NIC Device Drivers
M. P. Grosvenor

Key to uvNIC is the ability to augment an existing network interface
card with new features and then write a functional device driver for
the new virtual network interface.

The user space virtual NIC is a standalone, userspace software
application which is developed as a functional specification of a new
NIC that is under development.

uvNIC: Making software look like hardware.

The uvNIC device driver builds against a parallel implementation of
the PCI kernel interface. Switching over to real hardware operation
involves little more than a search/replace and a recompilation.

Traditional ASIC based network interface controllers (NICs) undergo
minor hardware interface revisions over a timespan of years. FPGA
based NICs can be completely reimplemented in months or even weeks.

Network hardware isn't what it used to be

Driver development cannot seriously begin until hardware is available
to test against, but driver development is expected to take place
simultaneously with hardware development

Driver developers can't keep up

To the driver developer we could present a functional equivalent to a
physical device. To the hardware designer we could present a fully
functional model against which the HDL specifications could be tested
and verified.

What if driver developers could write the hardware?

uvNIC: Rapid Prototyping Network Interface Controller
Device Drivers
Matthew P. Grosvenor

University of Cambridge Computer Laboratory
matthew.grosvenor@cl.cam.ac.uk

Categories and Subject Descriptors
D.4.4 [Operating Systems]: Communications Management –
Network communication

General Terms
Design, Experimentation, Verification.

Keywords
Hardware, Device Driver, Emulation, Userspace, Virtualisation

1.INTRODUCTION
Traditional approaches to NIC driver design focus on

commodity network hardware, which exhibit slow moving
feature sets and long product life cycles. The introduction
of FPGA based network adapters such as [1][2] alter the
status-quo considerably. Whereas traditional ASIC based
NICs may undergo minor driver interface revisions over a
timespan of years, FPGA based NIC interfaces can be
totally reimplemented in months or even weeks. To the
driver developer this presents a considerable challenge:
Driver development cannot seriously begin without
hardware support, but is now expected to take place
simultaneously with hardware development.

To solve this problem, I present the userspace, virtual
NIC framework (uvNIC). uvNIC implements a custom
virtual NIC as a standard userspace application. To the
driver developer, it presents a functional equivalent to a
physical device. Only minor modifications are required to
switch a uvNIC enabled driver over to operating on real
hardware. To the hardware designer, uvNIC presents a rapid
prototyping environment for initial specifications and a
fully functional model against which HDL code can later be
verified.

2.Design and Implementation
Typical NIC device drivers implement two interfaces; a

device facing PCI interface and kernel facing network stack
interface. Ordinarily, a device driver would send/receive
packets by interacting with real hardware over the PCI
interface. Instead of (or addition to) regular PCI operations,
uvNIC forwards interactions with hardware to the uvNIC
virtual NIC application. This application implements a
software emulation of the hardware NIC and responds
appropriately by sending and receiving packets over a
commodity device operated in raw socket mode.

Implementing the uvNIC PCI virtualisation layer is not
trivial. OS kernels are designed with strict one way

dependencies. That is, userspace applications are dependent
on the kernel, the kernel is dependent on the hardware.
Importantly, the kernel is not designed for, nor does it easily
facilitate dependence on userspace applications. For the
uvNIC framework, this is problematic. The virtual NIC
should appear to the driver as a hardware device, but to the
kernel it appears as a userspace application.

Figure 1. illustrates the uvNIC implementation in detail.
At the core is a message transport layer (uvBus) that
connects the kernel and the virtual device. uvBus uses file
I/O operations (open(), ioctl(), mmap()) to establish
shared memory regions between the kernel and userspace.
Messages are exchanged by enqueuing and dequeueing
fixed size packets into lockless circular buffers. Message
delivery order is strictly maintained. uvBus also includes an
out of band, bi-directional signalling mechanism for
alerting message consumers about incoming data.
Userspace applications signal the kernel by calling write()
with a 64 bit signal value, likewise, the kernel signals
userspace by providing a 64 bit response to poll()/
read()system calls.

A lightweight PCIe like protocol (uvPCI) is
implemented on top of uvBus. uvPCI implements posted
(non-blocking) write and non-posted (blocking) read
operations in both kernel and userspace. In kernel space,
non-posted reads are implemented by spinning and kept
safe with timeouts and appropriate calls to yield(). An
important aspect of uvPCI is that it maintains read and write
message ordering in a manner that is consistent with
hardware PCIe implementations.

In addition to basic PCI read and write operations,
uvPCI implements x86 specific PCIe restrictions such as 64
bit register reads/writes, message signalled interrupt
generation and 128B, 32bit aligned DMA operations. DMA
operations appear to the driver as they would in reality. That
is, data appears in DMA mapped buffers asynchronously
without the driver’s direct involvement.

Test Application

Network Stack

Development Driver uvPCI

PCIe Stack

uvPCI

User Space Virtual NIC

Network Stack

Commodity Driver

PCIe Stack

Raw Socket I/O

Commodity NICDevelopment NIC

Socket I/O
uvBus

uvBus

uvMAC

uvPHY

File I/O

Figure 1: The uvNIC framework design.

Copyright is held by the author/owner(s).
SIGCOMM’12, August 13–17, 2012, Helsinki, Finland.
ACM 978-1-4503-1419-0/12/06.

Thursday, 12 July 12

Motivation

• Network latency

• How long does a packet take to
traverse network components like
switches, routers, firewalls, NICs,
OSes etc

3

Thursday, 12 July 12

NetFPGA

• 4x 10G Network ports (SFP+)

• Programable FPGA fabric

• PCIe 8x Connector

• RAM & other things.

4

Thursday, 12 July 12

What’s the problem?

• Can implement a switch

5

Thursday, 12 July 12

What’s the problem?

• Can implement a high performance network card

6

Thursday, 12 July 12

What’s the problem?

• Can implement a network monitoring device

7

Thursday, 12 July 12

What’s the problem?

• Can implement a router

8

Thursday, 12 July 12

What’s the problem?

• Can implement just about any network device you can think of

?
9

Thursday, 12 July 12

What’s the problem?

• How do we write a device driver for a device that can be any device?

• How do we write that driver quickly?

• How do we prototype the device functionality? Fast?

• How can we explore different arrangements of hardware software
interface without having to build it all?

10

Thursday, 12 July 12

A very brief introduction to NIC drivers (Linux/Unix)

Application

Commodity NIC

Driver Code

PCI Stack

Network Stack

11

Thursday, 12 July 12

Hijacking struct pci_dev

Application

Custom NIC

Custom Driver Code

Custom PCI Stack

Network Stack

12

Thursday, 12 July 12

Introducing uvNIC

• uvNIC is a software implementation PCI express, implemented in a way
that a device driver is (almost) unaware of its existence.

13

Thursday, 12 July 12

Introducing uvNIC

Application

Virtual NIC

Userspace Lib

Custom Driver Code

Kernel Library

Network Stack

Char Device

Commodity NIC (N)

Driver

PCI Stack

Network Stack

The userspace virtual NIC

File I/O

Socket I/O (raw)

14

Thursday, 12 July 12

Introducing uvNIC

Application

Virtual NIC

Userspace Lib

Custom Driver Code

PCI Stack

Network Stack

Char Device

Commodity NIC (N)

Driver

PCI Stack

Network Stack

Custom NIC

The userspace virtual NIC

15

Thursday, 12 July 12

Faking PCI(e): What needs to be done?

• Require 5 functions to fake PCI(e) hardware

• Write Register

• Read Register

• Read DMA

• Write DMA

• Interrupt request

16

Thursday, 12 July 12

Faking PCI(e): How does it work?

17

Development Driver

uvPCI

uvPCI
User Space Virtual NIC

uvBus
File I/O

uvBus

uvMAC
uvPHY

Raw Socket I/O

Thursday, 12 July 12

Faking PCI(e): uvBus

18

• Simple message bus.

• Connects kernel and userspace.

• Implemented as shared memory ring buffer.

• Transmits 128B messages, much like PCIe.

• Guarantees order and delivery.

• Rejects new messages if the ring buffer is full.

Thursday, 12 July 12

Faking PCI(e): uvPCI

19

• Implemented over uvBus

• Implements blocking read and non blocking write (like PCIe)

• Uses timeouts and yield to keep the kernel from blocking forever

• Bi-directional

• Implements configuration space reads and writes

Thursday, 12 July 12

Faking PCI(e) the nasty details: uvPCI x86 specifics

20

• Host to device reads/writes limited to 64bits

• Device to host reads/writes limited to 128B

• Interrupts implemented as write messages to a special address

• Message signalled interrupts (MSI) only

Thursday, 12 July 12

Preliminary Results

21

• Built a (very) simple virtual network card and driver for it

• 1 packet queue with 1 slot for TX

• 1 packet queue with 1 slot for RX

• Relatively painless process

• Built a test driver and switched over for a simple hardware design

• Register reads/writes

• IRQs

• In progress...

• Backporting an Intel IXGBE 10G NIC to run on uvNIC virtual hardware

Thursday, 12 July 12

Results Summary

22

• Rapid prototyping network devices

• Quickly exploring the software/hardware interface

• Painless transition to real hardware

Thursday, 12 July 12

uvNIC: General Points

• What uvNIC IS:

• A fast way to build device drivers that actually work

• A fast way to prototype network devices

• A fast way to prototype arrangements of hardware/software interface:

• Register layout/policy

• DMA policy

• IRQ policy,

• Transaction formats

• Queues, Descriptors, Rings, Offload etc etc etc

23

Thursday, 12 July 12

uvNIC: General Points

• What uvNIC is NOT:

• Safe: Kernel data structures exposed to userspace arbitrarily

• Safe: Kernel has a contract with userspace.

• Complete: Only a minimal implementation of PCIe functions supporting the
functionality required to make NICs work.

• High performance: This is not and was never the goal

• A replacement for Xen like devices: This is all about rapid prototyping

24

Thursday, 12 July 12

uvNIC: With thanks to our sponsors

25

Matthew. P. Grosvenor

Supervisors:
Andrew Moore
Robert Watson

This work was supported in part by the EPSRC INTERNET
Project EP/H040536/1.

This research is sponsored by the Defense Advanced Research
Projects Agency (DARPA) and the Air Force Research Laboratory
(AFRL), under contract FA8750-11-C-0249. The views, opinions,
and/or findings contained in this article/presentation are those of
the author/presenter and should not be interpreted as
representing the official views or policies, either expressed or
implied, of the Defense Advanced Research Projects Agency or
the Department of Defense.

Thursday, 12 July 12

uvNIC: Demo (sort of)

• Full duplex TX/RX over uvNIC

$ ping -I uvNICnet0 172.16.84.2
PING 172.16.84.2 (172.16.84.2) from 172.16.84.161 uvNICnet0: 56(84) bytes of data.
64 bytes from 172.16.84.2: icmp_req=1 ttl=128 time=0.217 ms
64 bytes from 172.16.84.2: icmp_req=2 ttl=128 time=0.241 ms
64 bytes from 172.16.84.2: icmp_req=3 ttl=128 time=0.247 ms
64 bytes from 172.16.84.2: icmp_req=4 ttl=128 time=0.274 ms
--- 172.16.84.2 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 3000ms
rtt min/avg/max/mdev = 0.217/0.244/0.274/0.027 ms

26

Thursday, 12 July 12

Faking PCI(e): The software perspective

#include <linux/pci.h>

struct pci_driver
struct pci_dev

pci_register_driver()
pci_unregister_driver()
pci_enable_device()
pci_disable_device()
pci_set_drvdata()
pci_get_drvdata()
pci_enable_msi()
pci_disable_msi()
pci_set_master()
pci_clear_master()

request_irq()
disable_irq()

...

enable_irq()
disable_irq()

ioremap()
iounmap()

dma_map_single()
dma_unmap_single()

writeb()
writew()
writel()
writeq()

readb()
readw()
readl()
readq()

27

Thursday, 12 July 12

Faking PCI(e): The software perspective

#include <linux/pci.h>

struct pci_driver
struct pci_dev

pci_register_driver()
pci_unregister_driver()
pci_enable_device()
pci_disable_device()
pci_set_drvdata()
pci_get_drvdata()
pci_enable_msi()
pci_disable_msi()
pci_set_master()
pci_clear_master()

request_irq()
disable_irq()

...

enable_irq()
disable_irq()

ioremap()
iounmap()

dma_map_single()
dma_unmap_single()

writeb()
writew()
writel()
writeq()

readb()
readw()
readl()
readq()

27

Thursday, 12 July 12

Faking PCI(e): The software perspective

#include <linux/pci.h>

struct pci_driver
struct pci_dev

pci_register_driver()
pci_unregister_driver()
pci_enable_device()
pci_disable_device()
pci_set_drvdata()
pci_get_drvdata()
pci_enable_msi()
pci_disable_msi()
pci_set_master()
pci_clear_master()

request_irq()
disable_irq()

...

enable_irq()
disable_irq()

ioremap()
iounmap()

dma_map_single()
dma_unmap_single()

writeb()
writew()
writel()
writeq()

readb()
readw()
readl()
readq()

#include <linux/uvn.h>

struct uvn_driver
struct uvn_dev

uvn_register_driver()
uvn_unregister_driver()
uvn_enable_device()
uvn_disable_device()
uvn_set_drvdata()
uvn_get_drvdata()
uvn_enable_msi()
uvn_disable_msi()
uvn_set_master()
uvn_clear_master()

uvn_request_irq()
uvn_disable_irq()

...

enable_irq()
disable_irq()

ioremap()
iounmap()

dma_map_single()
dma_unmap_single()

writeb()
writew()
writel()
writeq()

readb()
readw()
readl()
readq()

27

Thursday, 12 July 12

uvNIC: How does it really work?

28

TX
RING

RX
RING

Write Dev Config
Write Dev Mem

Write Host Mem

Read Dev Config
RD Dev Mem Write Host Mem

Read Host Mem Generate MSI

User Space Virtual PCI Interface

K
ernel Space

U
ser Space

WR Dev Config RD Dev Config Read Host Mem

Test Application Thread Virtual Hardware Thread

WR Dev Mem RD Dec Mem

Kernel Space Virtual PCI Interface

Thursday, 12 July 12

