
Bootstrapping in Gnutella: A Measurement
Study

Pradnya Karbhari, Mostafa Ammar, Amogh Dhamdhere, Himanshu Raj,
George Riley, Ellen Zegura

Georgia Institute of Technology, Atlanta, GA-30332
{pradnya@cc, ammar@cc, amogh@cc, rhim@cc, riley@ece, ewz@cc}.gatech.edu ?

Abstract. To join an unstructured peer-to-peer network like Gnutella,
peers have to execute a bootstrapping function in which they discover
other on-line peers and connect to them. Until this bootstrapping step is
complete, a peer cannot participate in file sharing activities. Once com-
pleted, a peer’s search and download experience is strongly influenced
by the choice of neighbor peers resulting from the bootstrapping step.
Despite its importance, there has been very little attention devoted to
understanding the behavior of this bootstrapping function. In this paper,
we study the bootstrapping process of a peer in the Gnutella network.
We find that (1) there is considerable variation among various servent
implementations, and hence in their bootstrapping performance. (2) The
neighbors of a peer, which are the outcome of the bootstrapping process,
play a very important role in the peer’s search and download perfor-
mance. (3) Even though the GWebCache system for locating peers is
designed to operate as a truly distributed caching system, it actually
operates more like a centralized infrastructure function, with significant
load imbalance. (4) The GWebCache system is subject to significant
misreporting of peer and GWebCache availability, due to stale data and
absence of validity checks.

1 Introduction

To join an unstructured peer-to-peer network like Gnutella, peers have to execute
a bootstrapping function in which they discover other on-line peers and connect
to them. These initial neighbor peers determine the new peer’s location in the
overall Gnutella topology, and ultimately its search and download performance.
Also, from the user perspective, the time spent by the peer in bootstrapping
is critical because until the bootstrapping step is complete, a peer cannot par-
ticipate in file sharing activities such as searching and downloading. From our
experience, this time can vary significantly for different Gnutella servents1.

Despite the significance of the bootstrapping process in unstructured peer-
to-peer networks, it has received very little attention to date. There have been
various studies[1, 2] aimed at characterization of peers based on their uptimes,

? This work is supported in part by NSF grants ANI-0240485 and ANI-9973115.
1 The implementations of Gnutella peers are referred to as servents because they func-

tion as servers and as clients. We use the terms peers and servents interchangeably.



bottleneck bandwidths, latencies and other factors, and trying to improve a
peer’s search and download experience[3]. However, none of these have studied
the bootstrapping function.

Initially Gnutella users relied on word of mouth to determine the address of
an on-line peer that would allow newly joining peers to tap into the network. The
use of automated caching servers, as well as caching in the Gnutella servent itself,
was introduced at a later time. As Gnutella gained in popularity after Napster
was shut down, the caches ultimately became the pre-dominant bootstrapping
technique [4]. Anecdotally, it has been observed that the switch from the use of
word of mouth to the use of automated caches resulted in a significant change
to the structure of the Gnutella network and a worsening of its performance[4].

In this paper, we undertake a measurement study of the current bootstrap-
ping process in the Gnutella network. Our investigation consists of three parts:

1. An analysis and performance comparison of the bootstrapping algorithms
of four Gnutella servent implementations: LimeWire[5], Mutella[6], Gtk-
Gnutella[7] and Gnucleus[8].

2. A measurement-based characterization of the Gnutella Web Caching Sys-
tem[9] (GWebCaches), a primary component of bootstrapping algorithms.

3. A measurement-based analysis of the role of neighbor peers, resulting from
different bootstrapping algorithms, in the search performance of a peer.

Based on our analysis of the data collected, we highlight below our four main
findings about the current Gnutella bootstrapping system.

1. Although similar in the basic structure of the algorithm and the data struc-
tures used, the servent implementations differ in the details, with significant
impact on their bootstrapping times, as seen in our measurements.

2. The neighbors of a peer play an important role in the search performance of
the peer, thus pointing to the importance of the bootstrapping process.

3. An analysis of the request rates at different GWebCaches points to the dis-
parity in traffic volume handled by these caches– some caches are very busy,
and their host and cache lists evolve much faster than some others. The load
balancing goal of any distributed system is not really achieved in this system.

4. The GWebCache system is subject to significant misreporting of peer and
cache availability. This is because the data reported in the updates to these
caches is not validated by the caches.

The rest of the paper is structured as follows. In Section 2, we give an overview
of the bootstrapping process in different Gnutella servents, with special focus on
the GWebCache system. We discuss the performance of the different servents
with respect to their bootstrapping times in Section 3, and the role of the re-
sulting neighbor peers in the search performance, in Section 4. In Section 5 we
discuss the performance of the GWebCache system. In Section 6, we summarize
our findings and discuss future work.

2 Gnutella Bootstrapping
In this section, we describe the bootstrapping process in the Gnutella servents
we analyzed, and the functioning of the GWebCache system.



Table 1. GWebCache messages

Argument Cache Response

ping=1 pong message to servent
urlfile=1 list of caches
hostfile=1 list of online hosts
ip=<IPaddress> host list is updated with IP address and port number
url=<URL of cache> cache list is updated with URL
statfile=1 access statistics over last hour

2.1 Gnutella Web Caching System

A peer intending to join the Gnutella network requires the IP addresses of on-
line peers in the network. Currently, the GWebCache system functions as a dis-
tributed repository for maintaining this information. Peers can query the caches
in this system to get a list of online peers to connect to. In the first execution
of a particular Gnutella servent, the only means to locate other online peers is
the GWebCache system. In successive executions, individual servent implemen-
tations try approaches apart from the GWebCaches, such as maintaining local
lists of hosts seen during their earlier runs. We first discuss the GWebCache
system, as it is an important component of the bootstrapping functionality, and
is essential in the understanding of the servent bootstrapping algorithms.

The GWebCache system[9] is a network of voluntarily-operated caches that
maintain a list of online peers accepting incoming connections. When a new peer
wants to join the Gnutella network, it can retrieve the host list from one or more
of these GWebCaches. The GWebCaches also maintain a list of other caches in
the system. Typically each cache maintains a list of 10 other caches and 20 hosts
that are currently accepting incoming connections.

The peers in the Gnutella network are responsible for keeping the information
in these caches up-to-date; the caches do not communicate with each other at
any time. A host accepting incoming connections is supposed to update the
caches with its IP address and port number, and with information about some
other GWebCache that it believes is alive. The GWebCaches maintain the host
and cache lists as first-in-first-out lists.

Table 1 lists the messages sent by a client using the GWebCache protocol.
An HTTP request of the form “URL?argument” is sent to the webserver at
which the cache is located. The caches respond as shown in the table. Note that
the GWebCaches do not maintain any information about the online hosts, other
than their IP addresses and port numbers.

2.2 Servent Bootstrapping Algorithms

In this section, we discuss the bootstrapping algorithms of the Gnutella ser-
vents that we compared, and point out the differences between them. We ana-
lyzed Limewire v2.9[5], Gtk-Gnutella v0.91.1[7], Mutella v0.4.3[6] and Gnucleus
v1.8.6.0[8]. All these versions support retrieval from and updates to the GWe-
bCache system. The bootstrapping processes in the four servents are similar in
their use of the GWebCache system and the local caching of hosts.

The data structures maintained by these servents include a list of known
GWebCaches, which is periodically populated with addresses of new GWeb-



1. Initialize the following data structures in memory by reading the corresponding
files from disk— list of caches, list of known hosts, list of permanent hosts and
list of ultrapeer hosts (except in Gtk-Gnutella).

2. Depending on mode (ultrapeer/normal), determine the minimum number of
connections to be maintained.

3. Try to establish the minimum number of connections to peers in the order:
– In LimeWire and Gnucleus, try to connect to ultrapeers.
– Try to connect to any host in the known hosts and permanent hosts lists.
– If the servent is still not connected, request the host list from a GWebCache

(multiple GWebCaches in LimeWire) and try to connect to these hosts.
4. Periodically, a connection watchdog checks whether the minimum num of con-

nections (step 2) are alive. If not, try to establish a new connection (step 3).
5. Periodically update a cache with its own IP address and URL of another cache

(for LimeWire and Mutella, this is done only if in ultrapeer mode)
6. On shutdown, write the different files to disk, for retrieval on next startup.

Fig. 1. Generic bootstrapping algorithm

Table 2. Servent implementation differences

Characteristic Limewire Mutella Gtk-gnutella Gnucleus

Maintains ultrapeers list? Yes Yes No Yes
Prioritize ultrapeers when connecting? Yes No No Yes
Host & cache lists prioritized by age? Yes No Yes No
Updates to GWebCaches Ultrapeer

mode
Ultrapeer
mode

Any mode Any mode

Number of hardcoded caches 181 3 3 2

Caches. Servents also maintain lists of known hosts and permanent hosts, the
definitions of which differ slightly in different servents. Informally, permanent
hosts are hosts that the servent managed to contact in current and previous
runs. Some servents also maintain a separate list of ultrapeers2.

Figure 1 outlines the generic bootstrapping algorithm, and Table 2 summa-
rizes the differences in the implementations, as discussed below.

1. Limewire and Gnucleus maintain a list of ultrapeers and give priority to hosts
in this list during connection initiation. Since ultrapeers have relatively long
uptimes and the capability to support more incoming connections, priori-
tizing these peers during connection initiation increases the probability of
successfully connecting to a peer. Although Mutella also maintains a list of
ultrapeers, this information is not used during bootstrapping. Gtk-Gnutella
does not distinguish between ultrapeers and normal peers.

2. LimeWire and Gtk-Gnutella prioritize their host and cache lists by age. This
enables them to act on more recent (and hence more accurate) information.

3. Although all four servents we examined support the GWebCache system for
retrieving information, LimeWire and Mutella support updates to the GWe-
bCaches only in the ultrapeer mode. This is better for the system because
the probability of ultrapeers accepting incoming connections is higher than

2 Ultrapeers[10] are hosts with high bandwidth and CPU power, and long uptimes.
Normal or leaf nodes have lower capabilities and typically connect to ultrapeers.



0 100 200 300 400 500 600 700 800 900
Time (seconds)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

of
 re

ad
in

gs

Gtk-Gnutella (univ)
Limewire (univ)
Mutella (univ)
Gnucleus (univ)

(a) CDF of servent boot-
strapping times

0 2 4 6 8 10 12 14 16 18 20 22
Time of day (hours)

0

25

50

75

100

125

150

175

200

M
ea

n 
bo

ot
st

ra
pp

in
g 

tim
e 

(s
ec

on
ds

)

Gtk-Gnutella (univ)
Limewire (univ)
Mutella (univ)

(b) Mean bootstrapping
times acc. to time of day

Fig. 2. Servent bootstrapping times

when in the leaf mode. Gtk-Gnutella and Gnucleus update the GWebCaches
even in the leaf mode.

4. The Gnutella servents have a set of hardcoded caches, which are used during
the very first run of the servent, before any other information about caches
or hosts is known. As seen in Table 2, compared to other servents LimeWire
has a very high number of hardcoded caches (181), 135 of which were active
when we tried to ping them at the Gnutella level.

In the next section, we will discuss the effects of these differences in boot-
strapping algorithms on the performance of different servent implementations.

3 Bootstrapping Measurement at Servent
In this section, we compare the performance of the servents considered in our
study, based on their bootstrapping times. We define the bootstrapping time of a
servent as the time between the start of the servent and the initial establishment
of the first stable Gnutella-level connection3. We say that a connection is stable
if it is maintained for at least threshold seconds.

3.1 Measurement Methodology

We modified the sourcecode of the three Linux-based servents (LimeWire, Gtk-
Gnutella and Mutella) to log the times at which the application was started
and shut down, and when a Gnutella-level connection was established and ter-
minated. For the Windows-based servent (Gnucleus), we used Windump[11] to
collect packet traces, and then analyzed them to determine the connection times.

We started the Linux-based servents once every hour, synchronously at two
locations, at a university campus on a Fast Ethernet Link and at a residence on
a DSL link to a local ISP. We started Gnucleus once every three hours at the
university location only. Each servent was allowed to run for 15 minutes, after
which it was shut down. In the following section we analyze the bootstrapping
times measured during an 11-day experiment. One limitation of our study is that
both locations in our experiments have high bandwidth access links. We did not
run any experiments at a slower access link.
3 A “Gnutella-level” connection is established after the Gnutella handshake messages

are exchanged between the two connecting peers.



0 200 400 600 800
Time (seconds)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 e

xp
er

im
en

ts

Gtk-Gnutella
Limewire
Mutella

Fig. 3. Time to receive first queryhit

3.2 Performance Measurements

Figure 3.1 shows the cumulative distribution function of the bootstrapping times
of the four servents at the university location. In this graph we set threshold
to 120 seconds. We analyzed the bootstrapping times with different values for
threshold and observed similar results. The graphs for the bootstrapping times
of servents on the DSL link are similar.

The most striking observation is that Gtk-Gnutella performs much worse
than Mutella and LimeWire. We conjecture that this is due to the fact that
Gtk-Gnutella does not differentiate between ultrapeers and normal peers. Also,
once it selects a particular GWebCache to contact for retrieving the host list, it
uses it for 8 consecutive updates or retrievals. In Section 5, we will see that cache
quality varies; thus, maintaining a poor choice of cache can affect performance.
Gnucleus also performs worse than Mutella and LimeWire, but better than Gtk-
Gnutella. This is probably because the GWebCache list and the different host
lists are not prioritized by age in the Gnucleus implementation.

Figure 3.1 shows the mean bootstrapping times for the three Linux-based
servents at the university location for different times of the day. LimeWire
and Mutella perform almost the same throughout the day. Gtk-Gnutella, which
does not differentiate between ultrapeers and normal peers performs similar to
LimeWire and Mutella around noon or late afternoon, when there are more nor-
mal peers online in the system. Early in the morning, with very few normal peers
around, Gtk-Gnutella shows a higher mean bootstrapping time. This highlights
the importance of ultrapeer awareness on the part of a Gnutella servent.

Although we started multiple instances of Gnutella servents on the same local
area network, none of our peers were able to discover each other in any one of
our experiments over two weeks. This highlights the lack of Internet location
awareness in the GWebCache system and in the local host list of the servents.

In the next section, we discuss the importance of neighbor peers (resulting
from the bootstrapping process) in the search performance of peers.

4 Importance of Neighbor Peers
A peer gets access to the peer-to-peer network through its directly connected
neighbors. The peers that these neighbors have access to, within an N -hop ra-
dius (usually N=7), comprise the neighborhood of the peer. All query messages
originated by the peer will be forwarded to this neighborhood. The number of



0 100 200 300 400
Number of GWebCaches

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 P

ol
ls

GWebCaches Found
Active GWebCaches Found

(a) Percentage of active caches

0 2000 4000 6000 8000 10000 12000
Update rate to all caches(hosts/hour)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fr
ac

tio
n 

of
 ti

m
e

Hosts at all caches
Unique hosts at each cache
Unique hosts at all caches

(b) CDF of hostlist update rate

Fig. 4. Cache and host list update rates in all GWebCaches

peers in this neighborhood, the types of files shared, the number of files shared
amongst all these peers will reflect on the search performance of a peer.

We studied the effect of neighbors on search performance of LimeWire,
Mutella and Gtk-Gnutella for the the 15 most popular search queries[2]. The
performance metric we considered is the time to get the first response, which is
the time-lag from when the servent is bootstrapped and issues the query, to the
time when it gets the first response. Figure 3 shows the CDF of this response
time for the top 15 queries issued by that servent during any experiment.

We found that there is usually a significant variation in the time to get the
initial response. Limewire performs the best, primarily because during bootstrap-
ping it prioritizes ultrapeers, who usually have access to a larger neighborhood.
Mutella and Gtk-Gnutella perform worse, and take more than 5 minutes to give
a result, in about 10% of the experiments.

We conclude that for a good search experience it is very important to have
a set of good neighbors that provide access to many peers, sharing many files.

5 GWebCache Performance
We analyzed the performance of the GWebCache system with reference to the
properties of a good distributed caching infrastructure (e.g., sufficient total sys-
tem capacity, good load balancing, reliability of cached items, and physical or
topological proximity of cached items served). With this goal in mind, we per-
formed a measurement study of the system at two levels, globally and locally.

5.1 Global GWebCache System Performance

We studied the global GWebCache system by periodically crawling all the caches.
We sent requests in the format shown in Table 1 to each active cache, according
to the information required. We collected multiple traces over a five month period
(Apr-Sept 2003), with the goal of answering the following questions.

1. How many GWebCaches does the system comprise of? How many of the
reported caches are active at any time?

We retrieved the cache list every 30 minutes, starting with a seed GWebCache
and crawled the caches returned, until we had polled all reachable caches. We



0 10 20 30 40 50 60 70 80 90 100
Mean update rate (updates/hour)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 G

W
eb

C
ac

he
s

Host list
Cache list

(a) CDF of update rates

0 5000 10000 15000 20000 25000 30000
Request rate (requests/hour)

0

0.2

0.4

0.6

0.8

1

Fr
ac

tio
n 

of
 G

W
eb

C
ac

he
s

Maximum rate
Mean rate

(b) CDF of request rates

Fig. 5. Update and Request rates at a single GWebCache

also determined the number of active GWebCaches by sending Gnutella ping
messages to the crawled list.

Although we found URLs of 1638 unique GWebCaches in 5 months, only
one-fourth of them (403) were active at any time, and at most 220 of them were
active during a single poll. This is quite a low number of reachable GWebCaches,
potentially serving about 100000 active hosts4 at any time on the Gnutella net-
work, only 10% of which accept incoming connections. This indicates that the
GWebCache system might get overloaded.

Figure 5.1 shows the CDF of the number of GWebCaches found during each
of our polls, and the number of caches which were actually active (i.e. responded
to out Gnutella-level ping messages). Most of the time, only about 160 caches
out of 280, or about 60% were active. This is because the GWebCache system
does not have any means of deleting an introduced cache. Since peers update
caches with URLs of caches they know of (probably even cached from previous
runs), without necessarily knowing whether they are alive or not, it is quite likely
that inactive caches are reported for a long time.

2. What are the access patterns for different requests (cache list, host list, and
updates) at different GWebCaches? What are the differences in access patterns
across different GWebCaches and in the whole system?

We retrieved the statistics file every hour from each active GWebCache. The
statistics file gives the number of update requests and total requests for cache
and host lists the GWebCache received within the last hour.

Figure 5.1 shows the CDF of the mean update rates to the cache and host
lists (determined by analyzing lists retrieved in consecutive polls) at a single
GWebCache. About 80% of the GWebCaches get cache list update rates of 10
per hour or less, while a few caches receive very high update rates, upto 40
updates per hour. About 60% GWebCaches receive host list update rates of less
than 1 per minute, whereas others receive update rates almost twice as much.
Similarly, Figure 5.1 shows the CDF of the mean and maximum total request
rates (as reported by the statistics files) at a single GWebCache. About 90%
of the GWebCaches receive an average request rate of 3000 per hour or less,

4 As shown by the Limewire[5] hostcount, during the period of our study.



whereas some caches receive extremely high loads of the order of 20000 requests
per hour on an average, with a maximum of 30000 requests per hour.

This points to the disparity in the type of GWebCaches in the system. Some
caches are very busy, with their lists evolving faster and receiving high request
rates, whereas others are relatively lightly loaded. The servents we studied have
some hardcoded GWebCaches, indicating that the request rates to these caches
could be very high. This suggests poor load balancing in the GWebCache system.

3. How does the host list at a single GWebCache and at all GWebCaches
evolve? What percentage of new hosts added to the GWebCaches are unique?

We retrieved the host list from the active GWebCaches every 5 minutes,
and studied its evolution at a particular cache and in the whole system. As
expected, the host list evolves much faster than the cache list in any GWebCache.
During a 15-day period in our study, we saw over 300000 unique IP address:port
combinations in all GWebCaches.

Figure 5.1 shows the CDF of the host update rates at all GWebCaches in the
system. The rightmost line shows the CDF of the host updates received at all
GWebCaches in the system. The dotted line shows the CDF of the host updates
with unique IP address:port combination at each cache. The leftmost curve with
the dashed line shows the CDF of the unique IP address:port combination seen
in the whole system. The average rate for unique IP address:port updates at
a particular GWebCache is lower than the actual update rate at that cache.
The update rate for IP address:port, unique throughout the system is much
lower, almost by a factor of 10. This suggests that the same hosts (presumably
ultrapeers) update the GWebCaches frequently with their IP addresses, leading
to a high replication rate of the same addresses in multiple caches.

4. In the host list returned by the GWebCaches, how many hosts are alive, how
many are accepting Gnutella-level connections, and how many are ultrapeers?

We sent Gnutella-level connect messages to the hosts in the host lists returned
by the GWebCaches. If a TCP connection was established, we determined that
the host was alive. If a Gnutella-level connection was established, we determined
that the host was accepting incoming connections. Out of the hosts that re-
sponded with the proper pong response, we determined whether the host was an
ultrapeer or not, using a field X-Ultrapeer: True/False in the response.

When we tried connecting to the hosts in the host lists retrieved, on an
average we found 50% peers online, 16% peers accepting incoming Gnutella-level
connections, and 14% ultrapeers. This shows that a surprisingly low number of
peers indicated in the GWebCaches are actually accepting incoming connections.
This could be a cause for the high bootstrapping times of servents in some
cases, where peers waste time trying to connect to off-line hosts returned by
the GWebCaches. The reliability of content served by the GWebCache system
is therefore questionable.

Our measurement methodology has several limitations. Since we polled the
GWebCaches starting with a seed GWebCache, we will miss caches in any dis-
connected components of the GWebCache system. Also, between the times we
retrieved the list and tried connecting to the peer, the peer could have gone



offline. We assume that the information returned by the GWebCaches during
our polls is valid (i.e., the GWebCaches are not misconfigured or misbehaving).

5.2 Experience of a local GWebCache
We set up a GWebCache locally by modifying a publicly available PHP script for
the GWebCache v0.7.5[9] to log request arrivals, and advertised it to the global
caching infrastructure. Our cache received update rates of about 7 per hour to
the host list and 4 per hour to the cache list, and request rates of about 15-20
per hour for the host list and 5-10 per hour for the cache list. Comparing these
rates to those of other GWebCaches seen earlier, we can see that our local cache
is used less frequently than the other GWebCaches.

6 Conclusions
In conclusion, our study highlights the importance of understanding the perfor-
mance of the bootstrapping function as an integral part of a peer-to-peer system.
We find that (1) Although servents implement a similar structure for the boot-
strapping algorithm, there is considerable variation among various implementa-
tions, that correlates to their bootstrapping performance. (2) The neighbors of
a peer play an important role in the search performance of the peer. Hence it
is important that the bootstrapping process results in good neighbors. (3) Even
though the GWebCache system is designed to operate as a truly distributed
caching system in keeping with the peer-to-peer system philosophy, it actually
operates more like a centralized infrastructure function, with some GWebCaches
handling a large volume of requests while others are idle. (4) The GWebCache
system is subject to significant misreporting of peer and GWebCache availabil-
ity due to stale data and absence of validity checks. We further aim to analyze
the effect of bootstrapping on the evolution of the Gnutella topology. These
studies will lead to our ultimate goal of improving the bootstrapping process in
unstructured peer-to-peer networks like Gnutella.

References

1. Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer file
sharing systems. In: Proceedings of Multimedia Computing and Networking. (2002)

2. Chu, J., Labonte, K., Levine, B.: Availability and locality measurements of peer-
to-peer file systems. In: Proceedings of ITCom: Scalability and TrafficControl in
IP Networks. (2002)

3. Ng, T.E., Chu, Y., Rao, S., Sripanidkulchai, K., Zhang, H.: Measurement-based
optimization techniques for bandwidth-demanding peer-to-peer systems. In: Pro-
ceedings of IEEE Infocom. (2003)

4. Oram, A.: Peer-To-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly
(2001)

5. : LimeWire. (http://www.limewire.com)
6. : Mutella. (http://mutella.sourceforge.net)
7. : Gtk-Gnutella. (http://gtk-gnutella.sourceforge.net)
8. : Gnucleus. (http://www.gnucleus.com)
9. : Gnutella Web Caching System. (http://www.gnucleus.com/gwebcache)

10. : Ultrapeer Specifications. (http://www.limewire.com/developer/Ultrapeers.html)
11. : Windump. (http://windump.polito.it)


