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Abstract. Simultaneous link failures are common in IP networks [1].
In this paper, we develop a technique for locating multiple failures in
Service Provider or Enterprise IP networks using active measurement.
We propose a two-phased approach that minimizes both the additional
traffic due to probe messages and the measurement infrastructure costs.
In the first phase, using elements from max-plus algebra theory, we show
that the optimal set of probes can be determined in polynomial time,
and we provide an algorithm to find this optimal set of probes. In the
second phase, given the optimal set of probes, we compute the location
of a minimal set of measurement points (beacons) that can generate
these probes. We show that the beacon placement problem is NP-hard
and propose a constant factor approximation algorithm for this problem.
We then apply our algorithms to existing ISP networks using topologies
inferred by the Rocketfuel tool [2]. We study in particular the difference
between the number of probes and beacons that are required for multiple
and single failure(s) diagnosis.

1 Introduction

Routing decisions and content distribution require proper connectivity and la-
tency information to direct traffic in an optimal fashion. The family of Internet
protocols collect and distribute only a limited amount of information on the
topology, connectivity and state of the network. Hence information of interest
for Internet Service Providers (ISPs), such as link delays or link failures, has to
be inferred from experimental measurements. The strategy to obtain network in-
formation through end-to-end measurements, known as Internet tomography, is
therefore of great interest to the research community [2–7]. The majority of work
on network tomography concentrates on either topology discovery (e.g. [2–4]),
or link delay monitoring (e.g. [5]). Some recent research showed that active mea-
surements can also be used to pinpoint failures in IP networks [6, 7].

In general, an active probing system consists of several measurement points.
Each measurement point, called a beacon, can send IP messages to all nodes
in the network. Each message sent from a beacon to a network node for the
purpose of monitoring is called a probe. To detect failures, the path that each

? Hung X. Nguyen’s work is financially supported by grant DICS 1830 of the Hasler
Foundation, Bern, Switzerland.



probe actually follows is compared with the path that the probe should follow
according to the current network topology information. If the two paths are
different, at least one link in the path determined by the current topology has
failed [7]. The authors in [6,7] study the problem of detecting and locating failures
under the assumption that at most one failure can happen at a time. Under this
assumption, a set of probes that traverse all links in the network is sufficient
to diagnose any such single failure. The objective in [6, 7] is to determine the
smallest set of beacons whose probes cover all links in the network. This problem
is proven to be NP-complete and approximation algorithms are given in [6] for
general topologies and in [7] for the current Internet topology. Once the beacons
are located, the smallest set of probes must still be determined, Bejerano et.
al. [6] show that this problem is also NP-complete.

Multiple link failures in IP networks happen much more frequently than one
might expect; [1] has recently reported that nearly 35% of link failures in the
Sprint backbone are multiple failures. This figure emphasizes the need for a
failure detection and location scheme that takes into account the existence of
multiple failures. Although the active probing scheme in [6] can work under the
presence of several link failures, it cannot detect and locate simultaneous link
failures. To our knowledge, there are no active monitoring techniques to date
that apply to simultaneous failures in IP networks.

In this work, we are interested in using active probing to detect and locate
link failures, under the assumption that several links can fail at one time. To
achieve this goal, a distributed set of beacons running a special software are
deployed at key sites across the entire network. A beacon only needs to send
probes to other nodes, and see what routes the probes take. Probe messages can
be implemented by tools like traceroute [8] or skitter [9]. Using probes to pinpoint
network faults has several advantages over monitoring routing protocol messages
(e.g., OSPF LSAs), or using SNMP traps to identify failed links. Firstly, probe-
based techniques are routing protocol agnostic; as a result, they can be used
with a wide range of protocols like OSPF, IS-IS, RIP, etc. Secondly, SNMP trap
messages may be unreliable because they use UDP as the transport protocol [6].
Note here that by using active probing, we may not be able to detect and locate
all failures (single or multiple) uniquely. This is especially true when we consider
multiple failures or when there are constraints on the set of nodes where beacons
can be deployed. Even a probing scheme of maximal detection capacity, that is,
a scheme that would use all the available beacon nodes and send probes from
these beacons to all nodes in the network would only detect and locate a subset
of all possible failures. Therefore, instead of looking for a probing scheme that
guarantees the detection and location of every failure of a given multiplicity, we
find a probing scheme that can detect and locate every failure that the probing
scheme with maximal detection capacity can detect and locate.

The cost of using probes for fault diagnosis comprises two components: the
additional traffic due to probe packets and the infrastructure cost for beacons.
Similarly to [6], we use a two-phased approach to minimize both the number of
probes and the number of beacons. Whereas, unlike [6], we first minimize the



number of probes and next the number of beacons. This enables us to use results
from max-plus algebra for the probe selection problem. Our main contributions
are as follows. (i) We show that, contrary to the single failure case [6] and
surprisingly so, the optimal set of probes for multiple failures can be found in
polynomial time. (ii) However, like the single failure case, we show that the
beacon placement problem in the multiple failure case is NP-hard. We provide
a constant factor approximation algorithm for the beacon placement problem,
which is very close to the best possible bound. (iii) We show that our algorithms
perform well on existing networks, and that there is a substantial difference
between the number of probes and beacons that are required for multiple failures
diagnosis and for single failure diagnosis.

The remainder of this paper is organized as follows. Section 2 introduces the
network model. Section 3 presents the probe selection problem, and Section 4
describes the beacon placement problem. Section 5 contains experiment studies
of our algorithms on existing ISP networks. Finally, we conclude the paper in
Section 6.

2 Network Model

We model the network as an undirected graph G(V, E), where the graph nodes,
V, denote the network elements and the edges, E , represent the communication
links connecting them. The number of nodes and edges is denoted by n = |V|
and e = |E|, respectively. Further, we use Ps,t to denote the path traversed by
an IP packet from a source node s to a destination node t. If there is no failure
in the network, an IP packet that is sent from a node s to a destination t will
follow the path Ps,t. When there is/are failure(s) of links on the path Ps,t, the
probe has to be rerouted around the failed link(s); Therefore the actual path
that the probe takes will be different from Ps,t. By comparing the actual path
that the probe from s to t takes and Ps,t, we can detect if any link in the path
Ps,t has failed or not. When a probe detects link failure(s) in its path, we say
that the probe has failed.

For a known topology G = (V, E) and a set of probes P, we can compute
which probes will fail when a network link goes down. We call the above relations
between network links and probes dependency relations. Dependency relations
of a network can be represented by a dependency matrix D of dimension e×np,
where e is the number of links and np = |P| is the number of probes in the
network. D is constructed as follows. Let Ps,t be the path followed by probe
pi in the normal situation without failures. Then the entry D(i, j) = 1 if the
path Ps,t contains the link ej and D(i, j) = 0 otherwise. A row of D therefore
corresponds to a probe (more precisely, to the path that the probe take), whereas
a column corresponds to a link.



3 Probe selection problem

Given a network G = (V, E) with a set of beacons VB , we denote by Pmax the set
of probes generated when each beacon sends probes to all nodes in the network.
Pmax represents an upper bound on the probing capability of the network. It is
the largest set of probes that can be sent to different destinations in the network.
Let Dmax denote the dependency matrix when the set of probes is Pmax.

Let S ⊆ E be a set of links. The set of failed probes triggered by the failure
of all links in S is made of all the failed probes that would be triggered by
the individual failure of each link in S. The failure of links in S can thus be
represented by a vector

−→
dS that is obtained by OR-ing all the column vectors

of Dmax representing individual links in S. Let us define the failure of a set
of network links as the failure of all links in that set. A probe pk is said to
distinguish the failures of two subsets E1, E2 ⊆ E if and only if the corresponding

kth entries in
−→
dE1 and

−→
dE2 are different, i.e., dE1(k) 6= dE2(k). The probe set P

is said to distinguish the failures of two subsets E1, E2 ⊆ E if and only if there
exists a probe p ∈ P such that p distinguishes E1, E2. We are interested in the
following optimization problem.

Definition 1. [PS problem] The probe selection problem is the determination
of the smallest subset P∗ of Pmax, such that any two subsets of E whose failures
are distinguished by Pmax are also distinguished by P∗.

Let D∗ be the dependency matrix for the system with the set of probes
P∗. In terms of dependency matrices, the probe selection problem amounts to
removing some rows of Dmax in order to obtain a new matrix D∗ that verifies
the following properties: (i) Dmax and D∗ have the same number of columns,
and (ii) whenever two vectors obtained by OR-ing up to e = |E| columns of
Dmax are different, the two vectors obtained by OR-ing the same columns in D∗

are also different.
The set of all binary vectors that represent single and multiple link failures

of a network has a special property that the OR-ing of any two vectors is also a
vector in the set. Any set of vectors with the above property is called a vector
span [10]. To solve the probe selection problem, we need to employ some special
properties of a vector span. We, therefore, first study in Section 3.1 properties
of general vector spans, and then show how these properties can be applied to
develop an algorithm for the probes selection problem in Section 3.2.

3.1 Mathematical basis

Let D = {−→di}1≤i≤h be a set of binary vectors of equal length, and let I =
{1, ..., h} be the index set of D. A vector span S can be defined on D as follows.

Definition 2. [Vector span] The vector span of D is

S =<D>= {
∨

i∈I
αi ·
−→
di | αi ∈ {0, 1},

−→
di ∈ D}



where “∨” denotes the binary max operation, and “·” denotes the usual multi-
plication operation. Vectors in D are called the generator vectors of S.

On the set D, we define the following independence property [10].

Definition 3. [IP] The set D = {−→di}i∈I is independent if for all i ∈ I and I2 ⊆
I\{i}, −→di /∈<{

−→
dj}j∈I2>.

Merging Definition 2 and Definition 3, we obtain the following definition.

Definition 4. [Basis] A basis B of a span S is a set of independent vectors of
S such that <B>= S.

Assume we have a span S that is generated by a set of generator vectors D
and has a basis B. The following lemma follows from Definition 4, and is needed
to solve the probe selection problem.

Lemma 1. If D is finite, then S has a unique basis B that is the subset of D
with smallest cardinality such that <B>= S.

Proof. Wagneur [10] proved that spans over general vector sets have a unique
basis, and hence this conclusion is also true for spans over binary vectors.

We prove the second assertion of the lemma by contradiction. Assume that
there is a smaller subset of D, namely B′, which satisfies <B′> = S, i.e., that
there exists at least one vector −→v of B that does not belong to B′. Let us denote

by IB the index set of B, and by I ′B the index set of B′. Let
−→
di, i ∈ IB be the

vectors of B. Since < B′ > = S, there exists a non empty subset I ′v ⊆ I ′B such
that: −→v =

∨

i∈I′v

−→
di. (1)

Furthermore, since B is also a basis of S, for each
−→
di ∈ B′ there is a nonempty

subset Ii ⊆ IB such that: −→
di =

∨

j∈Ii

−→
dj . (2)

Substituting (2) in (1) yields −→v =
∨
j∈Iv
−→
dj , where Iv =

⋃
i∈I′v Ii. Since B

is independent, the only case where this can happen is that there exists an index

k ∈ Iv such that: −→v =
−→
dk and

−→
dk ∨

−→
dl =

−→
dk for all l ∈ Iv\{k}. From (2), this

implies that there exists i ∈ I ′v such that
−→
di = −→v , which in turn indicates that−→v ∈ B′; a contradiction to the assumption −→v /∈ B′. ut

3.2 Probe selection algorithm

Denote by C(Dmax) and R(Dmax) the set of column vectors and row vectors of
the matrix Dmax. Let <C(Dmax)> be the span generated by column vectors,
called column span of Dmax, and let <R(Dmax)> be the span generated by row
vectors, called row span of Dmax. A vector in <C(Dmax)> represents subsets of



E whose failures generate the same set of failed probes. We call the set of all the
subsets of E whose failures are represented by the same vector a failure set. Two
different vectors in <C(Dmax)> represent two failure sets that are distinguished
by Pmax. Therefore, its cardinality | <C(Dmax)> | is the number of failure sets
that can be distinguished by Pmax. Similarly, let D∗ be the dependency matrix
of the system with the set of probes P∗. Let R(D∗) and C(D∗) be respectively
the set of column vectors and row vectors of D∗. | <C(D∗)> | is the number of
failure sets that can be distinguished by P∗.

Since P∗ is a subset of Pmax, the number of failure sets that can be distin-
guished by P∗ is always less than or equal to the number of failure sets that
can be distinguished by Pmax. Furthermore, any two subsets of E that can be
distinguished by P∗ can also be distinguished by Pmax. Thus, P∗ distinguishes
any two subsets of E that Pmax distinguishes if and only if the number of failure
sets that are distinguishable by P∗ is equal to the number of failure sets that are
distinguishable by Pmax. Consequently, the probe selection problem amounts to
find P∗ such that the number of failure sets that can be distinguished by P∗ and
by Pmax are equal. Since each failure set is respectively represented by a column
of D∗ or Dmax, the solution of the probe selection problem is the smallest subset
R(D∗) of R(Dmax) such that | < C(D∗)> | = | < C(Dmax)> |. Theorem 1
below gives the solution to the probe selection problem.

Theorem 1. The solution to the probe selection problem is the set of probes
whose corresponding rows in Dmax form the basis of <R(Dmax)>.

Proof. Let D∗ be a matrix whose rows are the basis of the span <R(Dmax)>,
i.e., such that <R(D∗)> = <R(Dmax)>. From [11], Theorem 1.2.3, the row
span and column span of any binary matrix have the same cardinality. Therefore,
| < C(D∗) > | = | < R(D∗) > | = | < R(Dmax) > | = | < C(Dmax) > |,
which yields that R(D∗) is a solution for the probe selection problem. Now,
Lemmas 1 yields that R(D∗) is the smallest subset of <R(Dmax)> such that
| <R(D∗)> | = | <R(Dmax)> |. Therefore, R(D∗) is the unique solution to
the probe selection problem. ut

We now give an algorithm, which we call the the Probe Selection (PS) algo-
rithm, that finds the basis of <R(Dmax)>. The weight of a vector is defined as
the number of 1 entries in that vector. Let us denote the elements of R(Dmax)
by {−→r 1,

−→r 2, ...,
−→rnPmax }, where nPmax = |Pmax|. The PS algorithm constructs

the set R(D∗) as follows.
The PS algorithm

Step 1: Initialize R(D∗) to an empty set, and set an integer i to 1;
Step 2: Sort and re-index the vectors in R(Dmax) in increasing weight order.
Step 3: Until R(Dmax) 6= ∅ repeat the loop: remove −→r i from R(Dmax); increase
i by 1; if −→r i /∈ <R(D∗)>, then append −→r i to R(D∗).
Step 4: return R(D∗).

Theorem 2. The set of vectors R(D∗) returned by the PS algorithm is the basis
of <R(Dmax)>.



Proof. First, we prove that the vectors in R(D∗) are independent. Let us re-
index the vectors −→r i in R(D∗) in the order of inclusion to R(D∗) by the PS
algorithm. Step 3 of the PS algorithm prevents any −→r i ∈ R(D∗) to be obtained
by OR-ing any combination of vectors in {−→r i−1,

−→r i−2, ...,
−→r 1}. Furthermore, −→r i

is not an OR-ing of any combination of vectors in {−→r i+1, ...,
−→r |R(D∗)|}. Indeed,

if this was true, then the weight of −→r i would be larger than the weight of these
vectors, which is impossible because by construction the weight of −→r i is smaller
than or equal to the weight of −→r j for all j > i. From the above results, any vector−→r i ∈ R(D∗) is not an OR-ing of any combination of other vectors in R(D∗),
hence the set R(D∗) is independent.

Second, we prove that <R(D∗)> = <R(Dmax)>. Indeed, by construction,
any vector in the set {−→r 1, ...,

−→rnPmax } either belongs to R(D∗), or is an OR-ing
of some combinations of vectors in R(D∗). ut

Note here that for any two nodes s and t, if Pt,s and Ps,t contain the same
links, then the two row vectors that represent the probe from s to t, and the
probe from t to s are equal. Furthermore, the vector that represents the path
Pt,s can only be generated by probes from at most two beacons (at s and t).

4 Beacon placement problem

We have shown in Section 3 that given a set of beacons VB , there is an optimal set
of row vectors R(D∗) of the dependency matrix that the beacons need to generate
for multiple failure diagnosis. Once the optimal set of row vectors R(D∗) is
determined, to generate these vectors we may not need all the available beacons.
We are now interested in finding the minimal number of beacons needed to
generate the probes corresponding to the vectors in R(D∗); this is the beacon
placement problem defined as follows.

Definition 5. [BP problem] Given a network G = (V, E), with VB possible
positions where we can place the beacons, the beacon placement ( BP) problem
is the determination of the smallest subset V∗ of VB such that any two sets of
links E1 and E2 that are distinguished by probes of VB are also distinguished by
probes of V∗.

We solve the beacon placement problem as follows. We first assume that all
nodes in VB are used as beacons and find the optimal set of row vectors R(D∗)
for this setting using the PS algorithm described in Section 3. We then look for
the smallest subset V∗ of VB such that the set of vectors corresponding to probes
from nodes in V∗ contains R(D∗).

4.1 Hardness of the beacon placement problem

Theorem 3. The beacon placement problem is NP-hard.

Proof. The proof for this theorem is straightforward when we realize that in a
network that uses shortest path routing with all links have equal weight, and with
VB = V, the BP problem reduces to the well-known vertex cover problem [12].

ut



4.2 A greedy algorithm for the beacon placement problem

We now present a greedy beacon placement (BP) algorithm, which constructs
V∗, given R(D∗). Let Vapprox be the set of beacons returned by the BP algorithm,
and let A and C be two subsets of R(D∗). For a beacon u, let us denote by R(u)
the set of all vectors representing probes that can be generated from u. The steps
of the BP algorithm are as follows.

The BP algorithm
Step 1: Initialize Vapprox and A to empty sets, C to R(D∗) .
Step 2: Until C 6= ∅ repeat the loop: pick a vector −→r ∈ C and append −→r to A; if
for all nodes u in VB , −→r ∈ R(u), then include u in Vapprox and remove all the
vectors in R(u) from C.
Step 3: Return Vapprox.

The BP algorithm is said to have an approximation ratio ρ(n) if for every
graph G with n nodes, |Vapprox|/|V∗| ≤ ρ(n).

Theorem 4. The BP algorithm has a constant approximation factor of 2.

Proof. From Step 2 of the algorithm, for each vector in A, we add one or two
nodes (as explained at the end of Section 3.2, there is a maximum of two beacons
that can send probes taking the same path and hence are represented by the same
vector) to Vapprox, hence |Vapprox| ≤ 2 · |A| (*).

Any solution must include, for every vector in A, at least one beacon that can
generate it. Furthermore, by construction, no two vectors in A can be generated
by the same beacon. So the optimal beacon selection V∗ is of size |V∗| ≥ |A|
(**).

Combining (*) and (**), we get |Vapprox| ≤ 2 · |V∗|. ut

5 Experimental study

We apply our algorithms on ISP topologies that are inferred by the Rocketfuel
tool [2]. We investigate the number of beacons and the number of probes required
for multiple failures diagnosis by our algorithms to that needed for single failure
diagnosis by algorithms in [6] on three backbone ISP topologies with sizes ranging
from small (Exodus: 80 nodes and 147 links) to medium (Telstra: 115 nodes and
153 links), and large (Tiscali: 164 nodes and 328 links). For the sake of simplicity,
we assume that all the ISPs use shortest path routing to route traffic.

Recall that n is the number of nodes in the network. In our experiments, the
number of nodes that be can be used as beacons (beacon candidates) |VB | is
varied from n/100 to n. We select the beacon candidates randomly by picking
a random permutation of the set of nodes in the network. After building the
dependency matrix as in Section 3, we run the PS algorithm to find the optimal
set of probes and then the BP algorithm to find the set of beacons that are
required to generate these probes. We also run the algorithms described in [6] to
find the set of beacons and the set of probes for single fault diagnosis. For space
constraints, we only present in this paper the results for the Tiscali topology.
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Fig. 1. The number of beacons for single
and multiple failure(s) diagnosis.
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Fig. 2. The number of probes for single
and multiple failure(s) diagnosis.

Similar results are obtained for the two other topologies. In Fig. 1, we plot the
percentage of nodes that are actually used as beacons for multiple failures diag-
nosis and single failure diagnosis. We also plot the percentage of useful probes
returned by the PS algorithm and the single fault algorithm [6] in Fig. 2.

The number of useful beacons |V∗| for multiple failures diagnosis is notably
smaller than the number of possible beacon nodes for all sizes of the set |VB | of
beacon candidates. This is especially true when the number of beacon candidates
is large. We also observe a fast increase in the number of beacons useful for
multiple failure diagnosis when the number of beacon candidates increases. This
can be explained by the increase in number of multiple failures that can be
distinguished by the beacons. However, for single fault diagnosis, the number of
beacons increases very slowly, as probes from even a small set of beacons are
enough to detect and locate all single failures.

We observe that for all sizes of the set of beacon candidates, the number of
useful probes |P∗| is less than a half of the total number of probes |Pmax| that
can be sent in the network. The percentage of useful probes also decreases rapidly
as the number of beacons increases for both multiple and single failure(s) cases.
This observation can be explained for both the single and multiple failure cases as
follows. In the single failure case, the number of useful probes remains relatively
unchanged (approximately equal to the number of links) for various numbers of
beacon candidates. Hence, when the total number of probes that can be sent in
the network increases with the number of beacon candidates, the percentage of
useful probes decreases. In the multiple fault case, the number of useful probes
decreases as the number of beacon candidates increases, because these additional
beacon candidates make it possible to replace a number of different probes by a
single probe that distinguishes the same failure sets. There remains however a
large difference in the number of probes for multiple and single failure diagnosis
in Fig. 2.



6 Conclusions

In this paper, we have investigated the use of active probing for link failure
diagnosis in ISP networks. We have shown that for multiple failures diagnosis
the optimal set of probes can be found in polynomial time. On the contrary, the
problem of optimizing the number of beacons for multiple failures diagnosis is
NP-hard. We have studied the performance of our algorithms on existing ISP
topologies. Our studies show that there is a great reduction in the number of
probes and beacons that are available and the number of probes and beacons
that are actually useful for multiple failures diagnosis. However, there are also
remarkable differences in the number of probe and the number of beacons for
single and multiple fault diagnosis in all analyzed ISP topologies. These figures
can be used by ISP operators to trade off accuracy of diagnosis for probing costs.

We are working on various extensions of the present work. We obtained in
this paper the optimal set of useful probes. The next step is to determine the
failure detection capacity of the optimal set of probes, that is, to find the number
of failures of a given multiplicity (double, triple, etc.) that can be detected and
located by this probing scheme. We are also investigating how an active probing
scheme can cope with missing and false probes. The challenge is to improve the
robustness of the probing scheme to probe errors without much increasing in the
probing costs.
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