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Abstract. By now it is well known that the distribution of node degrees
in the graph induced by the peering arrangements between Autonomous
Systems (ASs) exhibits power laws. The most appealing mathematical
model that attempts to explain the power-law degree distribution was
suggested by Barabási and Albert (the BA model). We introduce two new
models that are extensions to the BA model: the “Incremental Edge Ad-
dition” (InEd) model, and the “Super-Linear Preferential Attachment”
(SLiP) model. We prove that both our models are more successful in
matching the power-law exponent, in producing leaves , and in producing
a large dense core. Beyond mathematical analysis, we have also imple-
mented our models as a synthetic network generator we call Tang (Tel
Aviv Network Generator). Experimentation with Tang shows that the
networks it produces are more realistic than those generated by other
network generators.

1 Introduction

1.1 Background and Motivation

The connectivity of the Internet crucially depends on the relationships between
thousands of Autonomous Systems (ASes) that exchange routing information
using the Border Gateway Protocol (BGP). These relationships can be modeled
as a graph, called the AS-graph, in which the vertices model the ASes, and the
edges model the peering arrangements between the ASes.

Significant progress has been made in the study of the AS-graph’s topology
over the last few years. In particular, it is now known that the distribution of
vertex degrees (i.e., the number of peers that an AS has) is heavy-tailed and
obeys so-called power-laws [SFFF03]: The fraction of vertices with degree k is
proportional to k−γ for some fixed constant γ. This phenomenon cannot be
explained by traditional random network models such as the Erdős-Renyi model
[ER60].



1.2 Related Work

Barabási and Albert [BA99] introduced a very appealing mathematical model
to explain the power-law degree distribution (the BA model). The BA model is
based on two mechanisms: (i) networks grow incrementally, by the adding new
vertices, and (ii) new vertices attach preferentially to vertices that are already
well connected. They showed, analytically, that these two mechanisms suffice to
produce networks that are governed by a power-law.

While the pure BA model [BA99] is extremely elegant, it does not accurately
model the Internet’s topology in several important aspects:

– The BA model does not produce any leaves (vertices with degree 1), whereas
in the real AS-graph some 30% of the vertices are leaves.

– The BA model predicts a power law distribution with a parameter γ = 3,
whereas the real AS-graph has a power law with γ ≈ 2.11. This is actu-
ally a significant discrepancy: For instance, the most connected ASes in the
AS graph have 500–2500 neighbors, while the BA model predicts maximal
degrees which are roughly 10 times smaller on networks with comparable
sizes.

– It is known that the Internet has a surprisingly large dense core [SARK02],
[SW03a]: The AS graph has a core of 43 ASes, with an edge density %4 of
over 70%. However, as recently shown by Sagie and Wool [SW03b], the BA
model is fundamentally unable to produce synthetic topologies with a dense
core larger than ` = 6 with %(`) ≥ 70%.

These discrepancies, and especially the fact that the pure BA model produces
an incorrect power law parameter γ = 3, were observed before. Barabási and
Albert themselves refined their model in [AB00] to allow adding links to existing
edges, and to allow rewiring existing links. However, as argued by [CCG+02], the
idea of link-rewiring seems inappropriate for the AS graph, and [BT02] showed
that the rewiring probability needs to be as high as 50% for the [AB00] model
to produce values of γ which are closer to reality.

The work closest to ours is that of Bu and Towsley [BT02]. The authors
attempted to produce a BA-like model that will (i) produce a more realistic
power law parameter γ, while (ii) still remaining amenable to mathematical
analysis. The model they suggest meets these goals, however, we claim that it
is still not satisfactory. Their model is rather unnatural, and involves a crucial
technical parameter that does not correspond to any intuitive feature of the
development of the AS graph. The authors themselves admit that the main
reason for considering such a counter-intuitive model is that it can be analyzed
mathematically—and that other, more natural, extensions, greatly increase the
difficulty of analysis.

4 The density %(`) of a subgraph with ` vertices is the fraction of the `(`−1)/2 possible
edges that exist in the subgraph.



1.3 Contributions

Our main contribution is a new extension to the BA model, that has the following
features:

– It addresses the discrepancies of the BA model with respect to (i) the lack of
leaves, (ii) value of the power law parameter γ, and (iii) the lack of a dense
core.

– It is natural and intuitive, and follows documented and well understood
phenomena of the Internet’s growth.

– We are able to analyze our model, and rigorously prove many of its proper-
ties.

Our model hinges on two ideas, which we call “Incremental Edge Addition”
(InEd) and “Super-Linear Preferential Attachment” (SLiP)

Beyond mathematical analysis, we also implemented our model as a synthetic
network generator we call Tang (Tel Aviv Network Generator). Experimentation
with Tang shows that the networks it produces are more realistic than those
generated by other network generators such as BRITE [MLMB01], and Inet
[WJ02]. Tang is freely available from the authors [Woo04].

Organization: In the next section we give an overview of the BA model. In
Section 3 we introduce the Incremental Edge Addition (InEd) model. Section 4
presents the Super-Linear Preferential Attachment (SLiP) model. In Section 5
we analyze the expected number of leaves in a model combined from the InEd
model and the SLiP model. Section 6 describes Tang and the results of our
simulations. We conclude with Section 7.

We omit most of the proofs in this space-limited extended abstract.

2 Overview of the BA Model

The BA model works as follows. (i) Start with a small number (m0) of arbitrarily
connected vertices. (ii) At every time step, add a new vertex with m(≤ m0) edges
that connect the new vertex to m different vertices already present in the system.
(iii) The new vertex picks its m neighbors randomly, where an existing vertex i,
with degree ki, is chosen with probability p(ki) = ki/

∑
j kj .

Since every time step introduces 1 vertex and m edges, it is clear that the
average degree of the resulting network is ≈ 2m.

Observe that new edges are added in batches of m. This is the reason why the
pure BA model never produces leaves, [SW03a], and the basis for the model’s
inability to produce a dense core. Furthermore, empirical evidence [CCG+02]
shows that the vast majority of new ASes are born with a degree of 1, and not
2 or 3 (which is necessary to reach the AS graph’s average degree of ≈ 4.33).

3 The Incremental Edge Addition (InEd) Model

Our first model modifies the way in which edges are introduced into the BA
model. In this section we give the model’s definition, analyze its degree distribu-



tion and prove that it is close to a power-law distribution. We also analyze the
expected number of leaves.

3.1 Model Definition

The basic setup in the InEd model is the same as in the BA model: We start
with m0 nodes. At each time step we add a new node, and m edges. However,
the edges are added in the following way: one edge connects the new node to
nodes that are already present. An existing vertex i, with degree ki, is chosen
with probability p(ki) = ki/

∑
j kj . (That is, p(ki) is linear in ki, as in the

BA model). The remaining m− 1 edges connect existing nodes. One endpoint of
each edge is uniformly chosen, and the other endpoint is connected preferentially,
choosing a node i with probability p(ki) as defined above.

Note that this is reminiscent of the [AB00] model. In that model nodes are
all added with degree m, and additionally, nodes that are chosen uniformly at
random grow more edges with some fixed probability p. In our model, all nodes
start with degree 1, as found empirically by [CCG+02]. Moreover, we avoid the
extra parameter p.

Our analysis shows that the InEd model produces a remarkably accurate
number of leaves, and a power-law degree distribution, albeit with a parameter
γ which is still too high. The predicted maximal degree improves as well: it is
about twice that predicted by the BA model.

3.2 Power Law Analysis

We show that the InEd model produces a near-power-law degree distribution. We
analyze our model using the “mean field” methods in Barabási-Albert [BA99].
As in [BA99], we assume that ki changes in a continuous manner, so ki can be
interpreted as the average degree of node i, and the probability p(ki) can be
interpreted as the rate at which ki changes.

Theorem 3.1. In the InEd model, Pr [ki(t) = k] ∝ (k + 2m− 2)−3.

We prove the theorem using the following lemma.

Lemma 3.2. Let ti be the time at which node i was added to the system. Then

ki(t) = (2m− 1)
√

t
ti
− 2(m− 1).

Proof: At time t the sum of degrees is 2mt. The change in an existing node’s
degree is influenced by the probability of it being chosen preferentially, and by
the probability that it is selected uniformly. Thus we get the following differential
equation:

∂ki
∂t

= m · ki
2mt

+
m− 1

t
=

ki
2t

+
m− 1

t
.

The initial condition for node i is k(ti) = 1. Solving for ki(t) proves the Lemma.



Corollary 3.3. The expected maximal degree in the InEd model is

(2m− 1)(
√
t− 1) + 1.

Proof: By setting ti = 1 in Lemma 3.2 we get the result.

Proof of Theorem 3.1: Using Lemma 3.2 the probability that a node has a
degree ki(t) smaller than k, Pr[ki(t) < k], can be written as

Pr [ki(t) < k] = Pr

[
(2m− 1)

√
t

ti
− 2(m− 1) < k

]
= Pr

[
ti >

(
2m− 1

k + 2m− 2

)2

t

]

= 1− Pr

[
ti ≤

(
2m− 1

k + 2m− 2

)2

t

]
= 1−

(
2m− 1

k + 2m− 2

)2
t

t+m0

Thus

Pr [ki(t) = k] =
∂

∂k

[
1−

(
2m− 1

k + 2m− 2

)2
t

t+m0

]
∝ (k + 2m− 2)−3

Theorem 3.1 shows that the InEd model produces a near-power-law distri-
bution, but the coefficient γ is still ≈ 3.

3.3 Analysis of the Expected Number of Leaves

The pure BA model is unable to produce any leaves: each new node has degree
m. In contrast, the InEd model produces a realistic number of leaves. Note that
nodes in the InEd model start as leaves. We now compute the probability that
a node that entered at time ti will remain a leaf at time n, and compute the
expected number of leaves in the system at time n.

Let vi be the node that entered at time ti, and let degn(vi) be the degree of
vi after time n.

Theorem 3.4. In the InEd model, E[#leaves] ≤ n
m+1/2 .

Computer simulations show that this upper bound is very accurate: for n =
10, 000, m = 2, the bound of Theorem 3.4 is 40% leaves, and our simulation
show that about 3,995 leaves are generated.

4 The Super-Linear Preferential Attachment (SLiP)
Model

In this model, we generalize the BA model in a different way: We assume that
the utility of joining a highly-connected node is super-linear in its degree. This
assumption agrees with the observations of [CCG+02]. As in Section 3, we give
the model’s definition, analyze its degree distribution and prove that it is close
to power-law distribution.



4.1 Model Definition

In the SLiP model, at each time step we add a new node, and m edges, in the
following way: All m edges connect the new node to nodes already present in
the network (as in the pure BA model). However, an existing node i is chosen
as an endpoint with probability

p(ki) =
k1+ε
i∑

j

k1+ε
j

,

for some ε > 0. Thus the preferential attachment is super linear. Note that
setting ε = 0 gives the pure BA model.

4.2 Power Law Analysis

As in the analysis of the InEd model, we show that the SLiP model produces a
near-power-law distribution. As before we assume that ki changes in a continuous
manner, so the probability p(ki) can be interpreted as the rate at which ki
changes.

A main technical difficulty in the SLiP model is that the denominator
∑
k1+ε
j

is not fixed. Therefore, we start by bounding
∑
j

k1+ε
j .

Lemma 4.1. For any network over t nodes and mt edges, and any ε > 0,

t(2m)1+ε ≤
∑

j

k1+ε
j ≤ (2mt)1+ε

Corollary 4.2.
∑
j k

1+ε
j ≈ (2m)1+εt1+ε/2

Lemma 4.3. In the SLiP model, ki(t) = m
/(

1− 1

2εt
ε/2
i

+ 1
2εtε/2

)1/ε

Corollary 4.4. The expected maximal degree in the SLiP model is ≤ 2m
√
t

Corollary 4.4 shows that the SLiP model, on its own, achieves essentialy
the same (expected) maximal degree that is achieved by the InEd model (recall
Corollary 3.3). This maximal degree is about twice higher than that of the pure
BA model.

Theorem 4.5. In the SLiP model Pr[ki(t) < k] = 1−
[

(1/t+m0)ε/2

2ε+ 1

tε/2
−( 2m

k )
ε

]2/ε

Note that the SLiP model does not produce any leaves since nodes are added
with degree m.



5 The Combined InEd/SLiP Model

Since the InEd and SLiP models modify the BA model in different ways, we
can easily combine them into a single model, which would enjoy the benefits
offered by each model. Unfortunately, we are unable to show, analytically, that
the combined model has a power-law behavior—the differential equations we
obtain are too difficult.

5.1 Analysis of the Expected Number of Leaves

In contrast, we are able to analyze the expected number of leaves in the combined
model. Theorem 5.1 shows that the bound of Theorem 3.4 almost holds for the
combined model as well, up to a small constant factor.

As in the InEd Model, let vi be the node that entered at time ti, and let
degn(vi) be the degree of vi after time n.

Theorem 5.1. In the SLiP model, E[#leaves] ≤ n
m .

6 Implementation

We implemented the combined SLiP/InEd model as a synthetic network gen-
erator we call Tang (Tel Aviv Network Generator). Tang accepts the desired
number of vertices (n), the average degree (d), and the utility function’s expo-
nent (a = 1 + ε), as arguments. The average degree is allowed to be fractional.
Setting the exponent to 1 (i.e., ε = 0) causes Tang to use the linear InEd model.
Tang is also able to produce pure BA-model networks.

We used Tang to generate synthetic topologies with Internet-like parameters.
We used n = 15, 000 and d = 4.33, which match the values reported in [SW03a].
We generated 10 random topologies for each setting of ε = 0, 0.1, 0.2, 0.3, and
10 random topologies for the pure BA model. We compared these networks to
the AS-graph snapshot collected by [SW03a].

6.1 Power Law Analysis

Fig. 1 shows the Complementary Cumulative Density Function (CCDF)5 of the
degree distribution in the Internet’s AS-graph and in the Tang-generated syn-
thetic networks. For the synthetic networks, each CCDF curve is the average
taken over the 10 randomly generated networks.

The figure clearly shows that the AS graph obeys a power-law degree distribu-
tion, with a CCDF exponent of η = 1.17. The figure also shows the shortcomings
of the pure BA model: (a) we can see that CCDF (2) = CCDF (1) = 1, which
indicates that BA networks do not contain any leaves; and (b) it is clear that
slope of the BA model’s CCDF is too steep: the power-law exponent is η = 1.96.

5 For any distribution of degrees, CCDF (k) = Pr[degn(v) ≥ k]. Note that if
Pr[degn(v) = k] ∝ k−γ then CCDF (k) ∝ k−η = k1−γ .
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Fig. 1. The CCDF of the degree distribution for the Internet’s AS-graph, the combined
SLiP/InEd networks with ε = 0, . . . , 0.3, and the pure BA model (log-log scale).

The figure shows that the InEd model (ε = 0) brings the number of leaves in
the network to a fairly realistic level: 37.5% leaves in the InEd model versus 30%
in the AS-graph. Note that Theorem 3.4 predicts that when the average degree
is 4.33 (i.e., m = 2.165) the number of leaves will be 1/(2.165 + 0.5) = 37.52%:
a very accurate estimate. We can see that the power law produced by the InEd
model is slightly better than that of the BA model (η = 1.83), but still too steep.

The figure shows that the SLiP model shifts the CCDF curve closer to the
Internet curve as ε grows to 0.1 and 0.2. However, when ε reaches 0.3 the CCDF
overshoots the Internet curve in the high-degree area (above 800 neighbors), and
undershoots the Internet curve in the mid range (10-800 neighbors). This “S”
shape becomes even more pronounced with ε = 0.4 or higher (curves omitted).
Intuitively, the SLiP model makes the high-degree nodes more attractive at the
expense of low- and mid-degree nodes, and setting ε too high amplifies this
behavior beyond what is observed in reality. We can see that the networks with
the most realistic degree distribution are generated with ε = 0.2, in which case
the power-law exponent is η = 1.13.

6.2 Dense Core Analysis

In order to find the Dense Core in the networks, we used the Dense k-Subgraph
(DkS) algorithms of [FKP01,SW03a]. These algorithms search for the densest
cluster (sub-graph) of a prescribed size `. Fig. 2 shows the edge density of the
densest cluster found by the algorithms, as a function of `. For the synthetic
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Fig. 2. The edge density %(`) of the densest `-cluster, as a function of the cluster size `.

networks, each point on the curves is the average over 10 random networks
generated with the same parameters.

The figure clearly shows that for Internet-like parameters, the pure BA model
does not produce significant a dense core: This is not surprising in view of the
results of Sagie and Wool [SW03b], who proved that the BA model is fundamen-
tally unable to produce synthetic topologies with a dense core larger than ` = 6
with %(`) ≥ 70%. In contrast, the real AS graph has a dense core of ` = 43 ASes
with %(`) ≥ 70%.

The figure does show that the Tang-generated networks have dense cores
that are closer to reality than those produced by the pure BA model: we see
that a density of %(`) ≥ 70% is achieved around ` ∈ [17, 20], and that higher
values of ε produce larger dense cores. In fact, for any value of `, the density %(`)
of the Tang-generated networks is at least twice the density of the BA networks.
Thus, as far as dense clusters go, Tang is significantly closer to reality than the
BA model.

However, the figure also shows that dense cores of Tang networks still fall
short: they are roughly half as dense as their counterparts in the AS graph.
Furthermore, increasing ε only produces a slow increase in the density of the
core, and we already saw in Section 6.1 that increasing ε beyond 0.2 distorts
the degree distribution away from a power law. Thus, we conclude that the
SLiP/InEd model is a significant improvement in terms of the dense core—but
it is not sufficient to produce realistic cores.



7 Conclusions and Future Work

We have shown that our extensions to the BA model, the InEd and SLiP models,
significantly improve upon the pure BA model in terms of matching the power-
law parameter, producing leaves, and producing a large dense core. Our models
are amenable to mathematical analysis, and are implemented as a freely available
network generator.

However, more work is possible: The current model still does not produce
a satisfactory dense core. It seems that new ideas are necessary to create a
model that can (i) produce larger dense cores, (ii) maintain a power law degree
distribution, and (iii) remain simple enough to analyze.
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