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Abstract.  Based on measurements in live GPRS networks, the degree of self-
similarity for the aggregated WAP and WEB traffic is investigated by utilizing 
six well established Hurst parameter estimators. We show that in particular 
WAP traffic is long-range dependent and its scaling for time scales below the 
average page duration is not second order self similar. WAP over UDP can also 
determine the overall traffic scaling, if it is the majority traffic. Finally we ob-
serve that the minor traffic exhibits a larger Hurst value than the aggregated 
traffic, in case of WAP as well as in case of WEB traffic. 

1. Introduction 

Based on live GPRS traffic measurements, we investigate the packet arrival proc-
ess and the data volume arrival process of WAP and WEB traffic on statistical self-
similarity. 

Many studies have been looking at various network types and found evidence for 
self-similarity (e.g., [1],[2],[3]). This property is regarded as an invariant of network 
traffic and has serious performance implications. In the case of self-similar traffic the 
applied statistics for performance analysis and network dimensioning are different 
from those when applied to statistically more simple traffic, which can be modeled 
with Markovian processes ([4],[5]). For instance the queue tail behavior is heavy-
tailed in the case of self-similar input traffic [6]. This leads to heavy-tailed packet de-
lay distributions, which can influence the TCP round-trip time estimations. Further-
more, the traffic does not smooth out in the case of aggregation, leading to congestion 
situations and packet-drops due to the burstiness of the traffic. Consequently, it is im-
portant to understand the self-similar nature of the traffic in a network in order to ap-
ply the right statistical methods for performance investigations and network dimen-
sioning. In previous studies the reason for self-similarity has been identified as the 
heavy-tailedness of many statistical properties of Internet traffic, on the user and ap-
plication level. In [7] and [18] the authors showed that heavy-tailed sessions and file 
size lengths lead to self-similarity for large aggregation scales (long-range depend-
ency). The authors in [8] and [14] have furthermore shown that self-similarity (in par-
ticular the multiscaling) behavior at small timescales (e.g., smaller than the average 
round-trip time) is due to protocol interactions of TCP. 

But GPRS traffic and in general cellular access network traffic has not yet been in-
vestigated on its self-similarity property. GPRS is not merely a new access technol-
ogy, it also introduces novel applications such as WAP and MMS, and provides Inter-



net access in a mobile or nomadic usage environment. This yields a special traffic 
composition, different from wireline Internet traffic. We have investigated GPRS net-
works with more than 60% of the traffic volume consisting of UDP traffic. This is in 
sharp contrast to the usual 80% of TCP traffic in the fixed Internet (cf. [9] for earlier 
figures on GPRS traffic). Additionally, WAP and MMS file sizes are in general much 
shorter than WEB and FTP file sizes [17]. For these reasons we counter-check the 
property of self-similarity in GPRS. Based on our results, which show that GPRS and 
in particular WAP traffic, is asymptotically second order self-similar (long-range de-
pendent), we propose for further research to study the scaling nature of GPRS traffic 
and to explore in particular the reasons for this for WAP traffic. 

The remainder of the paper is structured as follows. Firstly, we give a brief over-
view of self-similarity together with the commonly used methods to test self-
similarity. Next, we describe our measurement set-up and the investigated traces. In 
our main section we present the results of the Hurst parameter estimation methods to 
assess the degree of self-similarity in GPRS. Finally, in the concluding section we list 
open issues and future work items.  

2. Self-Similarity  

Self-similarity, in a strict sense, means that the statistical properties (e.g., all mo-
ments) of a stochastic process do not change for all aggregation levels of the stochas-
tic process. That is, the stochastic process “looks the same” if one zooms in time “in 
and out” in the process. Let ...) ,2 ,1 ,0:( == tXX t  be a covariance-stationary stochas-
tic process, with constant and finite mean and finite variance and autocorrelation 
function )(kρ , which only depends on k. Further, let ...) ,3 ,2 ,1:( )()( == kXX mkm  be a 
new time series generated by averaging the original time series X over non-
overlapping blocks of size m. That is, for each ... ,3 ,2 ,1=m  the series is given by 

... ,3 ,2 ,1   ),...(/1 1
)( =++= +− kXXmX kmmkm

mk  and )()( kmρ  the corresponding autocor-
relation function. The stochastic process ...) ,2 ,1 ,0:( == tXX t  is then called exactly 
second-order self-similar with self-similarity parameter 2/1 ßH −= , if the autocorre-

lation functions )()( kmρ  of the processes )(mX are all equal to the autocorrelation 

function )(kρ of the original process X . That is: ... ,3 ,2 ,1   ),()()( == kkkm ρρ  for all 
... ,3 ,2 ,1=m  X is called asymptotically second-order self-similar with self-

similarity parameter 2/1 ßH −=  if the correlation structure of the aggregated time 
series )(mX is indistinguishable from the correlation structure of the original time se-
ries X as ∞→m . That is, the above holds asymptotically for large aggregation lev-
els. 

H expresses the degree of self-similarity; large values indicate stronger self-
similarity. If H ∈ (0.5,1) X is called long-range dependent (LRD). Both, exactly and 
asymptotically second-order self-similar traffic can include long-range dependency, 
however, as it is often the used case, we will use long-range dependent for asymptoti-
cally second-order self-similar traffic. 



Asymptotical second-order self-similar processes have a few interesting character-
istics. For instance, the autocorrelation function of an LRD process is decaying hy-
perbolically. That is (with β the same as in H, above):  

( ) βρ −

∞→
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k
~lim   (0 < β < 1). 

Also the variance of the aggregated time series is very slowly decaying. That is:  
_

( )[ ] β−mXVar m ~ (0 < β < 1). 
Another property is that the power spectrum is singular as the frequency is ap-

proaching 0. That is: 
)1(1~)( β−

∞→
wwS

w  (0 < β < 1). 

3. Estimation Methods for Self-Similarity 

Various methods for estimating the Hurst parameter H exist for deducing self-
similarity or long-range dependency [15]. The estimation methods can be grouped 
into time-based and frequency-based methods. We will briefly provide an overview of 
the methods used to estimate the value of the Hurst parameter. 
 
The first four methods are time-based: 

R/S method 
This method is based on empirical observations by Hurst and estimates H are based 

on the R/S statistic. It indicates (asymptotically) second-order self-similarity. H is 
roughly estimated through the slope of the linear line in a log-log plot, depicting the 
R/S statistics over the number of points of the aggregated series.  

Variance Method 
The Variance Method is based on the slowly decaying variance property as stated 

above. It indicates long-range dependency. The slope β of the straight line in a log-log 
plot, depicting the sample variance over the block size of each aggregation, is used for 
roughly estimating H. H is given by 21 β−=H .  

Absolute Moment Method 
This method is related to the variance method computed for the first moment. The 

slope α of the straight line in a log-log plot, depicting the first moment of the aggre-
gated block over the block size, provides an estimator for H, by H = 1+α. 

Ratio of Variance of Residuals 
This uses the empirical observation, that is, the sample variance of residuals, plot-

ted over the aggregation level, yields a slope equivalent to roughly 2H. It indicates 
some self-similarity. 
 
The next two methods are frequency-based: 

Periodogram method 
This method is based on the power-spectrum singularity at 0-property as stated 

above. The slope of the straight line, approximating the logarithm of the spectral den-
sity over the frequency as the frequency approaches 0, yields H.  



Abry-Veitch method 
This method is based on the multi-resolution analysis and the discrete wavelet 

transformation. H is estimated by fitting a straight line to the energy in the series over 
octave j (expressing the scaling level in the time and the frequency domain) in a log-
log plot.1 This method is the most comprehensive and robust method for determining 
the scaling behavior of traffic traces. It strength follows from the fact that the multi-
resolution analysis itself has a structural affinity to the scaling process under study. 
That is, multi-resolution analysis itself exploits scaling, but transfers the complex 
scaling process to a much simpler wavelet domain, in which short range dependent 
(SRD) statistics can be applied to infer answers on the scaling of the process [10]. 
 

We show results from our traces for all mentioned methods. In particular we will 
use the Abry-Veitch method to derive the scaling nature of the process. 

All used methods provide some intermediate statistics, which is used to derive the 
Hurst value. For instance, in the case of the Variance Method, these are the aggre-
gated variance values for each aggregation level; or, in the case of the Abry-Veitch 
method, the intermediate statistics used are the wavelet coefficients. Based on those 
values linear regression is used to fit a straight line to derive the Hurst value. 

Important to consider is that typically the linear regression should not consider all 
of the values from the intermediate statistic. In case of the R/S method, the Variance 
Method and the Absolute Moment method, it is recommended not to use the results of 
the first few aggregations levels and neither the last few aggregation levels. The rea-
son for this is that these values are not very reliable because either the aggregation 
level is too low (sampling too few points per block) or it is too high (sampling all 
points in just a few blocks). In the case of the Periodogram Method it is recommended 
only to use approximately the first 10 percent of the results, close to the frequency 0. 
This is justified by the asymptotic LRD property close to the frequency 0. The Abry-
Veitch method is the most robust of all estimation methods [10]. It actually shows the 
scaling of the process over all aggregation levels (octave j), which allows to optimally 
select an appropriate starting point for the regression. This starting point is indicated 
by a χ2-goodness-of-fit test. In the case of assumed LRD traffic, the regression line is 
fitted from this starting point to the largest available octave in the data. 

We use the SELFIS tool [11] to derive the intermediate statistics for all but the 
Abry-Veitch method. Additionally, we use the LDestimate-code which implements 
the Abry-Veitch method [12]. In the case of the SELFIS tool we applied our own lin-
ear regression on the intermediate results obtained from SELFIS, as explained above. 
This is necessary as SELFIS estimates H, always based on a linear regression over all 
available points, which can heavily bias the results due to outliers at the end points. 
For this reason we shortened the intermediate statistical results to all but the first 2 
and the last 2 aggregation levels. In all cases, applying the manual regression, the fit 
is better than the SELFIS tool directly provides. The differences in the values of H, 
between manually applied linear regression and the final results of SELFIS, are some-

                                                           
1 More precisely, based on the wavelet coefficient dj,k the amount of energy |dj,k|2 in the signal at 

about the time t=2jk and about the frequency 2-jλ is measured. Ε[ |dj,k|2 ] is the amount of en-
ergy at octave j. If the initial resolution of the time series is t0 (bin size), the time resolution at 
each scaling level j is tj=2jt0. 



times quite large, which stresses the importance to apply manual post-processing. The 
LD estimator function for the Abry-Veitch test suggests an optimal starting point for j 
which we always used. It furthermore plots the scaling behavior over all octaves j, al-
lowing to judge on the type of scaling. We discuss those results as well. 

4. Data Traces 

In cooperation with Vodafone we conducted measurements in two live GPRS net-
works. We captured the IP packet headers at the Gi interface for all users in a geo-
graphical region of the operator’s GPRS network. The Gi interface connects the mo-
bile network to external packet switched networks (like the Internet, a corporate 
Intranet or Email and WAP/MMS proxies). All IP packets from or to mobile termi-
nals traverse this interface. The traces we focus on were taken during summer 2003.  

We collect for every packet crossing the network monitor interface a time stamp, 
with 1µs accuracy, with the total length of the packet in bytes. For our further investi-
gations we generate from the original trace the Packet Arrival Process (PAP) as a dis-
crete time-series process by counting the number of packets and the Data Volume 
Process (DVP) as the total number of bytes within a time interval (bin) or 100 ms. 

We are interested in the scaling behavior for the aggregated traffic, WAP oriented 
traffic and WEB oriented traffic. For this purpose we look at three “sup-“sampled 
traces. Firstly, we investigate the total aggregated traffic (up and downlink traffic), 
which we measured on the Gi interface. Next, we have split-up the traffic into WEB 
oriented traffic and WAP oriented traffic. We do this by splitting the data according to 
the APN (Access Point Names) they are belonging to. GPRS allows users to attach to 
different APNs provided by the operator. Typically, the APNs are used for different 
types of traffic and split logically the traffic on the Gi interface. We checked our 
measurements for the used applications and found that most of the traffic on one APN 
consists of WEB like applications, including HTTP, FTP, Email, etc. On the other 
APN we see mostly WAP like traffic, comprising WAP and MMS.2 However, the 
APNs do not filter for applications, hence it occasionally happens that we see WEB 
traffic on the WAP APN and vice versa. 

On one of the network measurement points (Vfe1) the traffic splits up into 25% 
WEB-APN and 75% WAP APN traffic, while in the other network (Vfe2) the split is 
70% WEB APN and 30% WAP APN traffic. 

We traced several 24-hour periods and investigated appropriate busy-hour periods 
spanning several hours, for each of the networks. Our results will be presented only 
for one selected day for each network. In the case of Vfe1 we chose a 110-minute 
busy-hour period in the afternoon, in the case of Vfe2 we chose a 430-min (7-hour ) 
busy-hour period covering the whole afternoon. Since all estimator methods (with ex-
ception of the Abry-Veitch method) require stationarity and often are very sensitive to 
underlying trends or correlations in the traffic process [13], we investigated the cho-
sen busy-hour periods on trends by plotting the moving average, on periodicity by in-
vestigating the Fourier transformation, and on stationarity by applying the average run 
                                                           
2 We used the same investigation method we have used in [9] for differentiating the applica-

tions. 



test. All tests indicated the suitability of the chosen periods for the estimation meth-
ods, i.e., they appear to be stationary and they have no visible periodicities or trends.  

5. Results on Self-Similarity  

We present for all processes detailed results obtained by the Abry-Veitch method, 
together with Hurst estimations acquired by the other described methods. Table 1 and 
Table 2 show the results for the estimated Hurst values by the Abry-Veitch method 
for the packet arrival process. The second row ‘H’ contains the Hurst values and in 
the third row marked ‘conf.’ the confidence values for the estimated Hurst values are 
listed. Figure 1 and Figure 2 illustrate the Hurst values obtained from the different 
methods, for comparison. All values are very similar with Hurst values of about 0.8 
and higher. This strongly suggests long range dependency for the PAP for both net-
works Vfe1 and Vfe2.  

 

Table 1. Results for PAP in Vfe1 

Vfe1 Agg WEB WAP 
H 0.86 0.83 1.06 
Conf. [0.76,0.95] [0.74,0.92] [0.96,1.14]  

Scaling Fig. 8 Fig. 8 Fig. 7 
 

Table 2. Results for PAP in Vfe2 

Vfe2 Agg WEB WAP 

H 0.90 1.02 0.89 

Conf. [0.81,0.98] [0.93,1.11] [0.79,0.97] 

Scaling Fig. 5 Fig. 5 Fig. 5 
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Fig. 1. All Hurst values for PAP and Vfe1 
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Fig. 2. All Hurst values for PAP and Vfe2 

‘Hvar’ stands for Variance Method, ‘Hrs’ for R/S Method, ‘Ham’ for Absolute Moment 
Method, ‘Hrvor’ for Variance of Residuals, ‘Hper’ for Periodogram Method and ‘Ha-v’ 
for Abry-Veitch Method 
 
In some cases the Hurst value is above 1, actually precluding LRD, but in the case 

of the Abry-Veitch method all confidence intervals include also a value of below 1. 
Furthermore, as explained next, inspection of the output-plots suggests in such cases 
still asymptotic self-similarity. 

For the DVP, Table 3 and Figure 3 list the Hurst values for Vfe1 and Table 3 and 
Figure 4 list the Hurst values for Vfe2. Again all results strongly indicate LRD. 



All estimation methods, except for the Abry-Veitch method, assume an LRD 
model beforehand. That is, the Hurst estimation value can only be regarded as correct 
if the assumption of an LRD process holds. In contrast, the Abry-Veitch test is not 
based on such assumptions. It shows the scaling of the process for all time scales in 
the diagram. Only by interpreting the results in this Logscale Diagram, the true nature 
of the process is determined (e.g., self-similarity, long-range dependency, multiscal-
ing) [10]. For our traces we have encountered four basic log-scale diagram types, de-
picted in Figure 5 to Figure 8. In Table 1 to Table 4 we list in the 4th row for each 
process the plot that comes closest, respectively. The individual plots looked very 
similar to the exemplary plots, but with different scales on the y-axes. 

 

Table 3. Results of DVP for Vfe1 

Vfe1 Agg WEB WAP 
H 0.69 0.68 0.92 
Conf. [0.65,0.72] [0.64,0.71] [0.88,0.96] 

Scaling Fig. 6 Fig. 6 Fig. 7 

Table 4. Results of DVP for Vfe2 

Vfe2 Agg WEB WAP 

H 0.82 1.07 0.81 

Conf. [0.73,0.90] [0.98,1.15] [0.72,0.89] 

Scaling Fig 5 Fig. 7 Fig. 5 
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Fig. 3. All Hurst values for DVP and Vfe1 
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Fig. 4. All Hurst values for DVP and Vfe2 

 

‘Hvar’ stands for Variance Method, ‘Hrs’ for R/S Method, ‘Ham’ for Absolute Moment 
Method, ‘Hrvor’ for Variance of Residuals, ‘Hper’ for Periodogram Method and ‘Ha-v’ 
for Abry-Veitch Method 
 
Figure 5 and Figure 7 both show a typical plot for LRD traffic. The second-order 

scaling starts from a certain scaling point on and continues until the largest available 
scale in the trace. For small scales we do not see second-order scaling behavior. We 
have found this scaling behavior for all WAP processes. 

Figure 6 also exhibits LRD scaling, but actually has two scaling regions. One from 
approximately 1 to 8 and one from 8 to maximum scale. This is called bi-scaling. We 
have found this in the case of DVP for Web traffic in Vfe2. Figure 8 depicts the case 
where the process has second-order scaling over all scales. This indicates strictly sec-
ond-order self-similarity. We see this in the case of PAP for WEB traffic also in Vfe2.  

We point out some interesting observations (cf. Table 1 to Table 4). Firstly, the 
Hurst value of the aggregated traffic is always very close to the Hurst value of the ma-



jority of the traffic. This is in agreement with [14]. In the case of Vfe1 the major part 
of the traffic is WAP traffic, in the case of Vfe2 it is WEB traffic. More in detail, even 
the whole scaling behavior, as depicted by the Logscale Diagram, is very similar be-
tween the majority traffic and the aggregated traffic. This implies, by knowing the 
scaling of the majority traffic, one obtains also the scaling of the aggregated traffic. 
Secondly, the minor traffic has always slightly higher Hurst values, with changing 
roles of WAP and WEB in the cases of Vfe1 and Vfe2. We do not have an explana-
tion for this, yet. One reason might be that even so we applied the estimation methods 
on separated traces per APN, it is not possible to separate them truly: they have been 
both traveling together through the GPRS network, thereby most likely affecting each 
other. 
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Fig. 5. Typical plot for processes showing 
long range dependency. Below a certain 
scale no regular linear scaling exists. The 
linear part is at j=8 divided in two scaling 
regions  
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Fig. 6. Typical plot for processes showing bi-
scaling. The second scaling region starts at 
j=8. It also implies long range dependence  

 

An interesting question arises whether it is actually possible to truly identify the 
Hurst value for each type of traffic separately. In [14] the authors have shown that 
non-self-similar UDP traffic is affected by self-similar TCP traffic. But this effect is 
only strong if the self-similar traffic is the major traffic. In our case we observe high 
Hurst values even in the case the WAP (UDP) traffic is dominating. This suggests that 
WAP traffic itself is strongly long-range dependent.  

Furthermore, we see that WAP traffic has a very different scaling behavior for 
small scales compared to WEB traffic. The reason for the different small scaling be-
havior can be assumed to be the very different transport mechanism of TCP and WAP 
over UDP. As we explained in the footnote to the Abry-Veitch method, the octave j in 
the logscale diagram also expresses the timescale of the aggregated process. Based on 
this insight it is possible to determine over which timescales scaling occurs. We start 
with an initial bin size of 100 ms, which leads to values of tj=0.1, 0.2, 0.4, 0.8, 1.6, 
3.2, … for j=1, 2, 3, 4, 5, … , respectively. For all processes in which we observed a 
scaling like the one depicted in Figure 5 and Figure 7, the knee-point at which the lin-
ear scaling starts is at about j=5 or j=6, i.e., respectively 1.6 seconds or 3.2 seconds. 
In [16] the authors show that the average download time per WAP page, including 



embedded objects, is in the order of 1.5-3 seconds. Hence, this timescale marks the 
demarcation line between the WAP transport layer protocol and the user behavior. 
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Fig. 7.  Typical plot for processes showing 
long-range dependency. Below a certain 
scale no regular linear scaling exists  
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Fig. 8. Linear scaling over the whole range. 
Although there is a step at j=9, the slope on 
both sides is almost the same. This indicates 
second- order self-similarity  

6. Conclusion 

Based on live GPRS measurements, we applied 6 different established Hurst esti-
mation methods, including the comprehensive and robust Abry-Veitch test on packet 
arrival and data volume processes. We showed the Hurst value as well as the scaling 
behavior for the busy-hour for 3 different traffic types and two different networks. In 
the case of aggregated traffic and also in the case of individual WAP and WEB traffic 
traces, the results strongly suggest long-range dependency.  

We confirmed that the dominant traffic type (WAP or WEB) determines the degree 
of self-similarity of the aggregated traffic. In our case however, the minor traffic al-
ways exhibits a Hurst value larger than the Hurst value of the major traffic. This is 
particularly interesting as WAP traffic is based on UDP.  

We showed that WAP traffic has a very different scaling behavior compared to 
WEB traffic for small scales. We identified the demarcation line between small and 
larger scales for WAP to coincide with the average page duration. Larger scales can 
probably be accounted to user behavior. 

As future research we wish to investigate the reason(s) why the minor traffic frac-
tion exhibits higher Hurst parameter values for all tests.  

Further research also includes investigating the reason(s) of self-similarity of WAP 
traffic and the exact nature of scaling; whether it is mulitfractional, monofractional, 
strictly self-similar or ‘just’ long-range dependent. 
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