
Xest: a file system for wide-area
virtual machine deployments

Tim Moreton
tim.moreton@cl.cam.ac.uk

30 August 2005

Storage for VMs in the wide-area

• XenoServers: public ‘edge’ computing:

– Control of service deployments (per VM root fs)
– Network position (response time, content distribution)

• Challenges for the storage infrastructure:

– VM migration, instantiation
– High latency, constrained bandwidth
– Scale: large FS images, 10k running VMs
– Making huge deployments manageable for admins
– Access control, billing, auditing
– Multiplexing VMs on a machine [XenFS]

1

Making it tractable

• Nomadic disks, not a global distributed file system

– Provide migrating ‘local’ storage, do sharing later
– Well-established CoW techniques [P9,WAFL,Parallax,..]

• Exploit commonality whereever it exists

– Large distro images but significant root FS sharing

• Grouping: organise FS by observed working sets

– Coarser granularity of operations
– Implicit prefetch: access an obj, fetch its group

2

Nomadic, isolated, virtual disks

• Nomadic: transparently available despite migration

• Isolated: only writeable at a single VM at once

• Shared storage is convenient, simplifies administration

• But collaborative use and short-term data exchange rare

• Concurrency control limits performance/availability

• Optimistic consistency semantics risks conflicts

• Instead: Disallow sharing, fork VDs for each VM

• Add merge primitive to reconverge VDs (offline, ASRs)

3

Eliciting, not engineering, commonality

• Implicit: shared content in CoW ancestors

• Explicit: VD merges, b/g process to detect shared content

• Departure from overlays model [WORLDS‘04]

– Applying updates to templates problematic
– Only exploits commonality between VD and its template
– merge into template requires control of all overlays

4

Working set centric storage

• XenoServers are necessarily globally dispersed
• Latency, b/w bottleneck for deploying, migrating VMs
• But mitigating techniques hampered by latency and scale:

– Prefetching: distant prefetch horizon due to high RTTs
– Pervasive replication: scalability of addressing

• Grouping: organise FS by observed working sets
• Observe references, run clustering alg on closed VD
• Decouple wide-area interactions from local FS activity
• Reduces state overhead but limiting effects of aliasing
• Name, advertise, retrieve whole groups at once

5

Storage organization

6

Addressing

• Integrates with Bamboo DHT to manage membership

• Eventually consistent despite failure, partition

• A VD is a linear series of snapshots

• VD metadata in DHT by id and by H(name)

• Nodes caching groups maintain pointers in DHT

7

Regrouping

• Jarvis-Patrick: If |No1 ∩No2| ≥ n, merge(G(o1),G(o2))

• Incremental: split by DFS marking before merge

• Multi-pass: merge between closely related objects first,
and stop early if we reach acceptable group size

• Overlaps: Objects accessed from many distinct working
sets (e.g. a .so) are fetched and cached with each group

• Statistics are of the form: ‘Given an access to o1, with what

probability was o2 also accessed within k references?’

• Intuitively, groups are ‘basic blocks’ (‘chains’ of refs)

8

No clustering algorithm is perfect

• Demand fetches take priority over prefetches:

– Group-based object location but sub-group fetches
– Fetches on which FS is stalled preclude prefetches

• Hybrid Adaptive Caching (HAC) for the cache:

– A group may contain hot and cold objects
– Remove cold objs from groups .. TODO
– Cost to evicting cold objs: ptr advertises whole group
– Two ‘grades’ of ptr to maintain availability of hot objs

9

Deployment status

• Deployment nearly ready (10 days away)...

• Imitate wide-area XenoServer deployment over PlanetLab

• Trace server workloads and replay in migratory setting

• Evaluate miss rate, effect on stall time, addressing
overhead, ...

• Results from a simulation study show a considerable
reduction in stall time is possible, but are traded off
against unnecessary fetches due to grouping inaccuracy

10

