
DATOM: A Proposal for an Alternative
Storage System API

Calicrates Policroniades and Ian Pratt
Computer Laboratory, SRG

University of Cambridge

http://www.cl.cam.ac.uk

{cbp25, iap10}@cl.cam.ac.uk

2005

Outline

Introduction
– The research problem and motivation: manipulation of structure and type.

The Storage System API
– Persistent Data Abstractions.

Implementation
– High-level architecture and underlying

mechanisms.

Model of Persistence

Future Work and
Conclusions

Evaluation

Introduction

The Research Problem
Do current storage technologies provide adequate support to

manipulate data rich in structure and type?

File Systems (FS): Flat storage space and an API to operate on arrays of bytes
[Daley and Neumann, 1965; Sandberg, 1986; Nagar, 1997].

Persistent Programming Languages (PPLs): Merge the programming
language and the data store into one system at runtime [Dearle, 1989; Atkinson, 1995].

Object Oriented DB: Well-known relational databases capabilities (query and
transactions) + object oriented data model [Atkinson et al., 1989; Stonebraker et al., 1990].

Relational Databases: Tabular data representation, query capabilities, ACID
transactional support [Codd, 1970].

Programmers benefit with higher levels of abstraction: File Systems vs. PPLs.

Introduction

What’s the problem with current storage systems APIs?

Unbalanced trade-off between I/O efficiency and programmability in FS
[Gribble et al., 2000; MacCormick et al., 2004; OLE]:

Considerable amount of data rich in type and structure (MPEG, PDF, HTML, XML
JAR, TAR, soffice, etc.) or amenable to structural decomposition.

Lack of ability to manipulate any abstraction: tedious and prone to errors!

If applications are migrated to other storage technologies:

Addition of overheads: Intermediate language to access data (SQL, OQL, XQuery),
transactional frameworks (ACID and long transactions), or complex data models.

Loss of interoperability: Orthogonal persistence confines type support to a specific
language compiler and adoption of a programming model.

Mismatch with applications’ functional requirements: Data-centric approach,
well-defined access patterns with varying recoverability and consistency requirements.

Introduction

Our Proposal

Depart from the flat file paradigm more abstract data representation.

Creation of an efficient yet general storage system API for application data
rich in structure and type.

Retain a reasonable amount of structure and expose persistent data type.

Based on semantically rich and general abstractions.

Common use in applications code: Map, List, Matrix, Queue, and Stack.

Potential for impact:

Less effort to develop persistence code: augment the level of abstraction and
software quality.

Advanced data access strategies: data prefetching, concurrency, and data sharing.

Assertive hints to persistent data access patterns.

The Storage System API
Persistent Data Abstractions

Elements: Information-hiding items [Keedy and Richards, 1982].
Defined using Datom Data Language (DDL).
Application-specific semantics and types.
Final data containers: they do not reference to other data items.

Composite Entities: Aggregation of application-specific data Elements.
Choose the right interface according to data access requirements.
Popular programming abstractions: expressive power, predefined semantics,

potential to be implemented efficiently.

+ Map: Store elements associated with a key.

+ List: Collection of items in which certain order has to be preserved.
+ Matrix: Bidirectional access to collections of items.
+ Queue: Collection of items with FIFO access semantics.
+ Stack: Collection of items with LIFO access semantics.

Example: Breaking File Data into Discernible Items

key

key

Element

Element Element Element

 get(key)
 set(key, Element)
 del(key)
 length()
 merge(Map, override)
 haskey()
 ...
}

Interface Map {

key

key

Element

Composite Entity: List

key

key

Composite Entity: Map

 setStreet(String street)
 setCity(String city)
 getStreet()
 getCity()
 setLocationOnMap(URL url)
 setZipCode(String zc)
 ...
}

 add(index, Element)
 get(index)
 remove(index)
 size()
 isEmpty()
 ...
}

Interface List {

Interface Element: UserAddress {

 add(Element)

.

.

.

.

.

Data Model

Aggregation of CEs.
Navigability.
References in CE only.
Elements for typed access.

Data Model

Map Matrix List Stack Queue Element

key − (k)

index − (i)
index − (i)

key − (k)

key − (k) key − (k)

index − (i)

index − (i)

index − (i) index − (i)

FIFO
FIFO

FIFO

index − (x,y)
index − (x,y)

index − (x,y)
LIFO

Root

Implementation
High Level Architecture

Presents data abstractions and system functionality.

Creates, destroys, and moves persistent data:

Items identity: lifelong logical IDs (PIDs).
Memory management: Lazy loading and surrogates.
Cache of persistent items.
Concurrency control.
Transform to/from physical storage format to run-time

data representation.

Atomically stores and fetches data as requested by the
Storage Manager.

Model of Persistence

Reachability AND Type: Smooth and complete control on data transferred to disk.
Any CE can be used as a root of persistence.
The system restricts by type the addition of Elements into the graph of persistence.

Updates are invoked from the roots of persistence: CE.update();
Traversal of persistence graph: promotion of new items, and update of mutated items.
Persistent items exist in apps’ memory space until promoted to persistence.

Persistent Data Life Cycle

Results

Porting applications on top of the Datom API: Bibkeeper.
Application recovered file data to a graph of persistent objects.
Remove parsing and serialization libraries.
Made the code self-explaining.
Potential avoidance of redundant data transmission to disk.
Application size reduced.

// Connecting to the store
StoreConn myStore = new StoreConn(cfgObj);

// Getting a root map
RootDatomMap myRefs = myStore.open(“bibtexRefs”);

// Getting an application data Element
Reference ref = (Reference) myRefs.get(“gray:1998”);

// In-memory updates
ref.setTitle(“Transaction Processing: Concepts and Techniques”);

ref.setYear(1998);

// Pushing changes to stable storage as an atomic operation
myRefs.save();

Results

Bibkeeper: The graph of persistence.
1) Map, List, and different types of Elements.
2) Changes in the morphology of the application.

UnitUnit

signature

strings

preamble

comment

entries

meta

BibtexEntry

BibtexEntry

BibtexEntry

BibtexString

BibtexString

BibtexString

BibtexString BibtexString BibtexString

EntryId

EntryId

EntryId

.

TypeId

TypeId

TypeId

DatomMapRoot

DatomMap DatomList

DatomMap

DatomList

Results

Version LoCs PLoCs # Classes # Persistent Classes
File-based 6002 208 81 15

Datom-based 5570 469 76 40

Bibkeeper: Source code measurements.
PCMT tool [Gri97].
It collects metrics related with lines of code and classes that contain persistent
code.
Parsing and tracking lines of code as productions rather than textual text.

Key findings.
Reduction in size: code (432) and classes (5).
PLoCs and # of persistent classes increased: Explicit tracking of persistent objects.
Breakdown per class shows: programs either modify persistent abstractions all over
source files; or show high locality => directly related to density of PLoCs.

Results – CDC Framework

Cognitive Dimensions Framework.

Usability aspects of the API contrasted with cognitive demands of different
programming styles: Opportunistic, Pragmatic, and Systematic.

12 dimensions evaluated through:
Task analysis: Typical use scenarios.

Code snippets for each main task.

1. Recover a root of persistence.
2. Setup a graph of persistence
3. Add an Element to the graph of persistence.
4. Update an Element.
5. Read data from an Element.
6. Delete an Element.
7. Remove a Composite Entity.
8. Apply atomic updates.
9. Modify the morphology of the graph of persistence.
10. Query the graph of persistence.
11. Navigate and update the graph of persistence.

Results – CDC Framework

0

1

2

3

4

5

ABST

LEAR

WORK

STEP

PROG

PREM

PENE

ELAB

VISC

CONS

ROLE

DOM

Analysed Results

Opportunistic Developer

0

1

2

3

4

5

ABST

LEAR

WORK

STEP

PROG

PREM

PENE

ELAB

VISC

CONS

ROLE

DOM

Analysed Results

Pragmatic Developer

0

1

2

3

4

5

ABST

LEAR

WORK

STEP

PROG

PREM

PENE

ELAB

VISC

CONS

ROLE

DOM

Analysed Results

Systematic Developer

Results – Performance

Read barrier: Persistent item faulting.
Selective retrieval: Map, List, and Matrix.

Run: 25 iterations, 9000 Elements per iteration. Simple read procedure.
Measures cache warming.

One-way retrieval: Stack, and Queue.
Run: 8 iterations, 1000(n) Elements per iteration, Simple read procedure.

Write barrier: Detecting and logging updates.
Similar access strategies but and update procedure is applied on fetched Elements.

Datasets: 36,000 Elements of type Data (int, int, int, double, String, Data).

Results – Read barrier

C 3 5 7 9 11 13 15 17 19 21 23 W H
0

1

2

3

4

5

6

7

8

9

10

Iteration

T
im

e
(s

)

Volatile DatomMap
Persistent DatomMap

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Iteration

T
im

e
(s

)

Volatile DatomQueue
Persistent DatomQueue

Read barrier: Persistent item faulting.
Selective retrieval: Warming of caches.
One-way retrieval: Constant increase of time.

Results – Write barrier

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

20

Write probability

T
im

e
(s

)

Cold
Warm
Hot

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

Write probability
T

im
e

(s
)

Cold
Warm
Hot

Write barrier: Detecting and logging updates. Selective retrieval.
Caches warming effects.
Checkpoint independent of cache state.

Results – Write barrier

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

14

16

18

Write probability

T
im

e
(s

)

1000 objects
5000 objects
7000 objects
8000 objects

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

Write probability
T

im
e

(s
)

1000 objects
5000 objects
7000 objects
8000 objects

Write barrier: Detecting and logging updates. One way retrieval.
Constant times according with the density of updates.

Future Work and Conclusions

Work to be done:
Developers’ feedback. http://www.cl.cam.ac.uk/~cbp25/datom/apidocs/
Porting more applications.
Ad-hoc storage layer to exploit abstractions.
Partial checkpoints??

Conclusions:

DATOM: A storage system whose API captures a judicious degree of structure
and data type.

Applications’ persistent code can be simplified and developers’ job eased.

Management of persistent data layouts and provision of data integrity services.
Sophisticated data access strategies based on applications’ persistent data

semantics: key, position, type, or content.
Fine-grained data manipulation to enable data sharing and concurrency.

http://www.cl.cam.ac.uk/~cbp25/datom/apidocs/

The End

Questions?

Removing complexity

ACID transaction for applications that need them and use more relaxed
access semantics.

Reachability of a set of well-known elements.
Read and update barriers related to granularity of the objects, Elements as

collections of small data items.

Learning curve for programmers vs. DB models.
A model to reason about.

Introduction

Introduction

