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The name Unbuckle refers to the perilous journey of programming in an operating
system kernel. All traditional safety mechanisms are missing and the hardware of
the computer is directly accessible. Crashing the machine and corrupting its data is
par for the course, but the payoffs are worthwhile.

My project builds a key-value store in this as-yet unexplored context. Despite
the inherent difficulties, I show that significant performance gains are possible.
The ultimate goal is to answer some outstanding questions in systems research
through building a platform-independent, general-purpose, in-kernel key-value store
to compete with the incumbent systems in this field.

i



Proforma
Name: Matthew Huxtable
College: St John’s College
Project Title: Unbuckle: An in-kernel, high-performance key-value store
Examination: Computer Science Tripos, Part II (June 2014)
Word Count: 11934
Project Originators: Malte Schwarzkopf & Dr Steven Hand
Supervisors: Malte Schwarzkopf & Dr Steven Hand

Original aims of the project

The implementation and performance analysis of a platform-independent key-
value store within an operating system kernel. This seeks to investigate the
overhead imposed by the privilege transition on applications running in modern
data centres. Specifically, I am interested in how much faster a software key-value
store can be made by removing layers of abstraction and multi-process safeguards.
The deliverable is a kernel-based, memcached-compliant key-value store with an
evaluation of its performance in three contexts: the kernel, user-space, and in
comparison with existing commercial and research systems.

Work completed

The project has been highly successful. All success criteria were met and many
optional extensions implemented. I built the Unbuckle key-value store, which can
be compiled as a Linux kernel module or a user-space application. On a 10 Gbps
network, the in-kernel version achieves a 25% reduction in latency at the same time as
a 40% throughput increase compared to the user-space version. Unbuckle scales to 22.5
Gbps throughput using eight cores of a modern server. It outperforms memcached,
an optimised key-value store used by many web companies, in both throughput (3×
improvement) and latency (50% reduction).
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Familiarisation and working within a large, pre-existing codebase (the Linux kernel)
with challenging failure modes.
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Chapter 1

Introduction

This dissertation describes the implementation and evaluation of a key-value
datastore in software, as a platform-independent Linux kernel module and an
equivalent userspace application. The implementation is shown to achieve a 300%
throughput improvement while simultaneously reducing latency by 50% as a result
of the store running within the most privileged layer of the operating system.

1.1 Motivation

In recent years, web-based applications have become ubiquitous and now demand
high-performance methods for storing and serving an unprecedented volume of
data. As these systems become more pervasive, it is becoming apparent that our
conventional methods for managing these data are unable to scale to support the
demands of today’s interactive, real-time workloads. Key-value stores represent a
low-cost, lightweight alternative solution to traditional databases. They have already
seen widespread deployment in the infrastructure behind the web’s most popular
websites.

The data centres at the core of the web are indispensable assets to modern internet
companies. These facilities consist of thousands of commodity, off-the-shelf server
machines collaborating to provide the abstraction of a single “warehouse-scale”
computer. Yet, despite this apparent departure from the traditional approach, rapid
growth means legacy code remains widespread throughout the software stack. The
software interfaces available to today’s applications have been found to be poorly
aligned to their requirements [47].

One key area of concern is the traditional placement of data centre applications under
the jurisdiction of an operating system, where a penalty is incurred for performing
privileged operations involving hardware and other system state. This system call
interface exported by a system kernel is important for multiplexing access to system
resources and enforcing system integrity through process isolation. However, data
centres operate sealed machines without interactive users – or indeed, separate

1



2 CHAPTER 1. INTRODUCTION

containers or virtual machines for each application task – so many of these security
benefits are of little to no consequence. Interrupting the processor to perform frequent
privilege switches can have negative consequences in terms of performance, bringing
into question the continued applicability of this abstraction layer in a data centre
context.

In this dissertation, I explore the hypothesis that it is possible to achieve further
performance gains for a key-value store by bypassing the system call interface and
deploying the application in the kernel, where access to the hardware and memory
is directly available. Unlike other work in this area (see §1.3), the proposed system is
designed specifically with platform-independence in mind, permitting the key-value
store to be used in a variety of contexts with only minimal modification to existing
systems.

1.2 Challenges

A project of this nature will not be trivial. Modern system kernels were never
designed to allow the implementation of arbitrary software platforms in the core
of the code. Most programmers use the kernel as a black box; few possess
sufficient knowledge of its internals and its complex interactions between hardware
and software to successfully implement kernel code. Kernels hide details of the
underlying hardware precisely because this interaction is difficult, especially when
code is required to be platform agnostic.

The ideal solution would implement a minimal, highly customised kernel from
scratch, with its sole task being to run a key-value store for an IP-based network.
However, kernels are large software projects which take many years to perfect.
Successfully implementing the core components necessary to boot a machine and
interact with basic hardware would be challenging in the time available, especially
for such interaction to be cross-platform. Familiarisation with an existing kernel
upon which the key-value store can be based will be imperative for a successful
outcome.

The implementation work in the kernel is high risk. However, a successful outcome
has the potential to deliver large rewards of relevance to the challenges facing today’s
web companies.

1.3 Related work

High performance key-value stores are an active area of research. Much of this
work attempts to ensure performance can scale to the next generation of data-
intensive applications. I highlight the most important publications in the field to
date, especially those which influenced this project.
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The case for distributed systems techniques in the web is not new. It was recognised
in the early 2000s that research in this area would be needed for long-term scalability
[22,51], but workloads have only recently outgrown the traditional approaches.

Ousterhout et al. made the case for key-value techniques as a method of resolving
the disparity between access times to DRAM and conventional magnetic storage
in the modern web [42]. Significant practical work has already been undertaken
by large internet companies to transform these research findings into technology
suitable for practical use. Such systems are embedded in most popular websites,
including, for example: Amazon Dynamo [14], Google BigTable [10], LinkedIn’s
Project Voldemort [52], memcached at Facebook [32, 41] and Twitter [2], and Redis
at Instagram [31].

1.3.1 Hardware-based work

A key source of inspiration for this project was a suggestion in recent publications that
a scalability limit to software-based key-value solutions has been reached. Several
studies have suggested that achieving 10 Gbps performance requires the use of
custom hardware-based solutions as a replacement for present software platforms.
These include a deployment using a specialist hardware design on FPGAs [25] and
remote direct memory access to server memory over a high-performance Infiniband
network [15, 40].

However, these proposals are unlikely to succeed at scale in practical data centres.
Such installations favour x86-based hardware platforms and traditional Ethernet
networks; upgrading them with custom technology and specialist interconnect
networks restricted to key-value store use would be neither cheap nor practical.

The claim that software-based solutions have reached their limit is a strong assertion
which merits further investigation, especially to determine whether the poor
scalability of general-purpose x86 processors or outdated operating system interfaces
contribute to the problem.

1.3.2 Key-value stores and system kernels

There is already some evidence that the latter reason may be to blame. While there
is no existing research in the performance of a key-value store running as part of an
OS kernel, research in the early 2000s provided evidence that in-kernel web servers
were able to achieve performance gains over their user-space counterparts [28]. In
more recent work by Madhavapeddy et al., the concept of Unikernels is introduced –
single machines with specialised kernels and minimal overhead which are dedicated
to performing a single task well [37]. These works add support to the thesis that
bypassing superfluous protection mechanisms and unnecessary abstraction layers can
lead to performance gains.
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Exokernels were proposed in the mid 1990s as a means of securely permitting
applications to control and manipulate hardware directly, shaking up the current
fixed and archaic system call interface in the process [18]. This presents an
exciting opportunity to deliver the best of both worlds: a new kernel design
applicable to data centre workloads, without sacrificing the fault tolerance and sanity
checking properties of today’s kernels. Sadly, exokernels have received only minimal
commercial interest, perhaps due to inertia behind present operating system design
and a lack of enthusiasm in re-engineering entire software stacks from the ground
up.

Other recent developments in kernel and network stack design are also of direct
relevance to this project. Kernel-bypass networking has been proposed as a method
of performing packet processing directly in user-space code, with promising results
[16, 17, 27].

A very recent proposal, MICA [35], reports significant advantages to key-value
systems by taking advantage of such a user-space network stack. However, this
system misses many desirable features. Its compatibility and cost-effectiveness is
restricted by dependence on specialist network stacks and compatible hardware. Its
execution in user-space also imposes other restrictions: there is limited scope to avoid
virtual memory overheads or the impact of process scheduling, for instance.

By contrast, Unbuckle, the system I describe, achieves performance gains without
demanding specialist networking hardware, by utilising the interfaces available to
kernel code to bias the system in favour of its key-value store workload.

1.3.3 Novel data structures

Finally, recent work on the impact of data structure design gives further credence to
operating systems being a contributing factor to the scalability problem.

Masstree is a proposed data structure which combines tries and B+-trees to suit the
idiosyncrasies of processor caching behaviour [39]. This is achieved in spite of the
implementation being in user-space and using the kernel network stack, where it
continues to incur the associated performance overheads.

Algorithmic improvements have been obtained by re-engineering hash tables to
support cuckoo-hashing [19, 33]. By avoiding chaining in hash buckets, lookups in the
data structure are guaranteed to proceed in constant time. It can also be shown, under
certain assumptions, that methods exist for insertions to be performed in constant
time [43].



Chapter 2

Preparation

In order for a project of this scale to be successful, it is crucial that sufficient
preparatory work is undertaken prior to commencing with the implementation. As
part of this, I had to analyse the project goals, define the expected outcomes and
derive a development plan to adhere to. In addition, it was essential that I acquainted
myself with the theory behind the systems I would be basing the project upon.

This chapter commences with a brief review of key-value stores and operating system
principles. Building upon the background knowledge gained from this review, the
outcomes of the requirements analysis phase for Unbuckle are presented. Finally, the
decisions made with regard to managing the project implementation workflow are
discussed with reference to the requirements specification.

2.1 Introduction to key-value stores

Key-value store technology has grown in importance in recent years as a building
block of data-intensive applications in the modern web. I will first give a brief
background to the historical methods of electronic data management, followed by
an analysis of memcached, a widely used key-value store implementation whose
protocol is borrowed for this project.

2.1.1 Historical background

The advent of the web and availability of affordable consumer technology has
dramatically changed the nature of data production and consumption. For several
decades, data storage has been in terms of formally specified mathematical relations
in the relational database model [11], which enforces a set of guarantees1 to ensure data
accurately model real world interactions.

1The ACID properties – Atomicity, Consistency, Isolation and Durability – provide data integrity
during operations on a relational database [48, pp. 625–ff.].

5
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Unfortunately, this approach is a limiting factor for today’s most popular
applications. In a distributed system, enforcing the ACID properties requires
all participating machines to be synchronised and reach consensus before any
modifications to data can be made. This is not compatible with the high-intensity
data demands of these applications. The success of large web search engines and
social media services, for instance, is wholly dependent upon finding alternative data
management methods which avoid the co-ordination bottleneck and make individual
nodes in the distributed system more autonomous.

The semantics of many of today’s web applications are also very different to the
original systems targeted by the relational model. Many applications do not require
updates to be visible everywhere immediately and many can tolerate limited data loss
without negative consequences. Weaker forms of data integrity, such as an eventual
consistency model [54], are more suitable for these applications, but the relational
model is ineffective at relaxing its guarantees.

2.1.2 memcached

The first key-value store, memcached,2 was introduced in the early 2000s in an
attempt to solve the database scalability problem by adding a caching layer.

memcached is built for short-term caching of frequently referenced data objects in the
main memory of one or more servers [20]. This offers greater scalability and lower
latency data access than is possible by reconstructing this data from disk for each
request. The key-value store is an extremely simple, unstructured database system in
which mappings between arbitrary <key, value> pairs are stored and retrieved.

The client software interacting with memcached permits the key space to be
distributed across multiple machines. As the logic for finding hosts in a memcached
cluster is pushed into the client application, memcached servers are unaware of
their contemporaries on the network, allowing the capacity of the cluster to increase
without overheads. Viewed in this way, the store is effectively a large, network-
connected hash table of hash tables – the client software uses consistent hashing to
map a key to a particular server, which implements a local hash table to service
requests. This interaction is summarised in figure 2.1.

The data stored have no associated formal schema in the key-value store
representation, allowing a wide range of data to be cached. Data stored will
typically be programming language primitives, such as alphanumerical values or
serialised objects in object-oriented programming environments. This complements
modern system architecture, where results are dynamic and typically retrieved and
rendered on-the-fly from a variety of data sources. Similarly, modern applications
are increasingly aligned with object-oriented principles rather than normalised
data storage models, as exemplified by the popular model-view-controller design
pattern [9].

2http://www.memcached.org

http://www.memcached.org
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Figure 2.1: The interaction of memcached with application servers. In the event of a cache
miss, an application is responsible for satisfying its information need via some other source,

such as a back-end database server, and pushing the result into the cache.

memcached protocol

memcached servers export a simple protocol for applications to store and manipulate
data in the cache.3 Two operations in the protocol, GET and SET, are crucial for any
interaction with the system. The former is issued to obtain the value associated with
a particular key, while the latter inserts or updates data in the cache. For drop-
in compatibility with existing implementations, I decided to adopt the memcached
protocol for the purposes of this project.

Very few semantic guarantees are provided by the memcached protocol. There is no
guarantee that an application will even be able to read its own writes, for the system
is simply a cache, not a persistent data store. Data may be aged out and replaced due
to cache churn. In most implementations, a least-recently-used cache eviction policy
is implemented, which optimises for temporal locality of reference [1].

The protocol provides several mechanisms for communicating with the store,
including the reliable, in-order TCP protocol and the message-oriented, connection-
less UDP protocol. For the purposes of the project, I elected to pursue the UDP

3Full protocol details: https://memcachedb.googlecode.com/sv/trunk/doc/protocol.txt.

https://memcachedb.googlecode.com/sv/trunk/doc/protocol.txt
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approach, which does not suffer TCP overheads linear in the number of connections
to the store. In particular, the TCP three-way handshake imposes several round-trip
times on the latency of a request to access the store.

There is evidence the UDP protocol is already widely deployed [41], as the
relatively low frequency of lost or corrupt packets in modern Ethernet networks
outweighs the benefit of delivery guarantees for a caching system like memcached.
Occasional lookups to a database due to a memcached request timing out are
considered an acceptable compromise. Alternative implementations might provide
reliability using persistent TCP connections without succumbing to the performance
overhead [26].

2.2 Introduction to the operating system kernel

The term operating system normally refers to the kernel, the body of code running
in privileged mode and first given control when an operating system is booted.
Kernels are typically responsible for managing system hardware, enforcing security
primitives for process isolation and multiplexing system resources between active
user sessions. The kernel is the most privileged component of an operating
system.

On today’s multitasking machines, hardware primitives are built into the
microarchitecture of the processor to enforce the separation of privilege between
regular, user-invoked processes, which execute in the low-privilege user-space
environment, and the kernel. User-space applications are prevented from accessing
physical memory or manipulating the system hardware, in an effort to isolate running
applications (and even separate users) from each other. This also ensures system
stability is maintained if an application exhibits a destabilising bug, as the kernel acts
as a sanity check for privileged operations and can intervene when necessary.

2.2.1 System calls

In practice, applications frequently need to perform privileged tasks. The system
call interface is the mechanism by which user-space applications invoke the kernel
to request privileged work be carried out on their behalf by one of the kernel
subsystems, as shown in figure 2.2. Various standards exist for this interface,
including the well-known POSIX interface supported by almost all modern Unix
derivatives.

Applications typically execute a system call by preparing registers with arguments
and then raising a software interrupt. This halts the execution of the processor
and causes it to jump to interrupt handler code configured as the entry point to
the kernel’s system call interface. In the process, an internal flag is modified to
indicate the processor is now executing in privileged kernel mode. This removes
processor-enforced hardware restrictions, in particular those imposed on the memory
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Figure 2.2: An abstract system call interface.

management unit. This permits the kernel to modify system descriptor tables, enable
and disable interrupts and gain direct access to physical memory.

It is widely known that interruption of the processor in order to execute a system
call carries considerable overhead. Recent work shows that an average latency
of 5µs is incurred when servicing a system call on a modern Intel Core i7-based
machine [46]. While this can be amortised within an interactive session, it seems
wasteful on machines dedicated to a high-performance key-value store role in a
data centre environment. These systems predominantly perform input/output on
the network interface card (NIC) and with main memory, and hence perform a
considerable number of system calls. However, each system call has relatively little
work to do, thus further exacerbating the overheads.

Further discussion on the realisation of this hardware-based protection mechanism
on x86-based microprocessors is provided in appendix A.1.

2.2.2 Hypervisor technology

Modern data centres are increasingly using virtualisation solutions, such as Xen [5],
to run multiple instances of an operating system in a parallel but isolated manner on
a single machine. Virtualisation technology further diminishes the applicability of the
system call interface in these environments: virtualised worker machines are typically
dedicated to a single task and have no interactive users, so concerns over process
isolation and system fairness are irrelevant, as they are handled at the hypervisor
level. Moreover, the execution of code in the kernel context poses little additional
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risk, as any faults or malicious activities will be contained by the security mechanisms
provided by the underlying hypervisor. As a result, specialised OS kernels have seen
considerable interest lately [38]. Unbuckle is such a specialised kernel.

2.3 Requirements analysis

With the requisite background knowledge understood, the requirements for the
project were carefully reviewed. This was an important early step for understanding
the most applicable system architecture and planning the work to minimise risk
where possible. The main success criteria for the project are summarised in table 2.1.
These are largely similar to the goals outlined in the original project proposal (see
appendix A.4).

Goal Requirement Priority Risk Difficulty

Implement the memcached protocol High Low Medium

Build the UDP server High High High

Construct suitable data structures for storage High Medium Medium

Platform agnostic hardware interaction High High High

Port the key-value store to user-space for evaluation Medium Low Medium

Optimisation: multi-threaded key-value store Medium Medium High

Optimisation: back-end data structure improvements Medium Medium Medium

Table 2.1: High-level goals and deliverables for the Unbuckle project.

Further to the requirements analysis, I conducted a detailed survey of the modular
dependencies within the project (illustrated in figure 2.3).

It quickly became clear that there were several modules upon which there was heavy
dependence, most notably the implementation of the back-end data structures and
the network server. Early commitment to the modular design and their associated
interfaces made it possible for these modules to be developed over several iterations
of the project. A prototype implementation could be supplied in advance in
order to provide basic functionality without necessarily offering any performance
advantages. A later iteration of the module, after a working end-to-end system had
been demonstrated, would refine such code to a version more suitable for a rigorous
performance evaluation and long-term use.
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Figure 2.3: Dependencies in the Unbuckle project. x → y indicates a dependency of x on y.

2.4 Choice of tools

2.4.1 Libraries and kernels

The nature of the project meant there would necessarily be dependence on third-party
libraries to implement the functionality which was infeasible or simply not instructive
to re-implement in the time available.

Choice of kernel

The identification of a suitable operating system kernel whose code could be
inspected and freely modified was a crucial early decision underpinning the entire
project. Two major open-source kernel projects were evaluated for suitability: Linux4

and FreeBSD.5

Ultimately, after some early research into programming styles, support structures and
market factors, I selected the Linux kernel as the basis for the project.

A key decision behind the use of Linux was its widespread deployment, which
ensured the final implementation would have immediate real-world utility. Due to
economies of scale, today’s modern data centres typically comprise many commodity,
off-the-shelf servers running a Linux-based operating system and interacting via
some distributed middleware layer. In this context, BSD-derived works are more

4http://www.kernel.org
5http://www.freebsd.org

http://www.kernel.org
http://www.freebsd.org
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commonly constrained to embedded systems, such as networking hardware, rather
than the machines responsible for storing and processing data.

Linux development progresses rapidly, so to keep abreast of releases and bugs which
might hinder progress, I subscribed to the Linux Kernel Mailing List,6 the main forum
in which discussion of the kernel internals, the reporting of bugs and the setting of
development priorities takes place. This subscription was useful on several occasions,
despite the high number of daily messages, which often approached 1,000.

For conciseness, I will hereinafter adopt the convention that references to “Linux”
and “the kernel” refer specifically to the Linux kernel, except as may be clarified
separately in the text. This is a standard typographical convention in most kernel
literature.

Test harnesses

As the evaluation of the project was necessarily going to be quantitative, it was
important for a test harness to be committed to early on. This test harness should
allow me to reliably test the project and produce suitable results to determine whether
the kernel implementation has an impact on performance.

Developing my own test harness was out of the question. Generating sufficient
requests to keep a large network pipe full while simultaneously dealing with
packet corruption, timeout and sequence number repetition are tasks which are
time consuming to implement correctly, without contributing anything original to
the project.

Hence, several memcached testing frameworks were evaluated for suitability. A
harness called memaslap7 was eventually adopted, primarily due to it being unique in
supporting the memcached UDP protocol. Full details of the harnesses evaluated are
given in appendix A.2.

Other libraries

Programming in the kernel makes it difficult to directly utilise any third-party
libraries intended for user-space use, for a number of compatibility reasons I will
outline in §2.5. Very few libraries were suitable, with the exception of:

• SpookyHash for hashing keys of arbitrary length to an internal 64-bit integer
representation. It was originally implemented by Bob Jenkins in C++,8 and
ported to C by Matthew Grosvenor.9 I ported the latter C variant to be
compatible with the kernel.

6https://www.lkml.org
7Component of libmemcached, available at http://www.libmemcached.org
8http://burtleburtle.net/bob/hash/spooky.html
9The C port is a component of libchaste, available at https://github.com/mgrosvenor/libchaste

https://www.lkml.org
http://www.libmemcached.org
http://burtleburtle.net/bob/hash/spooky.html
https://github.com/mgrosvenor/libchaste
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• UTHash is a user-space hash table implementation due to Troy Hanson.10 It
features in the user-space implementation and was ported to the kernel.

2.4.2 Programming languages

C

The main programming language used for the implementation of the project was
C.

For historic and performance reasons, this is the de facto programming language for
all code in the main kernel source tree. Thus, C was the only reasonable choice
which would guarantee compatibility with the pre-existing kernel data structures
and interfaces.

Nevertheless, despite this choice being predetermined, the reasons underpinning C’s
continued relevance in the development of the kernel also make it a highly suitable
candidate for this project:

• Performance – proximity to the hardware and the availability of carefully
researched optimising compilers offer a distinct advantage in producing
efficient software programs;

• Cross-platform – a compiler for C can normally be found for most hardware
platforms, allowing code to be ported to alternative systems and satisfying the
platform independence requirement for the project;

• Maintainability – despite its considerable efficiency gains, C continues to offer
some of the programming abstractions common to higher-level programming
languages.

Python & shell

For support tasks not directly involving the kernel, it was most efficient to write
Python programs or shell scripts. This was particularly the case for managing the
test framework and for analysing and visualising performance data.

2.4.3 Development and test environment

Development work took place largely on my own personal machines, running the
Ubuntu 13.10 Saucy Salamander operating system. Additional resources on the
University MCS11 were used for backups. I am also grateful to the Systems Research

10http://troydhanson.github.io/uthash/

http://troydhanson.github.io/uthash/
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Group at the Computer Laboratory, who provided access to their high-performance
network environment for testing purposes.

It was impractical to use the MCS workstations for any development or testing.
Modifications to a running kernel require super-user privileges over the machine
concerned, owing to the risk of compromise to other system users. For obvious
security reasons, these privileges are not routinely available on the shared MCS
machines.

Revision control

An essential prerequisite for a project of this scale is the use of a revision control
system to organise the development process and capture changes to the source
code as it evolves. I chose to use the popular open-source git12 package for this
purpose.

git is a distributed revision control environment which was originally built to
manage Linux kernel development. It provides the ability to develop new features
on development branches, which are isolated forks of the repository. For new
features with no circular dependencies, branches were used for development to
avoid introducing instability to existing code. Thus I could delay integration of a
logical revision history for a completed feature until I was satisfied it adhered to
specification. This complemented the spiral model of development I adopted for
most of the work, which I will discuss in §2.7.

The same arrangement was also used to store each iteration of the LATEX source code
of this dissertation.

Backup strategy

A backup system was carefully arranged so as to mitigate the risk of unforeseen
hardware or software failure or indeed, user error. The system so designed is
illustrated in figure 2.4.

The use of git for revision control provided additional benefits for data security.
As a distributed revision control system, all development machines automatically
maintain a full working copy of the repository and its history, independent of any
central server.

In order to keep changes on either of the development machines in-sync, git auto-
commit hooks were deployed to automatically synchronise commits to my personal
Ubuntu-based file server. Geographic isolation was obtained by virtue of the file
server being situated outside Cambridge.

11Managed Cluster Service, formerly Public Workstation Facility (PWF)
12http://www.git-scm.com
13The GitHub logo is a registered trademark of GitHub, Inc. It is used here with kind permission.

http://www.git-scm.com
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Figure 2.4: The backup strategy adopted for the Unbuckle project.13

Although the simultaneous failure of the file server and both development machines
was unlikely, it is possible user-error could have caused data loss across the
synchronised repository. To manage this risk, the file server pushed nightly snapshots
to the MCS filestore and a weekly snapshot was made on Sunday evenings to an
external hard disk, which was normally kept powered down.

A free online git hosting service, GitHub, was also employed. Although this system
was primarily used for collaboration with my supervisors, the regular upload of code
at key project milestones also served as a backup.

Due to some disk driver issues when prototyping some kernel code, there were
several occasions when recovery from a backup was necessary to fix corrupted files
in the repository. I am pleased to report that the backup plan worked, because in
spite of these failures, no actual data loss occurred.

Testing strategy

The lack of safety and security protection for code executing in kernel context
made it imprudent to use the development machines for project testing. Software
bugs, however trivial, can have unpredictable consequences in the kernel, in certain
circumstances requiring a forced reboot of a machine or even corrupting data on disk
and damaging the operating system.



16 CHAPTER 2. PREPARATION

An abstraction layer was constructed to bridge the differences between user-space
and kernel software interfaces, permitting the same source-code to be compiled as
either a user-space or kernel application. Unstable code was first tested using the
user-space variant to identify bugs before they were permitted to enter the kernel
and cause system instability.

In addition, I used a sandbox environment to test unstable code against a running
kernel. This consisted of a lightweight Debian-based virtual machine running within
the VirtualBox14 virtualisation environment. Virtual machine snapshots were used to
facilitate efficient rollback of the virtual machine’s hard disk and other state in the
event a bug caused irrecoverable damage.

2.5 Initial experience

At the outset of the project, I had a reasonable amount of experience with C and
was already familiar with many of the formalisms and concepts underpinning the
language. This was due, in part, to the Programming in C and C++ course in Part IB of
the Tripos.

However, I had no prior kernel programming experience. This transition proved
challenging due to some fundamental differences of this style of programming,
viz.:

• No C standard library – the kernel’s compilation suite does not provide any
of the libraries commonly used by user-space code for memory management,
input-output traffic on a network, threading and similar tasks. Instead, it is
expected that low-level kernel interfaces will be used to call upon hardware
and other kernel subsystems directly. Unlike the system call interface (per §2.2)
and the C standard library, the kernel interfaces are not standardised and are
subject to change between kernel releases. They do not necessarily follow a
uniform convention across the many kernel subsystems and there are often
incompatibilities in the formats of the data they produce and consume.

• Documentation – there is very little up-to-date documentation for the kernel,
as most kernel subsystem developers assume the source code also serves as
the documentation. This can be particularly troublesome – tracing code in an
attempt to understand the kernel internals is hard work, especially when there
is heavy use of indirection (such as the network stack, which I will discuss later
in §3.2). I made some reference to literature [36], but unfortunately this has
partially been superseded by recent kernel architectural modifications.

• Development difficulties – user-space programming benefits from sanity
checks being made by the kernel to gracefully resolve any software faults
before they cause the system to become unstable. However, the kernel cannot
sanity check its own operations nor can it trap itself in the event of a serious

14https://www.virtualbox.org/

https://www.virtualbox.org/
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error. Unpredictable crash behaviour and volatility of log files often necessitates
inventive solutions to obtain debug information to trace a bug. In the absence
of more advanced techniques, this often requires carefully constructing log
messages at strategic points in the code to print debug output to a serial console.

Several Part II courses were also useful at various stages of implementation. The
kernel makes extensive use of the optimiser supplied as part of the GNU Compiler
Collection,15 for which Optimising Compilers was very useful to understand the theory
of the transformations made. Interaction with the network built upon knowledge
acquired in the Principles of Communications course.

2.6 Implementation approach

Before development could commence, it was crucial that ideas were consolidated and
a suitable plan developed. There were many possible approaches I could have taken
with implementation, so an initial consolidation was necessary to segment the work
into discrete work packages with clear internal milestones to measure success.

I chose to segment the project into three phases:

1. Core Implementation – a naïve implementation of the key-value store was
produced as a kernel module adhering to the memcached protocol, but with
no effort made to optimise its performance. The deliverable was a working
kernel module capable of communicating over a network. This represented the
core infrastructure upon which the following stages were based.

2. Performance evaluation – at this transition point in the project, integration
with the test harness was performed and some unforeseen bugs in memaslap
were resolved. Performance figures were collected to provide a baseline for the
forthcoming optimisations.

3. Enhancement & Optimisation – finally, I implemented the many enhancements
and optimisations available by virtue of operating in the kernel, returning
to phase 2 on each occasion to evaluate their impact, if any, on system
performance.

The core modules identified by the modular dependency analysis as being on the
critical path were the network server and back-end storage engine. As these were
also identified as being high risk items in the requirements specification, I elected to
restrict my early implementation of these modules to the simplest possible design.
This enabled early completion of phase 1 and promoted the demonstration of a
working end-to-end system early in the project timeline.

The integration of a network server was considered a high-risk task and deserved
some careful attention. The ultimate goal was to interact with a machine’s NIC at the
lowest possible level in the network stack while retaining platform independence.

15http://gcc.gnu.org

http://gcc.gnu.org
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I relegated this task to an optimisation, rather than a requirement for the core
implementation. For phase 1, the kernel’s socket interface was used instead. This
interface does not claim to improve performance over user-space, but it was very
similar to the one I was familiar with from user-space socket programming. Later
work once again optimised this into a custom network server in parallel with other
optimisations, rather than attempting to interact with and tame recalcitrant system
hardware as part of the project’s critical path.

2.7 Software engineering techniques

The methodology I adopted to manage the development and testing had the potential
to make or break the project, so it was important that a methodology for development
appropriate for the foregoing requirements, modular structure and implementation
approach was incorporated as early as possible.

2.7.1 Development model

I decided to adopt the spiral model [7], which fits particularly well with the
evolutionary nature of the project described previously. This model permits
a multifaceted approach in which project phases can be assigned independent
development methodologies. The core implementation (phase 1) which formed
the critical path in the module dependency diagram proceeded via the sequential
waterfall model [45] with strictly defined timeframes and progress criteria. The riskier
experimental work was prototyped and integrated via a more rapid prototype-measure-
refine feedback loop between phases 2 and 3.

The operation of the spiral model in the manner described is illustrated in
figure 2.5.

2.7.2 Testing

In addition to the development framework, testing was performed in accordance with
the methods outlined previously in §2.4.3. The difficulty of testing and debugging
code in the kernel meant it was only feasible to test the external interfaces exported
by the kernel module, for which a custom unit and regression test suite was
implemented to verify memcached protocol compliance.

2.8 Summary

In this chapter, I have summarised the work undertaken prior to implementing the
project. Background reading on key-value stores, in particular memcached, and
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operating system internals was presented. The initial analysis of requirements and
division of the project into manageable work packages was discussed to describe the
planning work which took place to ensure the project delivered on its goals.

The following chapter provides a thorough breakdown of the implementation behind
Unbuckle and the interactions which take place between its various modules.



Chapter 3

Implementation

This chapter describes the implementation of the Unbuckle key-value store introduced
previously, as both a kernel-resident module and a user-space application for
evaluation purposes.

As expected, the implementation process for this project proved to be a considerable
undertaking: the final end-to-end system consists of more than 6,000 lines of source
code. The most demanding components to build were those interacting directly with
the kernel, where the failure modes were challenging and effective debugging was
hard.

Given the complexity of the project, I will largely discuss the high-level modular
structure and architectural design of Unbuckle. I will do so with reference
to the specific data structures and algorithms used in its implementation and
the various techniques adopted to optimise the performance of the kernel-based
version. For brevity, I will not dwell on low-level technical details unless absolutely
necessary.

The key system components described in this chapter are:

1. Request pipeline (§3.1.1) – outlines the lifecycle of a request to Unbuckle in
terms of the operations necessary to receive requests, process them and transmit
responses.

2. Data structures (§3.1.2) – introduces the mechanisms by which key-value
mappings are stored in the back-end of the system for efficient retrieval,
primarily by use of hashing.

3. Network stack (§3.2) – gives an overview of the core mechanism for data
exchange between clients and the server which took two very different forms
over the course of the project. The optimal network stack, purpose-built for
Unbuckle’s use, minimises request latency by bypassing the kernel network stack
and integrating the key-value store directly with the network hardware.

4. Bucket allocator (§3.3) – describes a memory pre-allocation scheme which
reduces system latency by pre-allocating memory in buckets, allowing demands

21
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to be met more quickly.

5. Concurrency / multi-threading (§3.4) – presents the parallelised version of the
store, including details of how data structures were adapted to be thread-safe.

6. Scheduling (§3.5) – briefly discusses the adaptations made to influence the
kernel’s scheduler in the key-value store’s favour.

7. Port to user-space (§3.6) – the mechanisms by which the store was dual-
implemented for both kernel and user-space operation are discussed.

3.1 System architecture

3.1.1 Request pipeline

One of the first components to be implemented was the high-level request pipeline.
This code represents the core of the key-value store by interfacing the various
system modules together, co-ordinating the processing of a request from receipt to
transmission of a response.

As in many distributed systems applications, I decided to adopt a state machine
model to co-ordinate request processing. The organisation of states and their
transitions is depicted in figure 3.1.

ReceiveStart Decode Process
Send
Reply

Cleanup

No request

Request

System
shutdown

Malformed request

Figure 3.1: The state machine at the Unbuckle core

The pipeline is implemented by means of an enum field associated with each request.
State-dependent branching is used to select the correct code to execute as requests
make progress through the system. The five core states of the system are:

1. Receive – raw data are received from the network-handling code;

2. Decode – the packet is decoded, verifying its headers are correct and
determining the action the client application wishes the key-value store to make;
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3. Process – interaction takes place with the back-end data structures to retrieve
the value associated with a given key in the case of GET requests, or to store a
new key-value mapping in the case of a SET request;

4. Send Reply – a suitable response complying with the memcached protocol is
built and queued on an output queue for transmission back to the client;

5. Cleanup – request-dependent state is cleaned up in preparation for a new
request to be serviced.

The initial work was single-threaded for simplicity. In this version, the request
pipeline was spawned as a new thread of execution within the kernel and responsible
for all aspects of network interaction and request processing.

Later versions refined this approach. When multi-threading was added (§3.4), several
worker threads were spun up to provide parallel instances of this pipeline. However,
dedicated network worker threads were also introduced to co-ordinate the network
communication. It was necessary to adapt the “receive” and “send reply” stages
to exchange packets with the network handling threads by means of inter-process
communication (IPC) techniques, rather than performing the network interaction as
part of the core pipeline.

3.1.2 Data structures

Efficient storage of the key-value mappings in the back-end was an important
undertaking. Several data structures were tested for suitability, including a linked list
in the core implementation, and multiple hash tables as subsequent optimisations.
Each of the data structures adheres to a standardised interface, a simplified variant
of which is shown in listing 3.1. This enforces the treatment of the data structure as
a black box by the other modules in the system, facilitating rapid prototyping and
drop-in replacement of alternative back-ends at compile time.

int ub_store_init(void);

void ub_store_exit(void);

struct ub_entry *ub_store_find(char *key , size_t len_key );

int ub_store_add(struct ub_entry *entry);

void ub_store_del(struct ub_entry *entry );

Listing 3.1: Interface for back-end data structures.

As a linked list is not particularly interesting and, as expected, showed poor
performance under high load, I will only discuss the hash table here.



24 CHAPTER 3. IMPLEMENTATION

Hash table

A hash table proved to be a suitable data structure for the types of random access
workloads observed in a key-value store. It delivers an average cost of O(1) for the
three provided operations: find key, add entry and delete entry. The kernel provides
a standard hash table, implemented using C preprocessor macros for performance
reasons, which was used as the basis for the hash table in the project.

To deliver constant time performance, a hash function must be selected to avoid
excessive collisions in hash table buckets, as figure 3.2 demonstrates in terms of the
load factor, α. This was ensured in two ways. A large number of buckets, m, were
selected, to make the value of α negligible, and a hashing approach was carefully
designed so as to minimise collisions as much as possible. There is no easy method
for doing this, especially in this case, as the input keys are arbitrary and not drawn
from any well-specified distribution.

1
2
3
4
5

Hash table of
m = 5 buckets

Chaining due to
hash collision

Figure 3.2: A simple hash table example demonstrating the effects of chaining due to the hash
function suffering a collision. Due to chaining in bucket 2, any operation on the hash table

could require traversing the linked list of chained nodes, increasing the overall cost of
operations to O(1 + α), where α is the ratio between total items stored, n, and the number of
buckets, m. Here, α = n

m = 3
5 . A constant value of α, which does not vary as a function of n,

produces O(1 + α) = O(1) constant time.

For the hash function, the SpookyHash function (introduced in §2.4.1) was used to
collapse the entropy of an arbitrary length memcached key onto a 64-bit integer. This
is subsequently hashed again by the kernel upon insertion into the hash table.

The choice of SpookyHash was motivated by several key factors:

• Designed for performance – among hashes, SpookyHash is particularly fast,
hashing, in the best case, one byte per clock cycle.

• Avalanche property – each bit of the computed hash depends on a large number
of input key bits, ensuring the input entropy is distributed as much as possible
throughout the output.

• Consistency – SpookyHash is also used internally by memcached. While this
was not my primary motivation for selecting this hash, its use reduces bias
during the performance evaluation.
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Internal data structures

In addition to the back-end, several additional data structures are necessary for
internal processing of state, especially to track the progression of a request along
the request pipeline. The high overhead in performing memory allocation means
special care needs to be taken to ensure memory is reused where possible,
rather than slowing the request pipeline by re-allocating memory during request
processing.

3.2 Network stack

Key-value stores are typically network services, intended to act as a building block
for data storage in large distributed systems. Unbuckle is no exception to this rule, for
it is intended to replicate the function of memcached as a cache for a large number
of application servers requiring rapid access to data.

The construction of a scalable network stack which takes advantage of the benefits
of operating within the kernel to minimise per-request processing latency is thus a
central component of the project.

As discussed previously in §2.3, the implementation of a full network stack
interacting with networking hardware at the lowest level represented a high-risk task.
Hence, two network stacks were implemented at different stages of the project: one
using the socket interface, and another which specialises the IP and UDP processing
code specifically to this project’s requirements.

3.2.1 Socket interface

The socket interface represents the most common and well understood networking
API on UNIX-based platforms [50]. It abstracts the complexity of network interaction,
protocol implementation and hardware details away from user-space code into sockets
and a set of related kernel system calls, as shown in figure 3.3. The interface is a
fundamental component of many client-server applications due to its ease-of-use and
support for modern network and transport-layer protocols.

Familiarity with the socket interface from user-space programming made it the
obvious choice for the first key-value kernel module, thereby minimising the inherent
risks in writing a full custom network stack as part of the core project.

My code integrates at the entry point to the kernel network stack from user-space,
just below the system call layer. Consequently, the code functions almost identically
to user-space code, with only minor modifications necessary to use kernel data
structures rather than numeric file descriptors.

Interacting with the socket API within the kernel also permitted early performance
evaluation. The only difference between this interaction and the comparable user-
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Figure 3.3: The socket interface abstracts many low-level details into the kernel.

space operation is the initial mode of the processor when the operation is invoked.
Unbuckle executes in kernel context, so accesses the API without performing any
system calls. The hypothesis that the system call interface imposes significant
overheads on user-space packet processing code may thus be tested by running the
store in both user and kernel-space and comparing results (see §4.5.1).

3.2.2 Unbuckle low-level network stack

A later iteration of the network module made use of the exposed kernel interfaces to
integrate directly with the network hardware. To do this, I implemented a custom
IP and UDP protocol stack for packets destined for the key-value store. This was
specially optimised for the memcached protocol.

Unlike related work in this area, the final solution retains cross-platform compatibility
by using only the standard kernel interfaces, delivering on a design requirement
discussed in §1.1 and §2.3. In particular, all network hardware ever supported by the
Linux kernel is compatible; this stack is not restricted to a subset of expensive, high-
performance network interface cards (NICs), unlike other similar research systems
(see §1.3.2).

Linux network stack

In order to determine a suitable location to intercept packets as they arrive from
hardware, it was first necessary for me to gain a thorough understanding of the
lifecycle of a packet in the standard Linux network stack, from arrival at a NIC up
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Figure 3.4: The internals of the receive path of the Linux network stack.
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to delivery to an application. The complexity of the network stack made this a time-
consuming task. The culmination of my analysis is presented in figure 3.4.

The socket abstraction within the kernel is a misnomer, as transmit and receive
operations follow independent paths in the network stack and must be addressed
independently. However, it does provide a useful queueing capability for received
packets waiting to be consumed by an application. Throughout the stack, packets are
represented by a socket buffer data structure, struct sk_buff, commonly known in
the kernel community as an skb.

The kernel’s compatibility with a range of networking hardware dictates a need to
cleanly interface the various supported protocols and platforms together into a single
cohesive stack at every layer. Indirect function calls are widespread in this code to
enable late binding and runtime registration of new protocols with the kernel. This
makes tracing the path taken by a packet more challenging than simply following
function calls along the stack, as the protocol descriptor identifying the function to
be invoked is elsewhere in the kernel code.

Despite the network stack’s complexity, Linux has been subject to extensive work
to improve the performance of its network stack under high throughput workloads.
Several features introduced for this purpose are demonstrated in figure 3.4, including
the following two:

• The New API (NAPI) interface mitigates the number of interrupts raised by a
NIC by polling for new data when the rate of packet arrivals is high. Under the
assumption that a busy NIC will remain in this state for some time, this reduces
interrupts and significantly increases packet throughput. Network drivers must
be adapted to provide NAPI support, so the historic path involving an interrupt
per packet is retained for compatibility.

• Bottom half processing – as the name suggests, interrupts immediately halt
any active work on the processor, which can create performance difficulties and
prevent the system from progressing with useful work. To maintain system
responsiveness, modern device drivers defer work to other kernel contexts
where it has no priority advantage. One method for achieving this is the
soft interrupt mechanism shown in the network stack, implemented by a set
of ksoftirqd threads.

Performance bottlenecks arise at the top of the stack, where the interface with
applications requires system calls and privilege-level changes to take place.
Furthermore, the socket interface’s packet queue introduces latency, as there is
necessarily some delay between writing to this queue and an application processing
the signal that data is waiting.

There is much more that could be said about the Linux network stack, but for space
constraints, I leave further discussion to relevant literature [6] [13, Ch. 17]. In the
following, I discuss how Unbuckle’s low-level network stack integrates with the Linux
kernel stack.
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Integration location

Ideally, the key-value store would be integrated with the network stack in such
a way that latency due to queueing is minimised, while simultaneously avoiding
unnecessary code duplication.

Location Benefit Drawback

7 NAPI action handler:
Register with napi_struct
action indirection node

Low latency – low in
the stack and polls NIC
directly.

Driver-specific:
premature hardware
specialisation.

3 netfilter interface:
Register callback with IP-
layer netfilter hooks

IP routing and packet
fragmentation available.

A malfunctioning hook
may drop packets for
other applications.

7 New protocol handler:
Register with struct

packet_type indirection
node

Standard network stack
behaviour for new
protocols.

Not drop-in replacement
as client code must be
changed. Risk of layering
violations.

Table 3.1: Possible locations for the key-value store to integrate in the network stack.

By careful analysis of the network stack, a set of possible integration locations was
drawn up. These are listed in table 3.1 alongside an indication of their suitability.
Of particular importance here are the requirements for hardware independence and
co-operation with other networked applications on the machine.

Ultimately, I decided to extract packets from the stack using the netfilter interface,
provided as part of the IP protocol implementation. A netfilter hook comprises a
callback function dynamically registered with the kernel, which is queried for every
inbound IP packet. The function can inspect and mangle the packet as it wishes,
returning one of three decisions to the network stack:

• ACCEPT – the packet continues up the stack towards the socket interface;

• REJECT – the packet is dropped and its memory freed; or

• STOLEN – the netfilter hook becomes responsible for onward processing of the
packet.

The possibility of accepting and rejecting packets makes netfilter a common tool in the
implementation of firewalls. The lesser known option to steal a packet is very useful
here, allowing the Unbuckle kernel module to inspect inbound packets and filter off
only those destined for its UDP port number. As this occurs within the IP protocol
handler, it remains possible to benefit from the kernel provided IP fragmentation.
This permits data up to the maximum size of an IP packet, 65 KiB,1 to be transferred,
if support for this was added to the memcached protocol.

11 KiB = 1024 bytes, where KiB means kibibyte.
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This requires transcending layer boundaries to inspect UDP port numbers, but is no
different from the behaviour implemented by a firewall. In particular, the integrity of
packets not destined for the key-value store is retained as they are not modified.

unsigned int

ub_udpserver_nethook_callback (..., struct sk_buff *skb , ...)

{

struct iphdr *iph = iphdr(skb);

/* Verify the packet uses the UDP protocol.

Non -UDP packets cannot be for Unbuckle. */

if (iph ->protocol != IPPROTO_UDP)

return NF_ACCEPT;

struct udphdr *udph =

(struct udphdr *) ((char*) iph + iph ->ihl * 4);

/* Check whether the UDP packet is destined for Unbuckle ,

or some other UDP port on this system */

if (ntohs(udph ->dest) != UB_UDP_PORT)

return NF_ACCEPT;

/* Control flow reaching this point indicates the packet

is for Unbuckle. Perform onward processing and halt

further network stack progression. */

process_request(skb);

return NF_STOLEN;

}

Listing 3.2: An example netfilter hook for filtering off UDP packets for Unbuckle.

An example of the code required to inspect a network packet and steal it when
appropriate is given in listing 3.2.

This approach permits requests to be processed directly in the ksoftirqd handler,
reducing the latency between the packet arriving at the machine and it moving into
service. The loss of the queue in the socket interface to buffer packets under high
system load is not an issue, as the queues and memory buffers allocated within most
modern NICs are typically sufficient. In any case, under high load, the NIC becomes
a bottleneck far more quickly than the queue at the top of the stack.

Transmission

With a method to receive network packets directly from the hardware, our attention
must now turn to a method of transmitting responses. The socket interface packages



3.2. NETWORK STACK 31

IP Stack dev_queue_xmit()

Unbuckle
K-V StoreUDP

Stack

Driver Queue

SKBs

Acquire TX lock

dev_hard_start_xmit()

NIC
Driver

Figure 3.5: The UDP transmission path in the Linux network stack.

both receive and transmit operations into a single abstraction, but the two paths are
distinct in the network stack and must be implemented independently. As expected,
the socket interface is overly general and exhibited subpar performance, motivating
an alternative low-level solution.

The Linux network stack for transmission is mostly a reverse of the aforementioned
receive path. A brief overview of the transmit path is shown in figure 3.5. A key
requirement of the transmit handlers is their generation of suitable protocol headers
based on data contained in the socket descriptor. If the socket interface is not used,
the responsibility for generating such headers falls to the key-value store.

Queueing also plays an important role in the transmit path to ensure packets are
appropriately prioritised based on user-selected queueing disciplines, for example to
allow latency-sensitive packets to jump ahead of others.

Once again, there were several choices as to possible integration locations, as detailed
in table 3.2. Based on these options, the choice was made for packets to be injected
in the prioritisation and queueing stage. This avoided the need to acquire locks to
transmit on a NIC and ensures the selected queueing discipline is enforced on the
output packet flow, providing administrative control over the priority of packets in
accessing the NIC.
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Location Benefit Drawback

7 Socket interface
Abstracts over low-level
network stack details.

Packet headers generated
automatically.

Subpar performance as
too general.

3 dev_queue_xmit()
Passes complete socket
buffer to queueing
functions.

Respects a user’s
traffic prioritisation
requirements.

Packet header
generation must now be
implemented correctly.

7 dev_hard_start_xmit()
Last generic kernel
method before NIC
transmit path is invoked.

Low latency – packet
ejected directly to NIC
TX buffer by DMA.

Contention in acquiring
TX lock. Does not respect
a user-configured output
queueing discipline.

Table 3.2: Possible locations for the key-value store to integrate with the network stack for
transmission.

Data structure optimisations

The work invested in constructing the network server permitted further performance
optimisations to the data storage in the back-end hash table. This ultimately
produced a request pipeline with significantly fewer memory copy operations than
comparable code would require using the socket interface.

The availability of the raw struct sk_buff packet data structures permits this format
to be used for storing key-value mappings in the hash table. Rather than incur
the overhead of constructing a new socket buffer to send a response to every
request, the previously constructed socket buffer for the request key-value mapping
is simply returned from the hash table, destination UDP, IP and Ethernet headers
are prepended, and the result is written to the output queue, reducing request
latency.

3.3 Memory pre-allocation

As an in-memory key-value store, Unbuckle places high demands on the availability
of system memory to store data added to the cache by a memcached SET request.
The kernel memory allocator, kmalloc(), provides the kernel module with access
to physical, pinned system memory, without the burden of a virtual memory
abstraction. However, profiling of an early iteration of the store demonstrated that
inefficiencies abound in on-demand memory allocation, namely:

• Internal bookkeeping overheads induce latency as high as 1,000 cycles in the
memory allocator. This is further hindered by the kernel treating itself as
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sacrosanct, always attempting to satisfy its own allocation requests even if this
requires moving memory or swapping user-space memory pages out to disk.

• Internal fragmentation due to the unit of memory allocation being a memory
page, typically 4 KiB on an x86 system. Key-value store data sizes are rarely
larger than several hundred bytes [41], so calling the allocator and only using a
fraction of the allocated page leads to wastage.

A custom bucket allocator was implemented to amortise these memory allocation costs
and more efficiently utilise the allocated memory. The single change of removing
the memory allocation stage from the processing path of a SET request was highly
effective, reducing latency and its variability for SET requests by as much as 60%.

Full pages

Bucket m (1 ≤ m ≤ n)
for item sizes
min + (m− 1)e < size ≤ min + me

Active Page

Figure 3.6: An example bucket used in the bucket allocator for amortising memory
allocation overheads and bounding internal fragmentation. There are n such buckets, each of
which is assigned one or more memory pages to store items in a fixed size interval. The size

of the intervals is user-definable by a minimum bucket size, min, and a growth factor, e,
which defines the width of the interval.

This system follows the principles of the slab allocators often used for memory
management [8], with some further specialisations for this particular implementation.
The range of possible sizes for a key-value pair is divided into non-overlapping
segments, or buckets, ranging from 32 bytes to 1 MiB, the largest item supported
by the memcached protocol.

Each bucket is responsible for a small range of this space according to a logarithmic
scale. This makes sense as smaller keys and values are more common and thus
warrant finer granularity to reduce fragmentation. The factor defining the growth
rate of this scale is user-configurable to permit system tuning.

Buckets are allocated one or more pages of physical memory, which are subdivided
into chunks for storing the individual key-value pair mappings, as shown in
figure 3.6. In this way, memory only needs to be allocated when all of a bucket’s
pages become full, and the bounded data stored in each bucket provides an upper
bound on the maximum degree of memory fragmentation.
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3.4 Concurrent request processing

3.4.1 Overview

The early development of Unbuckle focussed on a single threaded implementation of
the store, which delivered some performance gains over user-space and comparable
commercial systems. However, the law of diminishing returns led to an impenetrable
performance wall, with throughput eventually stabilising at approximately 3 Gbps,
well below the 10 Gbps target.

To continue improving, it became necessary to explore threading techniques to
explicitly parallelise the workload. Key-value stores are excellent candidates for such
parallelisation, as requests to the store are independent of one another and require
minimal co-ordination owing to their relaxed semantic guarantees.

Many synchronisation primitives are already available to kernel module developers
through work done to benefit from multiprocessor systems. Nevertheless, these tools
do nothing to ease the complexity of writing safe code without overzealous use of
locks.

3.4.2 Multi-threaded architecture

The concurrent version of Unbuckle re-used earlier work as much as possible in
its modified structure. Most of the core logic of the system required minimal
modification, with the exception of two modules: the back-end data storage and
the network server. These were areas in which correctness would be compromised
through naïve re-use of code, thus demanding more careful attention.

The revised system employs three distinct bodies of code:

• The request router provides the low-level interaction on the network stack
receive path. It intercepts key-value store requests and routes them to worker
threads for processing.

• Multiple worker threads process requests according to the standard request
pipeline described in §3.1.1.

• The transmit manager co-ordinates transmission of response data from each
of the worker threads onto the NIC, with particular care taken to avoid
lock contention in the network stack’s transmit path, which could clobber
performance gains achieved elsewhere.

The high-level design of the system is shown in figure 3.7.



3.4. CONCURRENT REQUEST PROCESSING 35

Request
pipeline

Worker threads
(Affinity for one processor core)

R
eq

ue
st

ro
ut

er
D

ed
ic

at
ed

th
re

ad

Tr
an

sm
it

w
or

ke
r

D
ed

ic
at

ed
th

re
ad

Kernel
receive

path

Kernel
transmit

path

Figure 3.7: The multi-threaded workflow in Unbuckle.

3.4.3 Work distribution

A number of possibilities were available with respect to routing requests to each
of the worker threads, including deterministic key routing and round robin. These
approaches are illustrated in figure 3.8 and evaluated in the following sections.

Deterministic key routing

This scheme subdivides responsibility for the key space between each of the workers.
Inbound requests are inspected and passed to the appropriate worker for their
requested key, as shown by the pseudo-code algorithm in listing 3.3. The motivation
is for each thread to benefit from local CPU caching to keep its working set of keys
closer than DRAM, reducing latency.

static int number_of_worker_threads;

thread_id route_request_to_thread(char *key)

{

/* Hash key to fixed width integer using Spooky */

uint64_t key_hash = spooky_getHash(key);

/* Route to correct worker thread */

int thread = key_hash % number_of_worker_threads;

return thread;

}

Listing 3.3: Request routing in the deterministic key routing scheme.
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Unpopular key
Lightly loaded worker

Figure 3.8: Comparison of two approaches to distributing work between worker threads.

Although this approach to routing would be optimal if all key-value pairs were
uniformly popular, this is not the case in real-world deployments, which observe
a power law distribution in the frequency of lookups of particular keys [4].

If this approach was adopted for Unbuckle, the distribution of work across threads
could be highly non-linear, as shown in figure 3.8a. This would eventually lead to
cascading system instability across the distributed system as requests for popular
keys to overloaded worker threads time out. Back-end database servers would
instead be queried to render this data, increasing load and risking congestive
collapse.

Round robin routing

The round robin scheme which was actually taken forward for implementation takes
the view that any worker thread can process any inbound request. Under modest
load, requests will be shared equally between the workers irrespective of the key
specified, as shown in figure 3.8b. Although this approach is more complicated to
implement safely, it assists with scaling up to the long-tailed distribution of key-value
pair accesses. The algorithm implementing this is given in listing 3.4.

Despite this methodology reducing temporal and spatial locality for caching, it is
expected that the shallow hash table described in §3.1.2, in combination with a
shared L3 cache, continues to permit popular keys to be served from cache rather
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than DRAM. Moreover, exceptionally popular keys are likely to be retained in the
private caches of individual processor cores.

static int number_of_worker_threads;

thread_id route_request_to_thread(char *key)

{

/* Last thread a request was routed to */

static int last_thread;

/* Route to the next thread in the round robin ,

with wrap around , if necessary */

thread_id route =

last_thread ++ % number_of_worker_threads;

return route;

}

Listing 3.4: Request routing in the round robin routing scheme.

Hybrid approach

I will briefly note here that a hybrid of the two mentioned schemes may be
appropriate in some circumstances, most notably on machines employing non-
uniform memory access (NUMA) memory hierarchies.

As many-core chip multiprocessors grow in popularity, the memory gap between
processor and DRAM performance becomes a burden to scalability [56]. NUMA is
a workaround to this problem which makes sets of processor cores responsible for
subsets of main memory. A group of one or more processors sharing a subset of main
memory is termed a NUMA node. NUMA ensures memory bandwidth continues to
scale with processor core count for parallel applications. Threads maintain affinity
to particular NUMA nodes, staying local to the subset of memory containing their
working set. Accessing remote system memory requires crossing an off-chip bus to
another node, which introduces latency.

Careful scheduling of key-value lookup requests on such systems may benefit
from a layered routing scheme: deterministic key routing to a nominated NUMA
node, followed by round robin routing to individual workers. This ensures worker
threads spend the majority of their time accessing local memory to service requests,
without the risk of saturation in the presence of popular keys. However, the
performance tradeoffs are likely to vary across NUMA architectures, so machine-
specific configuration would be necessary to obtain optimal performance. NUMA-
aware scheduling support is still in its infancy in Linux and further discussion of
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NUMA is beyond the scope of this dissertation, although alternative sources describe
it in detail [24, Ch. 5].

Inter-process communication (IPC)

Once a routing approach had been chosen, it was necessary to construct the
infrastructure for communicating work units to the worker threads. The kernel offers
a variety of methods for IPC, including soft interrupts, tasklets and work queues [55],
but none of these techniques are suitable. They all involve the kernel scheduler, which
induces extra high latency due to kernel delay in scheduling work – as much as a 5×
increase to 1,000 ± 800 µs. A dedicated communication scheme involving queues of
network packets, represented by sk_buff data structures, was instead constructed for
this purpose. The work done to adjust the behaviour of the scheduler is described in
more detail in §3.5.

3.4.4 Synchronisation primitives

Of the few guarantees provided by the memcached protocol, perhaps the most
important is the assurance that client operations on the store will be atomic – either
they occur in their entirety or not at all, and readers observe either the old or new
state, not a corrupted mixture of the two.

To ensure data are not modified by multiple threads simultaneously, the correct
implementation of locking to key data structures was necessary in the multi-threaded
version.

Hash table

Protection of the hash table was implemented by way of a reader-writer locking
mechanism, which permits multiple concurrent reader threads to proceed in parallel.
Updates to the data structure take place under an exclusive lock which prohibits
any other readers or writers during the time the lock is held, thereby protecting the
integrity of the data structure.

Special care was taken to reduce contention for the lock by ensuring only the essential
lines of code were protected in the critical section. Moreover, to minimise the risk of
concurrency bugs, locks were confined to the hash table and did not cross the external
interface to other modules. The operation of this locking system is demonstrated in
figure 3.9.

This design was motivated by an analysis of a large memcached deployment at
Facebook, which indicated as many as 97% of requests to their memcached clusters
are GET requests [41]. It may be possible to implement a more complex locking
strategy which permits multiple writers, but since writing does not represent the
common case, any real-world performance gain would most likely be negligible.
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Figure 3.9: A time sequence diagram demonstrating the co-ordination of three workers using
a multiple readers, single writer synchronisation scheme.

Thread queues

Two additional locations require the use of locking to co-ordinate the behaviour of
threads:

1. The interface over which the request router queues work up for individual
worker threads; and

2. the equivalent interface at the end of the pipeline, when a worker queues an
outbound packet for the transmit worker to send.

To minimise latency, this co-ordination is implemented by means of a simple spinlock.
Contention is reduced in each case by providing each worker thread with a local
receive and transmit queue, which the request router and transmit worker access for
each thread in order to push and pop packets.

3.5 Scheduling

One of the many benefits to moving into the kernel is the ability to interact directly
with the system scheduler.
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The scheduler is the kernel subsystem which solves the scheduling problem to allocate
finite processor resource to processes which are waiting to run. Processes are typically
allocated a bounded period of time, a quantum, during which they can use the
processor before the kernel recomputes priorities and considers pre-empting active
threads. The decisions made by the scheduler can be influenced to some extent by
user-space code, but the behaviour ultimately remains at the mercy of the kernel,
who can choose to ignore the provided hints.

Working inside the kernel, this subterfuge can be overruled. Unbuckle takes advantage
of the available control layers to minimise scheduling behaviours which are a
detriment to performance. It makes a number of configuration tweaks, especially
in the multi-threaded version:

• Hard thread pinning is configured by setting the processor affinity for each
thread used by the system. Without this configuration, the kernel often migrates
threads between cores, causing performance to suffer during the context switch
and after due to the loss of cache affinity.

• Threads are prioritised to always run and are not pre-emptible. This permits
Unbuckle to hold a processor for as long as necessary to complete the active
requests to the store, without risking a process context switch.

• On NUMA systems, NUMA-aware thread pinning is used to ensure thread
processing (and memory allocation) does not cross NUMA boundaries, which
can have poor performance due to crossing an off-chip bus, as described
in §3.4.3.

The result of these changes is demonstrated in figure 3.10, which shows the multi-
threaded version of the store in operation. The priority given to the Unbuckle threads
is clearly visible.

Figure 3.10: Output from the top command on a machine running the multi-threaded kernel
version of Unbuckle described in §3.4. This demonstrates the worker threads (unbucklerx)

and transmit worker (unbuckletx) occupying their respective processor cores with 100%
utilisation. The request router runs as part of the netfilter hook in soft interrupt context,
under one of the ksoftirqd/N threads, where N is the processor core SMP identifier. The

soft interrupt handler for processor core zero is shown at the bottom of the screenshot.
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3.6 User-space vs. kernel-space

A unique problem for Unbuckle was the requirement that the store should function in
two orthogonal scenarios: as a user-space application and as a kernel module. Ideally,
minimal modifications would be made to code compiled for either mode to ensure
validity of performance comparisons.

This task was non-trivial: as previously described in §2.2.1 and §2.5, programming
paradigms differ significantly between kernel and user-space. Code written for the
former is incompatible with the system call interface provided in the latter, and vice
versa.

A survey of modules and their suitability for porting is given in table 3.3.

Module Portable? Difficulty Notes / Mitigation in user-space

Request pipeline 3 Low Pipeline & packet decode
unchanged.

Kernel hash table 7 – Use UTHash (§2.4.1) instead.

Socket interface 3 High Socket function call semantics
different.

Low-level network stack 7 – No direct access to hardware.
Must use socket interface.

Bucket allocator 3 Low Allocate memory by system
calls – malloc(1) rather than
kmalloc(2).

Concurrency library 7 – Depends on non-portable low-
level network stack. Kernel thread
implementation incompatible
with pthreads.

Scheduling 3 Medium Requests may not be honoured.

Table 3.3: Suitability of Unbuckle modules for user-space.

To facilitate on-demand transitions between the two versions, an abstraction layer
was constructed to hide the external interfaces. The compilation process was re-
configured to swap in an implementation of the abstraction layer compatible with
the target compilation mode, a process greatly simplified by the preparatory work to
plan the interfaces between modules.

For the majority of function calls, method signatures in the kernel and user-space are
similar. This permitted C preprocessor macros to be used for the abstraction, which
minimises detrimental performance impacts by specialising to a particular mode of
operation at compile time, rather than at runtime.
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However, there were cases where differing semantics made the port more challenging.
An example is given in listing 3.5, where the method provided for reading data from
an open socket is compared between the user-space and kernel interfaces.

/* Kernel */

int kernel_recvmsg(struct socket *sock ,

struct msghdr *msg ,

struct kvec *vec ,

size_t num ,

size_t size ,

int flags);

/* User -space */

ssize_t recvmsg(int sockfd ,

struct msghdr *msg ,

int flags);

Listing 3.5: Method signatures for receiving data from a socket in the kernel and user-space.

The kernel’s kernel_recvmsg method expects the internal kernel data structure
describing the socket to be passed as its first argument. However, in user-space,
these details are hidden behind a numeric socket identifier passed to the system call
recvmsg. Another problem is obscured in the method signature, but arises when the
semantics of each method are considered. The memory buffer provided2 is expected
to be a different type of memory address in each of the two methods – user-space
expects a virtual address, while a call within the kernel requires a physical address.
Attempting to mix address types risks a memory fault and kernel crash.

It is evident the solution to these problems lies beyond the remit of the abstraction
layer – dependencies on the nuances of how data are stored and manipulated to
suit these method calls exist throughout the store’s modules. As a reasonable
compromise, a separate implementation was dynamically linked in at compile time
for the code segments which were sufficiently different as to make an abstraction
layer unworkable.

3.7 Summary

This chapter detailed the implementation work I have undertaken for the Unbuckle
project. The overall system architecture was discussed with reference to the core state
machine and data structures. The development of two distinct network stack modules
was described, with particular emphasis on the work carried out to understand
the Linux network stack for communicating directly with the machine’s NIC for

2The pointer is passed by the *vec argument in the kernel and as a member of the *msg structure
in user-space.
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performance. The cross-section of layers from textbook networking and the kernel
implementation which had to be integrated to form a cohesive system made this
module one of the most technically challenging aspects of the implementation.
Then, I moved on to discuss the implementation of a slab allocator-like scheme for
optimised memory allocation performance.

This work produced a functional end-to-end key-value store, but further work
took place to make the code suitable for multi-threading within a kernel context.
This included the resolution of complex issues of work distribution and thread
synchronisation within the hostile kernel programming environment. The benefits
of moving to the kernel were demonstrated by several modifications made to the
scheduler. Finally, a user-space port of the project was discussed.

As expected, the implementation of a key-value store in the kernel proved a
challenging endeavour, during which I gained substantial knowledge of the kernel’s
inner workings. The success of the final solution and its performance improvement
over the user-space port and pre-existing commercial systems will be reviewed in the
following chapter.
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Chapter 4

Evaluation

The objective of this chapter is to review Unbuckle’s success at meeting the original
project success criteria and at delivering benefits over state-of-the-art key-value stores.
Hence, I begin by discussing the original project success criteria and how Unbuckle
meets (and exceeds) them. Then, I briefly discuss the testing strategies applied.
An extensive quantitative evaluation to assess the performance impact of various
optimisations is carried out. Finally, I compare the user-space and kernel versions
of Unbuckle, and show that it outperforms contemporary optimised commercial key-
value stores. Comparisons against research systems are also made, where I find
Unbuckle is competitive.

4.1 Overall results

The success criteria of the project, as described in the original proposal (see
appendix A.4), have all been met or surpassed. They are briefly summarised below,
with pointers to the relevant discussion in this document:

Criterion 1: The implementation of a [platform-independent] key-value store as a Linux
kernel module which is compliant with the memcached protocol, including [...] network
protocols [...] and selection of suitable data structures to maximise efficiency.

This constituted the first phase of the project, which after teaching myself how
to program in the kernel, was completed very early in the project to provide a
framework for later success criteria to be accomplished. The overall organisation and
approach to the project was described in chapter 2, the implementation of suitable
interfaces and back-end data structures in §3.1.2 and integration with the kernel’s
socket interface in §3.2.1.

By using a standard Linux kernel, standard system interfaces and commodity server
hardware to build and evaluate the store, the system requires no specialist hardware
or software stacks, making it as platform independent as memcached and similar
user-space stores.

45
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Criterion 2: Performing suitable testing [and load simulation] to gather performance data
against an in-kernel and userspace instance of the key-value store.

Testing and load simulation is the primary subject of the forthcoming chapter. A
suitable test harness, memaslap, was selected in §2.4.1 from a variety of choices
given in appendix A.2. The port of the kernel module for user-space operation
was introduced in §3.6 along with the abstraction layer specially constructed for this
purpose.

Criterion 3: The introduction of optimisations in a second iteration of the key-value store
module [...] to exploit the additional information and control interfaces in the kernel in a bid
to further optimise the system’s performance.

A wide array of extensions made to the project with the goal of improving
performance have already been discussed in §3. These include optimisations
mentioned in the original proposal, but the majority came to light as the project
progressed and the available opportunities became apparent:

• Low-level network interaction – one of the most complex optimisations was
the construction of a network server which integrates with the lowest level of
the network stack just after packets are emitted from the network driver. The
steps taken to implement this were described in §3.2.2, including a summary of
the work undertaken to trace the intricate Linux network stack.

• Memory pre-allocation – the costs of allocating memory were amortised over
many SET requests by introduction of the bucket allocator, described in §3.3.

• Multi-threading – the implementation of the custom network stack unlocked
the ability to spread the internal work across multiple CPU cores to benefit
from parallelism. This was discussed in §3.4.

• Scheduler – the modifications made with respect to improving the scheduling
of key-value store work in the kernel were discussed in §3.5.

4.2 Testing

As described earlier, the challenges of testing kernel code are substantial. Neither
formal methods nor user-space test frameworks are directly applicable due to the
extremely large space of system and configuration permutations.1 Developers
typically rely on a combination of community feedback and external interface testing;
full coverage testing cannot be guaranteed. The complexity of this task is perhaps
demonstrated by Yang et al.’s work to formally verify file systems [57]. While a
substantial effort, this touched but a small subsystem in the kernel codebase.

Nevertheless, it was necessary to verify the correct operation of Unbuckle with respect
to the memcached protocol to ensure data are correctly stored. This was especially

1For more information, see Greg Kroah-Hartman on the Linux Kernel, a Google Tech Talk with a
segment on kernel testing, available at http://youtu.be/L2SED6sewRw?t=14m29s.

http://youtu.be/L2SED6sewRw?t=14m29s
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important as high-risk modular designs were introduced. The complexity of the
multi-threading and network server modules, for instance, necessitates independent
assurance that they were functioning as specified.

A shell script is used to co-ordinate the testing process, running a sequence of unit
tests to verify compliance with the initial specification. Some regression tests are
included for major bugs which I had corrected. To avoid the kernel testing difficulties,
the black-box testing approach is used, whereby tests are written to verify correct
output, in this case over the network, in response to well-defined input without
knowledge of the internals of the implementation [44, pp. 55–ff.]. The test routines
provide a user-definable parameter to control test duration. Shorter tests provide
confirmation of correct semantic operation, while longer runs are able to test failure
scenarios, such as running out of memory.

An example run of the test suite is demonstrated in figure 4.1.

Figure 4.1: Successful test output from the Unbuckle unit and regression testing suite,
testing the multi-threaded iteration of the store using the low-level UDP server.
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4.3 Approach to empirical evaluation

In this section, I will briefly outline the high-level approach to analysing Unbuckle’s
performance that I take for the remainder of this chapter. This evaluation is split into
two distinct components:

1. Internal optimisations are evaluated to demonstrate their benefits and confirm
the investment of engineering effort was worthwhile.

2. External comparisons are then made with competing state-of-the-art key-value
stores to determine how Unbuckle fares in relation to widely deployed systems.

4.3.1 Test environment

The collection of data in these experiments took place on the SRG’s high-performance
10 Gbps test network. The specification of the test machines and networking
equipment is provided in appendix A.3.1.

Experiments involving the commercial memcached key-value store use release
1.4.17 of this product and are optimised according to recommendations laid out in
appendix A.3.3. It is worth noting that an out-of-the-box memcached installation
exhibits significantly poorer performance (2–3× lower throughput).

Test harness

Except as otherwise noted in the text, the memaslap load simulation and performance
evaluation utility, described in §2.4.1, was used to stress-test each key-value
store. This introduced two problems which required resolution before work could
proceed:

• memaslap has tunable parameters for varying the simulated workload,
including the ability to specify the number of internal worker threads and the
size of each batch of requests issued to the system. To select appropriate values,
I ran calibration experiments sweeping the parameter space and picked the
values at which memaslap performed best.

• The user-space nature of memaslap is problematic. Since the performance
metrics are measured for round-trip requests, user-space overheads at the client
side are part of the result. Consequently, a memaslap client was often unable
to saturate the Unbuckle server; hence, I made sure to use sufficient concurrent
load generators to fully load the server in all experiments.
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4.3.2 Data collection methodology

To permit a fair comparison of datasets, each machine was rebooted prior to each
test run to ensure no cumulative effects due to processor cache behaviour. The same
machines were used to collect data in each experiment, each with a uniform system
image and configuration.

This is a tedious and error-prone task which I automated with a set of bash scripts to
co-ordinate the machines and automate the reboots. A sample of one of the scripts is
provided in appendix A.3.2.

Minor modifications were also made to memaslap to incorporate a raw data reporting
module to work around the limited scope of its internal statistics engine. This
permitted, in particular, the computation of the percentiles of each run, which were
necessary for request latency analysis. The raw output was analysed in situ by a set
of Python scripts to produce graphs for inclusion in this report.

4.4 Evaluation of internal optimisations

4.4.1 Request pipeline breakdown

To understand the divisions of work in processing a request to the key-value store, I
added instrumentation to measure the processor cycles expended in each major stage
of the request pipeline. The results are presented in figure 4.2, evaluated against the
in-kernel version using the low-level UDP server (§3.2.2).
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Figure 4.2: A breakdown of the processor cycles consumed by a request in each stage of the
Unbuckle pipeline (per §3.1.1). Error bars on the bar plot show the standard deviation from

the mean, but the only errors of significance are in the memcached decode stage. Cycle
counts were averaged over three runs using a fixed request size of 1024 bytes.

The total cost of a request is around 5,800 cycles. For comparison, merely sending
a UDP datagram from user-space takes around 20,000 cycles. Most stages perform
a deterministic amount of work, typically operating on the same quantity of data
in the header or request, as demonstrated by the absence of variance. The request
processing stage is the most costly, as we would hope for in a well-tuned system.
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While the 2,500 cycles spent processing the request may afford opportunities for
further optimisation, it is worth noting that this only corresponds to approximately
1µs of “wall clock” time.

Header decoding

Substantial differences between the decoding of the UDP header and parsing of the
memcached header can be observed. The former is binary, whereas the latter is an
ASCII header. Binary headers adhere to a fixed layout in memory, which permits
immediate decode to extract data – indeed, the UDP decode constitutes just 1% of
the overall processor time. Unfortunately, string processing for parsing the ASCII
header produces many data-dependent branches, which do not interact well with
speculative processors.2

4.4.2 Network server

As described previously in §3.2, Unbuckle supports two distinct approaches to
network connectivity when operating in the kernel: the socket interface at the top of
the network stack, and low-level interaction in the IP protocol processing layer.

The low-level optimisation was one of the most time consuming to implement
correctly, but it improves performance and opens possibilities for other optimisations,
such as multi-threading.

Figure 4.3 shows the transactions processed per second for a single threaded version
of the key-value store with each of the two network servers. A range of small,
medium and large request sizes was used corresponding to figures from Facebook’s
memcached infrastructure [41]; these data points will appear in several experiments
throughout this chapter.

Transaction throughput

As demonstrated in figure 4.3a, the custom low-level network stack achieves
approximately a 50% gain over the socket interface for large requests.

I should note this figure may well be an underestimate of the network server’s full
potential. We would expect the throughput in transactions per second to reduce with
increasing request size due to the overheads in memory copy operations for larger
requests. It is likely that the capacity of a single thread of execution is exhausted
before the network server’s processing capability, producing the effect shown. I
investigate the effects of multi-threading the key-value store in a later section and
find a 4× increase in throughput (§4.5.3). I cannot fairly compare a multi-threaded

2memcached does have support for a binary protocol variant. However, the ASCII protocol is most
widely used, and load testing tools do not currently support the combination of UDP and the binary
protocol.
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Figure 4.3: Comparison of the two approaches for network connectivity in Unbuckle: the
in-kernel socket interface and the custom low-level UDP server.

version of the network server here because the socket interface is not itself multi-
threaded.

Packet loss

The rate of UDP packet loss3 for each network server is given in figure 4.3b. UDP,
by its nature as a connectionless protocol, is susceptible to some intrinsic loss of
packets due to queueing delay in switch buffers and corruption in memory copy
operations.

The low-level network server achieves a much lower rate of loss across the spectrum
of request sizes than the socket interface, despite identical networking infrastructure,
load and higher packet throughput. This suggests a high rate of contention in
the socket interface’s packet queue (see the top of the network stack diagram in
figure 3.4), whereas loss in the network itself is not of significance. The queue rejects
packets at a rate of more than one per second for medium and large request sizes,
while the custom network server loses no more than five packets across an entire
simulation run.

An empirical evaluation of this effect in terms of the queue blocking probability might
be possible [30, pp. 269–ff.], but would require extensive modifications to the kernel
to add the necessary instrumentation and is beyond the scope of this project.

3For the purposes of the ensuing discussion, “loss” subsumes any event which caused a UDP
packet to fail to reach its destination successfully, including a packet dropped in a queue, a packet
dropped due to checksum failure/corruption, and other similar events.
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4.4.3 Bucket allocator

The concept of memory pre-allocation was introduced in §3.3. This optimisation
seeks to amortise the cost of memory allocation in SET request processing over many
requests.
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Figure 4.4: A CDF to compare the latency of request processing in Unbuckle before and
after the introduction of the bucket allocator for memory pre-allocation.

The latency profile for the key-value store with and without the memory pre-
allocation optimisation is shown in figure 4.4. Improvements can be seen across the
whole latency distribution, with a 100µs improvement at the median.

An interesting side-effect of memory pre-allocation is an indirect improvement for
the performance of GET requests in addition to SET requests. This effect is observed
above the 20th percentile latency, where the two plots diverge. For the key-value
store without memory pre-allocation, GET requests experience additional queuing
latency while the request pipeline is blocked on the memory allocator in an earlier
SET request.

4.5 Comparative evaluation

In this section, I will perform a thorough analysis of Unbuckle’s performance to
demonstrate the success of the project in comparison to existing commercial systems.
In particular, I will confirm the hypothesis I sought to investigate in §1.1 and §A.4,
namely:

Hypothesis:
“it might be possible to extract further performance gains from a key-
value store by... building the code directly within the system kernel...
where [no] system calls are necessary, as the [key-value store] already
has the highest level of privilege, including direct access to... the file
system, physical memory and network...”
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Prior to commencing data collection, it was necessary to identify the comparisons to
perform and the results I wished to analyse. The various possibilities are shown in
figure 4.5 and elaborated in the following text.

Unbuckle (kernel module)

Unbuckle (user-space)

Research
systems memcached1ST

3

4

ST

MT

2 ST6ST

5MT

Figure 4.5: Comparing Unbuckle with existing commercial and research systems. ST refers
to a single threaded comparison; MT to a multi-threaded comparison.

1. Unbuckle (user-space) vs. Unbuckle (kernel) (single threaded4)
Analyses the overhead of the system call interface in running a network I/O-
bound software system independent of any other modifications, as the core
algorithms in both versions of Unbuckle are identical, save for the necessary
changes to interact with different external APIs (per §3.6).

2. Unbuckle (user-space) vs. memcached5 (single threaded)
Evaluates the performance of Unbuckle’s algorithms and data structures against
an equivalent state-of-the-art user-space system, independent of the system
context. This provides a baseline for the comparison when Unbuckle is in the
kernel.

3. Unbuckle (kernel) vs. memcached (single threaded)
Follows from 2 to determine the performance speedup of Unbuckle in its
native context against an existing state-of-the-art product in the absence of any
concurrency.

4. Unbuckle (kernel) vs. memcached (multi-threaded)
Compares the performance of Unbuckle against an optimised, concurrent,
widely-deployed user-space key-value store. Determines the prospect of
performance gains in web infrastructure by replacing memcached with

4Unbuckle in user-space is only provided single threaded. This is due to the infeasibility of porting
kernel threads to user-space, as described in §3.6. In any case, a multi-threaded version would tend
towards the performance of memcached, as both systems incur similar performance overheads in the
system call interface and network stack.

5memcached is a user-space only product. Hence, no qualification is given as to user or kernel
context.
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Unbuckle.

5. Unbuckle (kernel) vs. optimised research systems (multi-threaded)
Provides supporting data to determine how Unbuckle fares against recently
published research systems, which have been specifically optimised for
performance.

6. Unbuckle (user-space) vs. optimised research systems (single threaded)
This comparison, while possible, is pointless; the analysis would not be original
and would simply re-produce the results of other papers, such as those in the
MICA paper [35].

4.5.1 The system call overhead

One of the core tenets of the project is the assertion that the system call interface
of traditional operating systems has a negative effect on data centre software whose
predominant task is to communicate on a network. The versatility of the Unbuckle
platform allows this hypothesis to be evaluated.

An experiment was performed against the same code compiled in both a kernel and
user-space context. Service latency as a function of request size was measured. In
the kernel, I used the socket-based network server to ensure the tests only varied in
whether they had to perform system call interface crossings for privileged system
tasks.
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Figure 4.6: A demonstration of the overheads imposed by the system call interface on the
latency of packets as a function of request size. Plotted values are the mean of the median

latency from five test runs. Error bars show the standard deviation of this quantity. The key
size was fixed at 64 bytes to ensure the hash function overhead remained constant as request

size changed.
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Figure 4.6 makes the system call overhead evident. The user-space store performs
worse than the in-kernel one for all request sizes and the gap widens as request size
increases. This behaviour is caused by the confluence of two time-sensitive operations
and merits some further explanation.

The test environment and network stack of the client machines impose an intrinsic
lower bound on the latency. Use of the socket interface in both tests meant all
packets reaching the store were required to traverse the full extent of the network
stack illustrated in figure 3.4. This leads to the baseline latency of just over 100µs for
both versions. However, there is additional overhead to the user-space version.

Crossing the system call interface

As previously described, interacting with network hardware in user-space requires
interrupting the processor to invoke the kernel. This overhead dominates on the
lower end of the request size spectrum, where user-space incurs a 10µs overhead.
This corresponds to an average of two system calls per request – once upon ingress
and again upon egress – but a fraction of requests will make more system calls for
tasks such as memory allocation in the bucket allocator. These data corroborate the
SRG’s earlier findings of a 5µs overhead per system call.

Memory copy operations

In user-space, additional memory copy operations are required between memory
buffers when a system call is made to access the network. This overhead is not
necessary in the kernel, because the kernel has direct access to the sk_buff data
structures which represent network packets. Such memory copies are linear in the
size of the data to be copied, making the overheads of user-space increase with larger
requests. This effect appears to dominate beyond request sizes of 150 bytes.

Meanwhile, the kernel store does not need to perform such memory copy operations,
for it already has access to read the sk_buff’s contents in kernel-space physical
memory when a socket interface operation is invoked. This explains the constant
request latency of 140µs in the kernel version – once network driver and network
stack overhead is accounted for, the only remaining work for the kernel is the
processing of the request, which is independent of request size.6

4.5.2 Comparison with memcached

In order to ascertain the performance differential between Unbuckle and a state-
of-the-art competitor, I performed several experiments to compare the project in
various guises against memcached. As the user-space version of Unbuckle is not

6Of course, the copy cost still exists on the load test client machine, but memaslap’s batched
receiving amortises this over many requests.
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Figure 4.7: A comparison of Unbuckle with memcached on various parameters.

multi-threaded, I used the single threaded, socket interface versions (both user-
space and kernel varieties) to facilitate a like-for-like comparison. Later experiments
will demonstrate the full extent of scalability when the network server and multi-
threading in the kernel are taken into account.

Figure 4.7 presents the results of the comparison of the systems, in terms of the mean
transaction rate per second (figure 4.7a) and the cumulative distribution of request
service latency (figure 4.7b). Once again, the request sizes at which the systems were
evaluated were drawn from the observations made in a commercial deployment at
Facebook [41].

It is apparent from the results that even before extensive optimisation, Unbuckle is
successful in two ways:

3 Improved user-space performance is observed, even before the optimisation of
moving into the kernel is accommodated.

3 Further improved kernel performance is delivered, which demonstrates
benefits to moving into the kernel context.

Moreover, an increase in the request size leads to reduced throughput, owing to
the increased overheads in network transmission and memory copy operations.
While this trend is observable in Unbuckle, the throughput of memcached does
not change between experiments, demonstrating it is not particularly efficient by
comparison.
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User-space comparison

I will first consider the performance differences observed when operating wholly in
user-space. In this context, Unbuckle performs significantly better than memcached
for all metrics. For small data sizes, Unbuckle achieves approximately a 40%
throughput increase and a 25% reduction in latency at the median. This is an
impressive result for a store which was originally intended for operation in the
kernel. The port to user-space was made with no performance optimisations in mind,
demonstrating that the robustness of the code extends into other environments.

By consideration of the latency CDF in figure 4.7b, it is clear that at the first
percentile, the performance of the two versions of Unbuckle is comparable. This
demonstrates similar overheads due to common code paths being executed, processor
cache lookups and systematic overheads in network communication. Meanwhile,
memcached’s first percentile latency is 100µs greater. This is likely because
memcached is intended for multi-threaded operation and performs synchronisation
even when run with just one thread.

Kernel comparison

The key goal of the project was to investigate kernel overheads inflicted on most data-
intensive, network-bound applications. The user-space code evaluated in figure 4.7 is
functionally equivalent to the kernel code for the purposes of this test. Both versions
use the socket interface and are single threaded.

Although the two versions of Unbuckle were investigated earlier (in §4.5.1), it is
instructive to study the results of the kernel version against memcached to appreciate
the magnitude of the gains achieved in the kernel context.

The improvements in request throughput are readily visible across the request size
spectrum, as is the change to the latency distribution. However, for small requests,
the reduction in system call overhead delivers the greatest improvement: 90% higher
throughput in Unbuckle (vs. memcached). This is a highly significant result; the
skewed request size distribution places emphasis on support for small request sizes,
which would make Unbuckle very competitive in a real-world setting.

4.5.3 Two highly optimised key-value stores

To determine the true extent of Unbuckle’s performance, I will now compare it against
memcached in full operation. Both key-value stores are multi-threaded for the
purposes of the following tests, and all optimisations previously described in this
dissertation are enabled in Unbuckle.

The results are presented in figure 4.8. Once again, Unbuckle comes top on all metrics.
Its latency distribution is particularly attractive in comparison to memcached, saving
over 100µs at the median latency. In terms of throughput, Unbuckle is consistently
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Figure 4.8: Performance of multi-threaded Unbuckle in comparison to memcached.

better, achieving up to 50% higher throughput than memcached at large request
sizes.

In comparison to figure 4.7, it becomes clear that memcached scales somewhat
when deployed in multi-threaded mode. However, its internal overheads and the
system call interface’s inherent latency overhead prevent it from utilising all the
available processor cores to their full extent, as demonstrated by Unbuckle’s superior
performance on the same hardware.

4.5.4 Unbuckle vs. optimised research systems

I compared Unbuckle with the state-of-the-art research systems in this field, including
Masstree [39], MICA [35] and RAMCloud [42]. For comparison purposes, I evaluated
the requests processed per second by Unbuckle using the settings provided in the
MICA paper. Small requests consisted of 16 byte keys and 64 byte values. Large
requests used 128 byte keys and 1024 byte values. In addition, the experiments were
run on a server system comparable to the one used in the MICA paper.

Requests per second Code size Commodity

System Small requests Large requests (lines) hardware

RAMCloud 2.3M 3.1M 96k 77

Masstree 4.9M 10.8M 25k 3

MICA 9.4M 64.4M 8.7k8 7

Unbuckle 1.9M 2.5M 3.3k9 3

Table 4.1: Indicative performance comparison of Unbuckle with research systems.
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Of course, any comparison of these systems is only indicative, as they all use
different approaches and perform subtly different tasks. Masstree, for instance,
is a persistent data store and uses a specialist, lock-free data structure, whereas
Unbuckle is constrained by the kernel’s built-in hash table being unoptimised for
concurrency. RAMCloud supports replication and contains logic for fast recovery
from machine failures, neither of which is supported by Unbuckle or memcached.
Finally, MICA requires specific system hardware to provide a user-space network
stack, as previously discussed in §1.3.2. By contrast, Unbuckle does not have such
hardware constraints.

Table 4.1 shows Unbuckle compares favourably to other research systems. Its
throughput approaches that of the more complex RAMCloud system, while
continuing to support commodity hardware. Masstree achieves a 2.5× higher
throughput for small requests. However, it is considerably more complex, and
its data structures have been specially optimised for cache affinity and multicore
scalability.

MICA makes extensive use of hardware optimisations present in Intel NICs,
motherboards and CPUs while also carefully fine-tuning the back-end data
structures. The MICA paper was published close to the completion of this project.
In the future, I hope to apply some of the suggested optimisations to Unbuckle. It
is worth pointing out, however, that MICA only works on an end-to-end Intel stack,
while I have evaluated Unbuckle on a mixture of AMD and Intel systems, and preserve
compatibility with any NIC.

4.6 Scalability analysis

To determine how well Unbuckle scales, I ran experiments in a more elaborate test
environment. The test machine used for this analysis uses a modern six-core Ivy
Bridge-EP processor and several 10 Gbps NICs. Six independent load test clients
were used to concurrently generate load against the key-value store.

Figure 4.9 shows how Unbuckle scales as the number of worker threads increases.
Using eight worker threads, it achieves in excess of 2 million transactions per
second, corresponding to a 22 Gbps throughput. This result more than twice
exceeds the original goal of operating at 10 Gbps, marked by the dashed line in
figure 4.9a. memcached, the competing system, does not scale beyond 8 Gbps while
simultaneously delivering a far worse latency profile.

The drop in performance for ten worker threads is consistent and can be explained
by the experimental setup. The machine used for this test has six physical processor

7RAMCloud was originally designed for special-purpose Infiniband networks, although it has since
been shown to function on Ethernet [35].

8Only the kernel portion of the Unbuckle source code is counted.
9This figure is an underestimate, due to MICA’s dependence on the Intel Data Plane Development

Kit (DPDK) to provide a user-space network stack. The DPDK is 1.3 million lines of code.
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Figure 4.9: An evaluation of Unbuckle running at scale to demonstrate the extent to which
the original aim of the project is exceeded. This key size used in this experiment was 64 bytes.

Values were 1024 bytes.

cores, each of which has two logical threads. An increase in thread-level parallelism
pays off for 8 worker threads, but increasing this further decreases performance due
to increased scheduling contention for interrupts from the NICs.

Figure 4.9b shows that Unbuckle’s latency profile exhibits a long tail at the 80th

percentile. This long tail (not shown) runs to a 99th percentile of 4ms. This is an
expected side-effect of the key-value store’s increased throughput which fills some
of the 10 Gbps links to capacity. Consequently, some packets spend time waiting in
switch queues and NIC buffers. As memcached cannot fill any of the links to capacity,
it does not suffer from this contention.

4.7 Summary

Through a variety of experiments, the original hypothesis I set out to investigate
has been confirmed: moving code into the system kernel does produce observable
performance gains.

However, naïvely bypassing the system call interface only partially contributes to
the reported improvement. The remaining gains are obtained by the investment of
considerable effort to harness additional opportunities presented in the kernel; for
example, the specialisation of commonly traversed code paths to reduce dependence
on overly general system interfaces. A variety of such optimisations were shown to
contribute noticeably, especially in the network stack.

The Unbuckle key-value store outperforms as state-of-the-art system, memcached,
in all experiments. The latency of requests to Unbuckle, even when placed under
significant load, remains below that of memcached. Sound software design and
engineering practice is demonstrated by the framework’s impressively scalability. It
continues to outperform its original design remit in user-space.



Chapter 5

Conclusions

This dissertation has described the design, implementation and evaluation of the
Unbuckle in-kernel, high-performance key-value store. To my knowledge, Unbuckle
is the first system of this kind. The system delivered outperforms a state-of-the-art
competitor by up to a 3× margin, while retaining hardware independence. More
generally, the evidence presented provides further support for the hypothesis that
traditional operating system design principles limit performance in modern data
centre environments.

5.1 Achievements

I have surpassed the initial project requirements by implementing a number of
challenging optimisations, which collectively provided demonstrable performance
gains over existing systems in commercial use. These are delivered in a platform
independent design using commodity x86 server hardware, despite recent published
work claiming this feat was impossible (per §1.3.1).

Personally, I have enjoyed the opportunity to enhance my knowledge of operating
system design. I undertook this project to understand further how the operating
systems principles I have studied are applied in practice. I hope to do further
research at this intersection of distributed systems, networking and operating system
design, a pursuit in which the knowledge I have acquired on this project will be
indispensable.

Finally, I am encouraged by the potential for immediate real-world impact this project
possesses. It could readily replace existing memcached clusters in the core of the
modern web to deliver performance improvements using existing infrastructure.
While this has the potential to transform the use of key-value stores, it also provides
practical confirmation that further research into operating system principles would
be extremely beneficial for these data centre systems.

61



62 CHAPTER 5. CONCLUSIONS

5.2 Lessons learnt

The process of transforming an initial idea into a fully fledged key-value store was
extremely enjoyable. However, I was perhaps naïve as to how time consuming
working with kernel code could be. Its complexity means many hours are required
to understand a seemingly simple subsystem, demanding a rigorous application of
operating system theory rather than the mere investment of engineering effort. This
issue is only compounded by the rapid pace of kernel development and the difficulty
of debugging when a bug will typically hard-crash the machine.

5.3 Further work

The Unbuckle key-value store is complete in the sense that it satisfies the initial
project specification. Nevertheless, there is scope for further implementation and
investigative work to evaluate the impact of operating systems on data centre
workloads.

I am planning to refine the implementation and hopefully adapt this dissertation for
publication. I will also release the source code free-of-charge on the internet. The
project will be licensed under the GNU General Public License (GPL) in accordance
with the licensing requirements of the Linux kernel.1

Further possible improvements include:

• Reliable delivery: some memcached users may wish to offset performance
against reliable delivery guarantees. The canonical protocol for this purpose is
TCP, but the complexity of its state machine would make a custom TCP server a
project in its own right. However, there is potential to layer the Stream Control
Transmission Protocol (SCTP) atop this project’s UDP server to obtain similar
semantics [53].

• multi-GET support: the memcached protocol permits the batching of GET

requests to reduce protocol overhead in large systems, where hundreds of keys
may be retrieved to service one user request.

• Port Masstree to the kernel: this lock-free data structure delivers performance
gains in user-space by careful interoperation with processor caches. The
beta release is written in C++, so a kernel port in C would be a non-trivial
undertaking. However, further performance improvements are possible.

• Q-Jump integration: the SRG’s Q-Jump project, formerly the Resilient Realtime
Data Distributor (R2D2), provides bufferless, bounded latency networking [23].
Integration with this framework would allow Unbuckle to offer a tight
performance guarantee.

1See http://www.tldp.org/HOWTO/Module-HOWTO/copyright.html.

http://www.tldp.org/HOWTO/Module-HOWTO/copyright.html
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Appendix A

Appendices

A.1 Kernel privilege separation on x86 systems

The most widely supported instruction set architecture (ISA) in modern data centre
environments is the x86, upon which most modern desktop processors are based. As
a result of its ubiquity, the ensuing discussion is specialised to this ISA.

The separation of kernel and user-space is realised in hardware on an x86-compliant
processor by implementation of four protection rings. These rings are arranged
hierarchically in order of decreasing trust of code executing therein. The x86
protection rings are depicted in figure A.1.
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Figure A.1: Protection rings of a modern x86 processor.

Ring 0 represents the most privileged kernel mode with unrestricted access to and
control of the system. Each ring layers over the interface provided by the previous
ring. Rings with lower trust are restricted in their ability to execute privileged
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instructions or write to critical memory regions. Certain rings may also enforce a
virtual memory abstraction, to prevent applications reading each others’ memory
segments. Most user-space code executes in the lowest ring, ring 3, which is
characterised by the requirement that faulty code should never have the ability to
cause system instability or the failure of other running applications.

The configuration of the protection rings takes place when the kernel first gains
control of the machine at system boot. A set of system descriptor tables is configured
at a well-known memory location such that the kernel is free to dynamically re-
configure the level of protection enforced by the processor.

Further discussion of protection rings is available in the literature [24, pp. B-50–
ff.].

Hypervisor-based virtualisation

Bare-metal hypervisors, such as Xen [5], have recently become popular in data centre
design by permitting underutilised machines to execute multiple guest operating
systems without compromising on system performance or security.

Running multiple operating systems under a single host machine traditionally
required a software-based emulation platform to intercept issued processor
instructions from guest operating systems, sanity check them and pass to the
processor for execution. This interface was a bottleneck and impractical for server-
based workloads.

To support hardware-assisted virtualisation, x86 processors are enriched with new
hardware primitives to permit guest virtual machines to safely share system
resources. In particular, the protection rings are augmented with a new ring −1,
below ring 0 in the hierarchy, as illustrated in the inset in figure A.1. In this design,
existing operating systems are provided with direct access to program the hardware
as if they were executing physically, including permitting a guest operating system’s
kernel to execute natively within ring 0. System functions shared between virtual
machines are implemented by the hypervisor, which executes with unrestricted
access to system hardware in the new ring −1.
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A.2 Evaluation of load simulators

Section 2.4.1 describes the approach followed for performing testing and evaluation
of the key-value store. In order for this to take place, it was necessary to select
a suitable test harness for simulating load and collecting statistics of the store’s
performance.

Test
Harness

Evaluation

Yahoo!
Cloud
Serving
Benchmark

Not a test harness per se, but rather a widely used generic
package of real-world workload simulations against which key-value
store performance can be evaluated [12]. Unfortunately, the only
implementation for memcached utilises spymemcached,1 which has
no UDP protocol support.

7

memaslap2 Uniquely among memcached test harnesses, memaslap supports the
memcached UDP protocol. The number of worker threads and the
batch sizes to be simulated can be varied, so the simulation can be
tuned to approximate a real-world setup with multiple application
servers. It is capable of 10 Gbps operation.

3

memtier
benchmark3

This is one of the best test harnesses available which offers substantial
support for tuning the request sizes and distributions. Unfortunately,
it also has no support for the UDP protocol.

7

Table A.1: An evaluation of memcached-compliant test harnesses and their suitability for
performance analysis.

Several options were evaluated, as shown in table A.1. memaslap was deemed the
only suitable system which aligned with the requirements of the project, and was
thus selected as the harness for the remainder of this work.

1https://code.google.com/p/spymemcached/
2Component of libmemcached, available at http://www.libmemcached.org
3http://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-

for-redis-memcached

https://code.google.com/p/spymemcached/
http://www.libmemcached.org
http://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached
http://redislabs.com/blog/memtier_benchmark-a-high-throughput-benchmarking-tool-for-redis-memcached
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A.3 Test machines

A.3.1 Specification

In this section, I give the specification of the test machines and networking equipment
used for the purposes of evaluating the performance of Unbuckle at scale.

Test Machines

The primary test machines followed a uniform specification, as follows:

• Intelr Xeonr E5-2643 processors:

– A chip multiprocessor with four processor cores, each running at 3.30 GHz.

– Capable of hyperthreading (Intel’s name for simultaneous multi-
threading), but this was disabled for performance reasons in line with other
research work in this field.

• 128 GB of system memory, all of which is accessible at equal cost from all
processor cores (there is only a single NUMA node).

• Linux kernel version 3.10.2 on the Ubuntu 12.04 Precise Pangolin operating
system.

In order to assess the maximum scalability of Unbuckle as-is, it was necessary
to use machines with a larger number of processor cores to spawn more worker
threads:

• Intelr Xeonr E5-2643 v2 processors, with six hyperthreading-enabled cores
running at 3.50 GHz.

• 64 GB of system memory.

• Linux kernel version 3.10.2 on the Ubuntu 13.10 Saucy Salamander operating
system.

Network Connectivity

To interconnect the test machines together, all machines were connected via 10 Gbps
optic connections to a fast cut-through 10 Gbps switch from Arista Networks [3]. This
switch is specifically designed for data centre environments; unlike most switches,
which could introduce significant packet delay, this switch has a best-case switching
latency below 800 ns.



A.3. TEST MACHINES 73

A.3.2 Automated data collection scripts

A set of custom scripts were implemented to co-ordinate the process of collecting and
analysing the large datasets from each simulation run. The scripts used to compare
the performance of Unbuckle between user-space and the kernel implementation,
to determine the overhead of the system call interface on a network-intensive
application, are presented here. This corresponds to evaluation 1 in figure 4.5.

A variation of these scripts was used for the other analyses, with appropriate changes
to the simulation configuration to exercise the parameters under test and collect the
required data.

Simulation

This simulation analysed a large parameter space of seven different request sizes.
Each such request size was tested against the key-value store in its kernel and user-
space contexts.

The script used for this task is given in listing A.1. This runs on the machine
which performs the simulation. The worker machine is automatically configured
over the network via SSH to allow a completely hands-off simulation, even handling
reboots and the subsequent configuration to prepare for another run. The total
simulation time was 4 hours and 23 minutes, producing a total of 21 GB of output for
analysis.

#!/bin/bash

eval `ssh -agent -s`

ssh -add

# Manage the reboot process of the quorum206 machine ,

# and automatically re-configure without manual intervention.

function q206_reboot {

ssh 128.232.33.16 "sudo reboot"

while ! ping -c1 128.232.33.16 &>/dev/null; do :; done

ssh 128.232.33.16 \

"~/ setup_r2d2.sh && sudo ~/ ub_opt.sh"

}

function run_kernel_test {

ssh 128.232.33.16 "~/ unbuckle/setup_kernel.sh"

~/ libmemcached -1.0.15/ clients/memaslap -s 10.10.0.3:11211 \

--udp -t 30s -T ${4} -c ${5} -S 15s > \

~/ ubdata/userspace_data/key -${1} _value -${2}_krnl -${3}. dat

ssh 128.232.33.16 "~/ unbuckle/setup_rmkernel.sh"
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}

function run_user_test {

ssh -f 128.232.33.16 "~/ unbuckle/setup_user.sh"

~/ libmemcached -1.0.15/ clients/memaslap -s 10.10.0.3:11211 \

--udp -t 30s -T ${4} -c ${5} -S 15s > \

~/ ubdata/userspace_data/key -${1} _value -${2}_user -${3}. dat

ssh 128.232.33.16 "~/ unbuckle/setup_rmuser.sh"

}

function run_test {

# Set up .memslap.cnf file

echo -e "key\n"$1" "$1" 1\n" \

"value\n"$2" "$2" 1\n" \

"cmd\n0 0.1\n1 0.9" > \

~/. memslap.cnf

# Run against user -space three times to take an average.

for i in 1 2 3

do

run_user_test $1 $2 $i $3 $4

q206_reboot

done

# Now run the same value size against the kernel version.

for i in 1 2 3

do

run_kernel_test $1 $2 $i $3 $4

q206_reboot

done

}

echo Why not watch a video while you wait?

echo https ://www.youtube.com/watch?v=dQw4w9WgXcQ

mkdir userspace_data/

# Value size distribution to run tests against

for s in 1 16 64 300 600 900 1024

do

run_test 64 $s $t $c

done

Listing A.1: Shell script used to run the Unbuckle user-space vs. kernel simulation.
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Analysis

The analysis of the data was conducted using a Python script, producing the graphs
presented in chapter 4. For brevity, the script is not reproduced here. It can be found
in the project source code repository at test/consolidate.py.

A.3.3 Optimisation of memcached

In order to ensure the evaluation was as fair as possible, I optimised memcached on
the test machines in accordance with a paper by SolarFlare, which documents various
techniques to extract performance from such installations [49]. A shell script was
implemented to automate this process during the experiments. This script:

• Disables Hyperthreading

• Disables swapping memory to disk

• Pins the memcached worker thread(s) to particular CPU cores

• Stops non-essential system services

• Migrates system threads and other programs to a single CPU core to provide
maximum CPU time on the other cores to the memcached process

The script which performs these tasks is given in listing A.2.

#!/bin/bash

# Optimise machine for running memcached

# Shutdown non -critical services

for s in \

acpid cgconfig irqbalance atd auditd \

avahi -daemon cpuspeed crond haldaemon \

iscsid kdump ksm ksmtuned libvirt -guests \

libvirtd lvm2 -monitor mdmonitor microcode_ctl \

openct pcscd portreserve sysstat

do

service $s stop

done

# Disable hyperthreading if not already disabled in BIOS

# WARNING: this operation is not idempotent

for c in `cat /sys/devices/system/cpu/cpu*/ topology/ \

thread_siblings_list | cut -f2 -d ',' | sort -n | uniq `

do

echo 0 > /sys/devices/system/cpu/cpu$c/online
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done

# Disable swapping

swapoff -a

# Hugepage support

echo 128 > /proc/sys/vm/nr_hugepages

# Migrate non -memcache threads to CPU 0

cset set --cpu=0 system -tasks

# Move all other programs into the system task shield

cset proc --move / system -tasks --kthread

# memcache shield

cset set --cpu=0-3 --mem=0 mc-node0

ethtool -C eth4 adaptive -rx off

ethtool -C eth4 rx-usecs 0

# Start up memcached with 65GB memory in UDP mode

cset proc --set=mc-node0 --exec -- \

/home/r2d2/memcached -1.4.17/ memcached -t 1 -U 11211 \

-u r2d2 -m 65536 &

# Set processor affinity to pin worker threads

MCID=`ps aux | grep [m]emcache | awk '{print $2}'`

# Print threads to allow them to be pinned to CPUs

ps -p $MCID -o tid= -L | sort -n

Listing A.2: Shell script used for optimising a test machine for memcached performance
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Introduction & Description

In recent years, web-based software platforms have grown and now demand high-
performance methods for storing datasets of unprecedented size. As these systems
become more pervasive and their user densities increase, so too does the volume of
data and the rate at which it must be stored, retrieved, generated and transmitted to
end-users. It has become apparent that conventional methods of data storage, such
as the relational database model [11], are unable to scale effectively to meet today’s
demands. Key-value stores have received considerable attention as an alternative
solution. This is exemplified by sustained real-world use in social media [2, 31, 32],
web search [10], and e-commerce [14].

The key-value store is a simple, unstructured and often distributed database system
in which the schema is encoded in external applications rather than the database
itself. A simple mapping is made between a key and its value, with no further
formalisation of the structure of these data. In trivial cases, the value may
consist of a simple alphanumerical string; however, it is common to store serialised
objects, making the store a simple extension of an object-oriented programming
environment.

The simple nature of the key-value store is by contrast to the conventional relational
database management system (RDBMS). Key-value stores achieve their performance
by sacrificing many of the guarantees offered by the database engine in an RDBMS.
Lack of an internally enforced data model was already described; other changes
include: the ACID properties,4 data normalisation, and disk storage. This overcomes
many issues: relaxing consistency guarantees makes it simpler to replicate data
among multiple nodes, maintain high transactional throughput and respond to
system failures; avoiding data normalisation eliminates costly in-memory joins to
reconstruct a useful view of a dataset; in-memory storage delivers data more
efficiently and with less overhead than complex disk subsystems but at the expense
of volatility.

Popular key-value stores in active use today as database systems include Apache
Cassandra,5 Redis,6 and HBase.7 There also exists distributed object caching systems
based upon the same principle; these act as front-end caches to other systems,
storing pre-computed instances of data for a suitable period of time. This avoids
the otherwise inevitable load on back-end systems were these data to be fetched for
every request. memcached8 is a popular implementation.

Unfortunately, the existing implementations suffer performance issues at scale. This
may be due to implementation choices, particularly for Cassandra and HBase, both
of which are implemented in Java and suffer the overhead of a Java Virtual Machine.

4Atomicity, Consistency, Isolation and Durability – common properties offered to users of an
RDBMS which are implemented internally within the database engine.

5http://cassandra.apache.org/
6http://redis.io/
7http://hbase.apache.org/
8http://www.memcached.org/

http://cassandra.apache.org/
http://redis.io/
http://hbase.apache.org/
http://www.memcached.org/
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However, these systems also run as processes in userspace, under the jurisdiction of
an operating system. Each request within the application to perform a privileged
task requires invoking the kernel by means of a system call (“syscall”). This includes
such tasks as: the transmission of a packet of data in response to a query; a request
to read data from, or write data to, a file on disk; the spawning and scheduling of
a new thread of execution. The relatively small data sizes leads to a high request
throughput which results in a relatively large number of syscalls.

I propose taking the existing notion of a key-value store, implement it as a kernel
module, and test the performance of the implementation against an equivalent store
implemented in userspace. In this methodology, fewer transitions into the kernel
via syscalls are necessary, as the system already has the highest level of privilege
including direct access to system resources – the file system, physical memory and
network. Cycles previously wasted changing the mode of the processor can be
used to serve additional requests, potentially leading to improvements in system
throughput. Traditionally, separation of privilege between user and kernel mode
serves a vital purpose in abstracting low-level system details from application code.
However, it is widely acknowledged that interrupting the CPU in order to elevate to
supervisor mode leads to wasted cycles and poor performance during the privilege
switch.9

An in-kernel implementation will naturally remove many of the kernel’s security
benefits, particularly those intended to maintain order on multi-user systems.
However, this is not a major concern. Nodes which operate a key-value store are
typically dedicated to the task, so concerns over process isolation and fairness are
not relevant as the system environment is not shared. Furthermore, it is common to
operate nodes in a virtualised environment in which additional security benefits are
provided by the underlying hypervisor. Work on unikernels has shown additional
benefits in optimising these workloads in the form of specialised microkernels,
despite the security concerns [37].

Resources Required

The resources required for this project are minimal:

• My personal Linux-based laptop, for development purposes. This is an Intel
Core i5 machine with 8 GB RAM.

• The Linux kernel source code, freely available.10

My personal laptop fulfils the development requirements, as I have full control over
the system and its configuration. Testing will be performed initially using a running
Linux instance in a virtual machine. This provides the flexibility to install and test

9Recent work in the Systems Research Group at the Computer Laboratory observed an average
penalty incurred for each syscall of 5µs on an Intel Core i7 machine.

10www.kernel.org

www.kernel.org
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code without the prospect of a bug crashing my primary development machine. It
also permits the use of snapshots to effortlessly roll back the test environment to an
earlier state, if necessary.

In order to ensure the source code and project report are securely stored, automated
and manual backups will be made on a regular basis from my revision control
system to several locations: the MCS filestore, my own personal file server (outside
Cambridge) and an offline hard disk.

Starting Point

To complete this project, I will be drawing heavily on prior knowledge gained
from:

• Parts IA and IB of the Computer Science Tripos
One of the reasons for my pursuing this project is a desire to understand
the low-level operation of a complex system kernel in more depth based on
the theory I have covered so far in the Tripos. This includes the theory of
OS, computer architecture and kernel design taught in the Part IA Operating
Systems course and Part IB courses in Algorithms, Computer Design, Concurrent
and Distributed Systems and Programming in C and C++.

• Existing research
A wealth of research is being published at present on the topic of high-
performance key-value stores, as they grow in importance with large internet
companies. It may be possible to draw ideas from those being published for
my kernel-based implementation, especially where optimisations are concerned
[21, 34, 39].

• Own systems and programming experience
This project will build heavily on previous programming work in earlier years
of the Tripos and elsewhere. I have spent some of my vacation time over recent
years building networking and database systems, so I am familiar with many
of the low-level details of these protocols. Additionally, in the Part IB Group
Projects, my team’s project concerned the real-time analysis of network log files
using Hadoop, which depended heavily on key-value concepts, so I already
have some exposure to the systems I will be using as part of this project.

To the best of my knowledge, there is no equivalent open-source product of this
nature in widespread usage today. However, I am motivated by similar work done
in the area of HTTP web servers. Operating some aspects of these systems in-kernel
has been shown to be advantageous [28].
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Structure of the Project

My intention is to split this project into multiple phases for manageability. These
phases work towards a common purpose of obtaining an implementation of a key-
value store with in-memory data storage. In order for a fair performance comparison
to be performed, it must be possible to compile the store into two modes: a kernel
module and a userspace equivalent. This will require good software engineering
and dual implementations of some low-level operations. Good code abstraction
will ensure the build process simply links with kernel or userspace implementations
depending on the mode of compilation.

Interaction with the store will need to adhere to a suitable protocol. A subset of
operations implemented by the memcached protocol11 is attractive. This is a relatively
simple and widely used protocol with the additional benefit of a binary mode of
operation, removing the need to implement string handling over ASCII text input.
Using an existing protocol also promises seamless compatibility between applications
developed for memcached and those developed for the kernel equivalent, which may
be useful in testing or for future use of this project.

Phase 1 – Core Implementation

In the first phase, a naïve implementation will be made within a Linux kernel module.
This will serve several purposes. Firstly, it keeps the complexity of the required code
relatively low at the beginning of the project, allowing me to focus on familiarising
myself with the intricacies of kernel programming. Secondly, by postponing potential
optimisations until later, it should be possible to observe positive progress being
made at a relatively early milestone. It will be necessary to investigate a number of
areas at this early stage and answer several high-level questions, including:

• The network protocol to support – should the implementation support
communication over UDP, TCP (potentially incurring additional latency but
with guarantees of data integrity), or both?

• Selection of suitable data structures to maximise efficiency in key-value pair
and index storage – existing work includes the use of tries [34], distributed
hash tables and Masstree [39], a proposed combination of B+-trees and tries.
Exploration of suitable libraries which already implement these structures will
be necessary in order to decide whether they can be used as-is or must be re-
implemented. There is the added constraint that such libraries cannot make use
of the C Standard Library because this is unavailable in the Linux kernel, so I
expect it will be necessary to implement many of them from scratch.

11https://github.com/memcached/memcached/blob/master/doc/protocol.txt

https://github.com/memcached/memcached/blob/master/doc/protocol.txt
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Phase 2 – Testing and Performance Evaluation

On completion of a working module, it will be necessary to perform suitable tests
to gather performance data. In order to perform a comparison, each test will
be performed twice: against an in-kernel instance and an instance operating in
userspace. This will provide a definitive, real-world test which determines whether
moving this task into the kernel shows an appreciable performance change. I will
investigate whether existing test frameworks are suitable for this purpose, or whether
construction of my own will be necessary. The tool must be capable of benchmarking
the system through the simulation of a workload, followed by the collection of
statistics for an analysis to be performed, such as request throughput (in terms of
requests per second) and latency (in terms of µs/req). Several tools exist already,
including the Yahoo! Cloud Serving Benchmark [12] and memaslap.12

Phase 3 – Enhancements and Optimisations

The final phase will be devoted to introducing optimisations, as extensions in a
second iteration of the kernel module. See Possible Extensions on this page for
ideas and further discussion.

Possible Extensions

Working within the system kernel provides a much greater degree of insight and
control over system resources than is possible in userspace. It is possible to conceive
a great many possible extensions to the initial kernel module which exploit the
additional information and control interfaces in a bid to further optimise the system’s
performance:

• Direct Memory Access (DMA) – access to the physical system hardware makes
it possible to request DMA data transfers from main memory to other system
devices, freeing the processor to service other requests. The network interface
card (NIC) is a candidate for the use of DMA. In a system which spends much
of its time communicating with the network, a considerable amount of work
is done transferring data between the NIC’s buffers and the data structures in
main memory.

• Process level optimisations – awareness of, and direct access to, the scheduler
opens the potential to “bias” the scheduler in the key-value store module’s
favour. Thus, smarter decisions may be made with regards to when and
upon which core key-value store threads will be executed, with the potential
on multiprocessor systems that cores can be dedicated to the execution of the
database.

12http://docs.libmemcached.org/bin/memaslap.html

http://docs.libmemcached.org/bin/memaslap.html
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• Network communication optimisations – the sk_buff data structure represents
a socket buffer in kernel networking code. All data packets currently queued in
the kernel are represented by sk_buff objects in a doubly linked list, where
the data structure contains pointers to the data and associated information
necessary for properly processing the packet (such as protocol headers).
Allocating memory for instances of the sk_buff data structure may constitute a
time consuming process, which could hinder query throughput to the key-value
store. A point of investigation would involve storing instances of the sk_buff

data structure within the key-value store, allowing these to be directly read out
and spliced into the in-memory packet queue with only minimal effort to make
the structure consistent by setting pointers to the appropriate protocol header
structures. Similarly, previous work has shown it may be possible to reduce
the requirement for memory-to-memory copies by working directly in the NIC
buffers [29].

• Core data storage optimisations – Masstree [39], introduced in Phase 1 –
Core Implementation on page 81, is a proposed algorithm for storing key-
value pairs in-memory which respects the operations taking place in low-
level hardware on symmetric multiprocessor systems. This is primarily
focussed on the behaviour surrounding the creation and eviction of cache lines.
Furthermore, Masstree’s protocol addresses specific concerns over contention
when reading or writing the data structure, and implements techniques such
as Optimistic Concurrency Control (OCC) to enforce consistency without
significantly sacrificing performance. The data structure aims to work alongside
caching – rather than fight against or simply neglect its behaviour, both actions
which could have significant performance impacts. Many of the optimisations
discussed in the paper are relevant to this project. If the decision to go with
this advanced data structure is not made earlier in the project, it should almost
certainly be investigated and implemented as an extension in phase 3 if time
permits.

Timetable: Workplan and Milestones

In accordance with recommended practice, I have split the entire project into
approximately fortnightly work packages. I intend to complete the work by the
middle of March. This allows time to write the dissertation over the Easter vacation,
revise for the forthcoming exams during Easter term, and adds buffer time should
this be necessary.

• 8th October to 22nd October

– Investigate existing work in this area, including academic papers and open-
source key-value store implementations

– Work on the project proposal (deadline: 25th October)
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– Read around the kernel in suitable literature and experiment with dummy
code snippets and modules as familiarisation with this particular form of
programming

Milestone: Complete and submit project proposal

• 23rd October to 5th November

– Further research and familiarisation with kernel concepts. Study
the memcached protocol in more depth, perhaps even its current
implementation. Experiment with an existing memcached instance to
demonstrate operation of the current system on a small scale.

– Investigate existing libraries which may be of use, particularly any with a
focus on algorithm implementation in-kernel.

– Configure and test the development environment and disaster recovery
procedures

– Set up the skeleton kernel module structure and begin to implement the
core code, particularly the core algorithm for storing key-value pairs which
will be used in the first iteration.

– Build suitable unit test frameworks for code written (ongoing from this point)

• 6th November to 19th November

– Complete back-end data storage.

– Implement the memcached protocol in the key-value store and test
input/output accordingly.

– Begin investigating test frameworks, evaluate YCSB (as introduced
in Phase 2 – Testing and Performance Evaluation on page 82) and work
on adapting this or implementing my own if necessary.

• 20th November to 3rd December

– Integrate network communications with the back-end data storage
components.

– Finalise phase 1 of the key-value store.

– Complete test frameworks, build a test workload and run this on the key-
value store in both kernel and userspace modes.
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6th December – end of full Michaelmas term

• 4th December to 17th December

Further time for testing.

– Continue running test workloads in order to evaluate the system.

– Implement bug fixes for any identified issues.

Milestone: Phases 1 & 2 completed by end of timeslot

• 18th December to 31st December

Progress report and obligatory catchup time.

Milestone: Draft of the progress report by end of timeslot.

• 1st January to 14th January

Implementation time for phase 3 (optional extensions) and wrap up of
any outstanding work from phases 1 and 2.

– Begin the implementation of the optional extensions as outlined in Possible
Extensions on page 82.

– Investigate further extension possibilities which may have come to light
during the development stage of the project.

– Continually test and evaluate the effect of extensions as they are completed
(ongoing from this point)

– Consider any additional minor enhancements to the phase 1
implementation.

14th January – start of full Lent term

• 15th January to 29th January

Completion and hand-in of progress report.

– Incorporate any necessary modifications to the progress report, update
with new developments, and hand-in.
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– Work on the presentation to overseers and other students, including the
preparation of any required materials (scheduled to take place on one of 6th,
7th, 10th or 11th February)

– Continue implementation of optional extensions or performance enhancing
features.

Deadline (hard): Hand-in the progress report.

Milestone: Have a presentation ready for early February.

Milestone: Have a fully working key-value store with kernel-level optimisations
implemented. Evaluate using the testing framework.

• 30th January to 12th February

Further extension implementation and catchup time.

– Continue implementing optional extensions to the project.

– Deliver the progress presentation.

• 13th February to 24th February

Final opportunity for the implementation of any last minute enhancements,
additions or tweaks.

– Heavily test the key-value store as it now stands, with a view to generating
evaluation data suitable for the dissertation write-up which is about to
commence.

– Wrap up any final extensions and any other code in development.

Milestone: The substance of the key-value store kernel module – including the
optional extensions as previously selected – implemented and tested with full
simulated production workloads.

• 25th February to 11th March

Start writing dissertation. Buffer time for bug fixes and any outstanding issues.

• 11th March to 8th April (note: double length slot)

Complete dissertation to draft standard.



A.4. PROJECT PROPOSAL 87

– Write the main sections of the dissertation. Focus on generating
appropriate figures and writing an evaluation based on the results
produced.

– Typeset the dissertation to a standard suitable for handing in for review.

Milestone: Dissertation draft complete by end of timeslot.

14th March – end of full Lent term (falls within timeslot)

• 8th April to 22nd April

Finish dissertation.

– Finish off the dissertation, adding additional evaluation results where
necessary.

– Incorporate feedback on the draft as received from supervisor and any
additional proofreaders.

22nd April – start of full Easter term

• 22nd April to 16th May (note: extra long slot)

Buffer time. Dissertation deadline at end of timeslot.

– Address any outstanding issues with the dissertation.

– Hand the dissertation in and upload a tarball containing the source code.

– Revision for the exams.

Deadline (hard): complete administrivia to finalise the project, preferably in
good time – hand in dissertation, upload source code and the dissertation in
electronic form. Momentarily breathe a sigh of relief before thinking about
exams again.
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